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Abstract
In this paper, we introduce a numerical method to obtain an accurate approximate solution of the integro-differential delay 
equations with state-dependent bounds. The method is based basically on the generalized Mott polynomial with the param-
eter-� , Chebyshev–Lobatto collocation points and matrix structures. These matrices are gathered under a unique matrix equa-
tion and then solved algebraically, which produce the desired solution. We discuss the behavior of the solutions, controlling 
their parameterized form via � and so we monitor the effectiveness of the method. We improve the obtained solutions by 
employing the Mott-residual error estimation. In addition to comparing the results in tables, we also illustrate the solutions 
in figures, which are made up of the phase plane, logarithmic and standard scales. All results indicate that the present method 
is simple-structured, reliable and straightforward to write a computer program module on any mathematical software.
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Introduction

Integro-differential equations (IDEs) and their delay types 
(IDDEs) govern many physical phenomena emerging in 
mathematics, mechanics, engineering, biology, econom-
ics, electrodynamics and oscillating magnetic field [1–8]. 
These varieties encourage many researchers in all over the 
world to give more attention than ever before. Because the 
sophisticated phenomena can be easily described with the 
aid of IDDEs. As these phenomena are evolved, finding the 
physical behavior of IDDEs becomes far more difficult. For 
example, state-dependent Riccati equation modeling vehicle 
state estimation [9], state-dependent delay Volterra equations 
considered in viscoelasticity theory [10] and the system of 
state-dependent delay differential equation describing forest 
growth [11] can be found in the literature. Thus, a difficult 
task appears while interpreting the physical responses of these 

complex structures, analytically. Therefore, several numerical 
methods have recently been focused and established more on 
IDEs and their various types. To this end, Kürkçü et al. [12, 
13] have solved IDEs and IDEs of difference type by means 
of Dickson matrix-collocation method. Reutskiy [14] has uti-
lized the backward substitution method for solving the neutral 
Volterra–Fredholm IDEs. Chen ve Wang [15] have dealt with 
the neutral functional–differential equation with proportional 
delays using the variational iteration method. Bellen and Zen-
naro [4] have investigated the convergence and numerical solu-
tion of state-dependent delay differential equations. Gökmen 
et al. [16] have proposed Taylor polynomial method for solving 
the Volterra-type functional integral equations. Gülsu et al. 
[17] have used Chebyshev polynomial for delay differential 
equations. Savaşaneril and Sezer [18, 19] have employed Tay-
lor and Taylor–Lucas polynomial method for searching the 
solution of Fredholm IDEs and pantograph-type delay dif-
ferential equations, respectively. Maleknejad and Mahmoidi 
[20] have obtained the Taylor and block–pulse numerical 
solutions of Fredholm integral equation. Rohaninasa et al. 
[21] have established Legendre collocation method to solve 
Volterra–Fredholm IDEs. Yüzbaşı [22] have approached the 
numerical solutions of pantograph-type Volterra IDES with 
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the aid of Laguerre polynomial. Gümgüm at al. [23] have 
obtained the Lucas polynomial solutions of functional IDEs 
involving variable delays.

All above studies motivate us to develop a numerical 
method and deal with the highly stiff problems, such as the 
integro-differential delay equations with state-dependent 
bounds in this paper. In the literature, there is no study main-
taining the numerical solution of such equations. By way of 
this study, we can investigate their physical responses numeri-
cally, evaluating the obtained values in tables and figures. 
This paper is organized as follows: “Fundamental proper-
ties of Mott polynomial” section mentions some properties 
of the Mott polynomials. “Constructing method of solution 
via matrix relations” section establishes new matrix relations 
and method solution. “Mott-residual error estimation” section 
gives Mott-residual error estimation as an algorithmic sense. 
“Numerical examples” section includes stiff numerical exam-
ples solved with the aid of the present method. “Conclusions” 
section presents the discussions about the present method and 
its efficiency by taking into account the results in “Numerical 
examples” section. The functional integro-differential delay 
equations with state-dependent bounds are of the form

subject to the initial conditions

where y(t), Pr(t) , g(t) and Kq(t, s) are analytic functions on 
[a, b]; �r and �q are real constant delays 

(
�r, �q ≥ 0

)
 ; �q , cq , 

dq 
(
cq < dq

)
 and �k are proper constants.

Our aim in this study is to efficiently obtain an accurate 
approximate solution of Eq. (1) by developing the Mott matrix-
collocation method, which was previously introduced in [24]. 
Besides, the parameter-� in the generalized Mott polynomial is 
used as a control parameter in the numerical approximations. 
Hence, we can control the obtained solutions in terms of their 
more consistent structures. The approximate solution comes 
out to be in the form (see [24])

where yn , n = 0, 1,… ,N are unknown Mott coefficients to 
be calculated by the method and Sn(t, �) is the generalized 

(1)

m1∑
r=0

Pr(t)y
(r)
(
t − �r

)

= g(t) +

m2∑
q=0

�q

dqy(t)

�
cqy(t)

Kq(t, s)y
(
s − �q

)
ds,

a ≤ t, s ≤ b,

(2)
m1−1∑
k=0

y(k)(a) = �k,

(3)y(t) ≅ yN(t) =

N∑
n=0

ynSn(t, �),

Mott polynomial [25]. Chebyshev–Lobatto collocation 
points used in the matrix systems are defined to be (see [23])

where i = 0, 1,… ,N and a = t0 < t1 < ⋯ < tN = b.

Fundamental properties of Mott polynomial

In this section, we briefly describe some fundamental proper-
ties of Mott polynomial, which is used as a basis of the matrix-
collocation method. In 1932, Mott [26] originally introduced 
the polynomial while monitoring the roaming behaviors of 
electrons for a problem in the theory of electrons. After this 
exploration, Erdèlyi et al. [27] established the explicit formula 
of the polynomial Sn(t) as follows:

where 3F0 is a generalized hypergeometric function.
In 1984, Roman [28] presented both an associated Shef-

fer sequence and a generating function for the polynomial 
as follows:

where S0(t) = 1 , S1(t) = −
t

2
 , S2(t) =

t2

4
 , S3(t) = −

3t

4
−

t3

8
 and 

S4(t) =
t2

2
+

t4

16
.

On the other hand, a triangle coefficient matrix of the poly-
nomial can be found in A137378 of OEIS [29]. In 2014, Kru-
chinin [25] converted the polynomial to a generalized form 
with a parameter-�:

where the Mott polynomial is obtained for � = 0.5 . For further 
properties of the polynomial, the reader can refer to [25–28].

Constructing method of solution via matrix 
relations

In this section, the fundamental matrix relations are presented 
to construct method of solution. Let us first state the solution 
form (3) in the matrix relation [24]

(4)ti =
a + b

2
+

a − b

2
cos

(
�i

N

)

Sn(t) =
�
−
t

2

�n

(n − 1)!

⌊n∕2⌋�
l=0

t−2l

l!(n − l)!(n − 2l − 1)!

= (n!)−1
�
−
t

2

�n

3F0

�
−n,

1

2
−

n

2
, 1 −

n

2
; − 4t−2

�
,

f (t) =
−2t

1 − t2
and

∞�
k=0

Sk(t)

k!
sk = exp

�
t
√
1 − s2 − t

s

�
,

Sn(t, 𝛽) =

n∑
p=1

p∑
q=0

(−1)p−q+(n+p)∕2
n!
(
1 + (−1)n+p

)
2p!

(
p

q

)

(
𝛽q

(n + p)∕2

)
tp, n > 0,
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where

Now, inserting t → t − �r into the matrix relation (5), then 
we get

where

Similarly, it holds that

By the matrix relation (6), the left hand side of Eq. (1) is of 
the matrix relation form

Now, the matrix relation of integral part of Eq. (1) is given. 
First, the kernel function Kq(t, s) can be written in the trun-
cated Taylor series form [16, 18],

where

and

Then, it holds from the matrix relations (7) and (9) that

where

(5)y(t) = S(t, �)Y and y(r)(t) = S
(r)(t, �)Y,

S(t, �) =
[
S0(t, �) S1(t, �) ⋯ SN(t, �)

]
,

S
(r)(t, �) =

[
S
(r)

0
(t, �) S

(r)

1
(t, �) ⋯ S

(r)

N
(t, �)

]
and

Y =
[
y0 y1 ⋯ yN

]T
.

(6)y(r)
(
t − �r

)
= S

(r)
(
t − �r, �

)
Y,

S
(r)
(
t − �r, �

)
=
[
S
(r)

0

(
t − �r, �

)
S
(r)

1

(
t − �r, �

)
⋯ S

(r)

N

(
t − �r, �

) ]
.

(7)y
(
s − �q

)
= S

(
s − �q, �

)
Y,

(8)
m1∑
r=0

Pr(t)y
(r)
(
t − �r

)
=

m1∑
r=0

Pr(t)S
(r)
(
t − �r, �

)
Y.

(9)Kq(t, s) =

N∑
m=0

N∑
n=0

kmnt
msn ⇒ Kq(t, s) = X(t)KqX

T(s),

Kq =
[
kq
mn

]
, kq

mn
=

1

i!j!

�i+jKq(0, 0)

�ti�sj
, i, j = 0, 1,… ,N,

X(t) =
[
1 t ⋯ tN

]
.

(10)

m2∑
q=0

�q

dqy(t)

∫
cqy(t)

Kq(t, s)y
(
s − �q

)
ds

=

m2∑
q=0

�qX(t)KqRq(t)Y,

Recalling the matrix relations (8) and (10) and collocation 
points (4), we thus write the combined matrix relation as

More briefly, we can construct the matrix relation (11) as the 
fundamental matrix equation

where

Using the matrix relation (5), we similarly state the matrix 
relation of the initial conditions (2) as the following:

Rq(t) =

dqy(t)

∫
cqy(t)

X
T(s)S

(
s − �q, �

)
ds =

[
r
q

ij
(t)
]
,

i, j = 0, 1,… ,N.

(11)

m1∑
r=0

Pr

(
ti
)
S
(r)
(
ti − �r, �

)
Y

= g(ti) +

m2∑
q=0

�qX
(
ti
)
KqRq(ti)Y.

(12)

(
m1∑
r=0

PrS
(r)(�) −

m2∑
q=0

�qX Kq Rq

)
Y = G,

S
(r)(�) =

⎡⎢⎢⎢⎣

S
(r)
�
t0 − �r, �

�
S
(r)
�
t1 − �r, �

�
⋮

S
(r)
�
tN − �r, �

�

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣

S
(r)

0

�
t0 − �r, �

�
S
(r)

1

�
t0 − �r, �

�
⋯ S

(r)

N

�
t0 − �r, �

�
S
(r)

0

�
t1 − �r, �

�
S
(r)

1

�
t1 − �r, �

�
⋯ S

(r)

N

�
t1 − �r, �

�
⋮ ⋮ ⋱ ⋮

S
(r)

0

�
tN − �r, �

�
S
(r)

1

�
tN − �r, �

�
⋯ S

(r)

N

�
tN − �r, �

�

⎤⎥⎥⎥⎥⎦
,

X =

⎡⎢⎢⎢⎣

X
�
t0
�

0 ⋯ 0

0 X
�
t1
�

⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 0 X
�
tN
�

⎤⎥⎥⎥⎦
(N+1)×(N+1)2

,

G =
�
g
�
t0
�
g
�
t1
�
⋯ g

�
tN
� �T

,

Kq =

⎡⎢⎢⎢⎣

Kq 0 ⋯ 0

0 Kq ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 0 Kq

⎤⎥⎥⎥⎦
(N+1)2×(N+1)2

,

Rq =

⎡⎢⎢⎢⎣

Rq

�
t0
�

Rq

�
t1
�

⋮

Rq

�
tN
�

⎤⎥⎥⎥⎦
(N+1)2×(N+1)

.

(13)
m1−1∑
k=0

S
(k)(a, �)Y = �k.
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By the matrix equation (12), we are now ready to constitute 
the method of solution

Then, it follows that

On the other hand, we can construct the matrix relation of 
Eq. (13) as

where

Replacing the row(s) of the matrix relation (15) by the last 
m1 row(s) in W , we then obtain the augmented matrix

We solve the augmented matr ix (16) only if 
rankW̃= rank

[
W̃ ; G̃

]
=N + 1 . We can state Y=

(
W̃
)−1

G̃ . 
Thus, the Mott coefficients appearing in the form (3) are 
obtained, and then, they are substituted into the form (3); we 
finally reach the Mott polynomial solution with the param-
eter-�.

Mott‑residual error estimation

The residual error analysis has successfully been employed 
in [7, 8, 12, 13, 16, 22, 30]. For this motivation, we introduce 
the Mott-residual error estimation technique including the 
Mott polynomial and a residual function to improve the Mott 
polynomial solution (3) of Eq. (1). Algorithmic procedure 
of this technique can be described for the present method as

Step 1: RN(t) ←
∑m

1

r=0
Pr(t)y

(r)

N

�
t − �r

�

−
∑m2

q=0
�q

dqyN (t)∫
cqyN (t)

Kq(t, s)yN
�
s − �q

�
ds − g(t),

(14)

(
m1∑
r=0

PrS
(r)(�) −

m2∑
q=0

�qX Kq Rq

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
W

Y = G.

WY = G or [W;G].

(15)UkY = �k ⇒

[
Uk ; �k

]
, k = 0, 1,…m1 − 1,

Uk ≡ [
uk0 uk1 ⋯ ukN

]
.

(16)

�
W̃ ; G̃

�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w00 w01 ⋯ w0N ; g
�
t0
�

w10 w11 ⋯ w1N ; g
�
t1
�

⋮ ⋮ ⋮ ⋮ ⋮ ; ⋮

wN−m1,0
wN−m1,1

⋯ wN−m1,N
; g

�
tN−m1

�
u00 u01 ⋯ u0N ; �0

u10 u11 ⋯ u1N ; �1

⋮ ⋮ ⋮ ⋮ ⋮ ; ⋮

um1−1,0
um1−1,1

⋯ um1−1,N
; �m1−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Step 2: eN(t) ← y(t) − yN(t) = −RN(t),

Step 3: 0 ←
∑m1−1

k=0
e
(k)

N
(a),

Step 4: Solve the error problem consisting of Steps 2 and 
3,

Step 5: eN,M(t) ←
∑M

n=0
y∗
n
Sn(t, 𝛽) , (M > N) , where Sn(t, �) 

is the Mott polynomial and eN,M(t) is a Mott-estimated 
error function,

Step 6: yN,M(t) ← yN(t) + eN,M(t) , where yN,M(t) is a cor-
rected Mott polynomial solution.

Thus, we improve the Mott polynomial solution and it is 
worth specifying that the corrected error function is of the 
form EN,M(t) = y(t) − yN,M(t).

Numerical examples

In this section, we apply the present method to solve some 
stiff problems concerned with Eq. (1). To do this, we 
develop a computer program routine on Mathematica 11. 
The obtained solutions and numerical values are elucidated 
in figures and tables.

Example 1 Consider the second-order FIDE with state-
dependent bounds and multi-delays

subject to the initial conditions y(0) = 1 , y�(0) = 0 , 
and t, s ∈ [0, 1] .  Here,  the constant delays are {{

�0 = 0.6, �1 = 1
}
,
{
�0 = 0.5, �1 = 0.1

}}
 and

By the fundamental matrix equation (14), we construct the 
fundamental matrix equation as

After applying the described procedure to the equation 
above, we easily get the augmented matrix

y��(t) − ty�(t − 1) + t2y(t − 0.6)

= g(t) −

3(t2+1)

∫
2(t2+1)

(t2 + s2)y(s − 0.5)ds

+

t2+1

∫
0

(t2s2)y(s − 0.1)ds

g(t) = − 31.8667 + 2t − 174.987t2 − 1.2t3 − 360.69t4

− 378.707t6 − 198.947t8 − 41.25t10 + t12∕5.

(
P0S

(0)(�) + P1S
(1)(�) + P2S

(2)(�)

+ �0X K0 R0 − �1X K1 R1

)
Y = G,
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Solving this matrix system, we get

and it holds from Eq. (3) that

which is the exact solution.

Example 2 Consider the fourth-order IDDE with state-
dependent bounds and variable coefficients

subject to the initial conditions y(0) = 1 , y�(0) = 0 , 
y��(0) = −1 , y���(0) = 0 , and t, s ∈ [0, L] . Here, the exact 
solution is y(t) = cos (t) and for �2 = �0 = 0,

Similarly, g(t) can be calculated via the exact solution for 
various values of {�2, �0}.

Taking different truncation limit N and L = {1, 10} , we 
solve the problem by using both the present method and 
Taylor collocation method [16, 18] to compare the obtained 
results. We later employ the Mott-residual error estimation 
to improve the solution. It is important to state that we inves-
tigate the effects of � and the delays on the Mott polynomial 
solutions. Therefore, the following discussion is made:

• Table 1 shows the absolute errors for fixed �2 = �0 = 0.01 
and � = 1.5 . Also in there, the better numerical results 
are obtained in comparison with Taylor collocation 
method [16, 18].

• When L = {1, 10}, the oscillatory behaviors of the solu-
tions coincide properly with the exact solution in Figs. 1 
and 2 , respectively.

• L∞ errors obtained with N = 12 , � = 1.5 are investigated 
with respect to different delays �2 and �0 in Table 2. 
The best approximation stands for 8.92e−10 when 
�2 = �0 = 1.

• Similarly, the behavior of L∞ errors obtained with the 
fixed N = 12 and �2 = �0 = 0.5 is demonstrated with 

�
W̃ ; G̃

�
=

⎡
⎢⎢⎣

− 6.33 13.0833𝛽 − 25.533𝛽2 ; − 31.87

1 0 0 ; 1

0 − 𝛽 0 ; 0

⎤
⎥⎥⎦
.

Y =
[
1 0 1∕�2

]T
.

y(t) = t2 + 1,

y(iv)(t) + sin(t)y��
(
t − �2

)
− cos(t)y(t) = g(t)

+

2 cos(t)

∫
cos(t)

exp(t + s)y
(
s − �0

)
ds,

g(t) = cos(t)[1 − cos(t) − sin(t)]

+ 2.71828(t+cos(t)[0.5 cos(cos(t))

+ 0.5 sin(cos(t)) + 2.71828cos(t)(−0.5 cos(2 cos(t))

− 0.5 sin(2 cos(t)))].

respect to � in the logarithmic scaled plot shown in 
Fig. 3.

Example 3 Consider the second-order external forced oscil-
latory differential equation exposing to single time-delayed 
effect

subject to the initial conditions y(0) = 0 and y�(0) = 1 . A 
under-damped parameter |𝜀| < 1 , an external force F, a non-
resonance excitation � ≠ 1 [5]. Here, L = {1, 15} and also 
the exact solution of the problem is unknown, but it can be 
approached numerically with the aid of Mathematica as

Previously, Kalmar–Nagy and Balachandran [5] have stud-
ied the linear oscillator differential equation with external 
forcing, under-damped system and non-resonance excita-
tion. They have determined the steady-state response and 
magnification factor. In this example, by exposing the linear 
oscillator equation [5] to the delayed effect �1 , let us seek 
the numerical solutions for different N, M, �1 , � , � , and the 
fixed F = � = 2 . Thus,

• By increasing N and M, we demonstrate the absolute 
errors for �1 = 0 and � = 1 in Table 3. This indicates 
that N and M enable us to enhance the accuracy of the 
method.

• Figs. 4 and 5 illustrate the oscillatory response of both 
the Mott polynomial y25(t) and Mathematica solutions for 
L = 15 , �1 = 0, 0.5 and � = {0.1, 0.45} . Figures 6 and 7 
also illustrate these solutions in the phase plane.

• The decreasing L∞ error diagram obtained with N = 12 
is demonstrated with respect to the control parameter � 
in Fig. 8.

In addition, we draw the attention to the fact that both � and 
�1 have a different effect on the Mott polynomial solution.

y��(t) + 2�y�
(
t − �1

)
+ y(t) = F cos(�t), t ∈ [0, L],

NDSolve[y��[t] + 2�y�[t − �1]

+ y[t] == 2Cos[2t], y[0] == 0, y�[0] == 1,

y[t], {t, 0,L}][[1, 1, 2]].

Table 1  Comparison of the absolute errors of Example  2 with 
�
2
= �

0
= 0.01 for � = 1.5

t
i

|e
5
(t
i
)| |e

9
(t
i
)| |E

9,11
(t
i
)| |e

9
(t
i
)| [16, 18]

0.2 1.05e−05 9.16e−09 5.71e−11 1.91e−05
0.4 1.70e−04 1.50e−07 9.26e−10 3.08e−04
0.6 8.63e−04 7.66e−07 4.90e−09 1.54e−03
0.8 2.68e−03 2.40e−06 1.73e−08 4.75e−03
1.0 6.34e−03 5.71e−06 4.80e−08 1.11e−02
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Conclusions

An efficient numerical method based on the generalized 
Mott polynomial, Chebyshev–Lobatto collocation points 
and the matrix structures has been proposed to solve stiff 

IDDEs with state-dependent bounds, which are introduced 
for the first time with this paper. Thanks to the simplicity of 
the present method, the obtained solutions have been accu-
rately approximated to the exact and Mathematica solutions. 
Controlling the optimum value of the parameter-� in the 

Table 2  Comparison of L∞ 
errors (N = 12 , � = 1.5) with 
respect to the delays �

2
 and �

0
 

for Example 2

�
2

− 0.5 0 0.1 0.5 0.8 1 2
�
0

− 0.5 0 0.1 0.5 0.8 1 2

L∞ 3.02e−09 9.00e−09 1.32e−08 2.59e−09 6.88e−09 8.92e−10 6.92e−07

Fig. 1  Comparison of the 
Mott polynomial with the 
control parameter � = 1.5 and 
exact solutions in terms of N 
on [0, 1] for Example 2 with 
�
2
= �

0
= 0.5

Fig. 2  Oscillatory behav-
ior of the Mott polynomial 
(� = 1.5) and exact solutions 
on [0, 10] for Example 2 with 
�
2
= �

0
= 0.5

Bold values show that the method has provided the best approximation when the specific values
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solutions is of importance as can be seen in Figs. 3 and 8. 
Therefore, this parameter plays a specific role in numeri-
cal approximations. The Mott-residual error estimation has 
effectively improved the obtained solutions as seen from 
Tables 1 and 3 . The effects of the delays have been moni-
tored differently. So, we here want to state from Table 2, 
Figs. 4 and 5 that the delays change the behavior of the prob-
lems in a physical sense. By investigating all results, as N is 
increased, the accuracy of the method increases. Thus, we 
conclude that the present method could be very applicable 

Fig. 3  Logarithmic scaled plot 
of L∞ error with respect to � 
for Example 2 with L = 1 and 
�
2
= �

0
= 0.5

Table 3  Comparison of the absolute errors between the Mott polyno-
mial and Mathematica solutions (� = 1) for Example 3 with � = 0.1 
and �

1
= 0

t
i

|e
6
(t
i
)| |e

8
(t
i
)| |E

8,9
(t
i
)| |E

8,12
(t
i
)|

0.2 3.18e−07 2.49e−09 5.85e−11 6.49e−15
0.4 1.08e−06 6.27e−09 9.60e−11 2.51e−14
0.6 4.88e−06 1.67e−08 3.92e−10 2.78e−14
0.8 1.37e−05 2.27e−08 1.49e−09 1.54e−13
1.0 2.11e−04 9.97e−07 3.46e−08 5.49e−12

Fig. 4  Oscillatory behavior of 
the Mott polynomial (� = 1.5) 
and exact solutions with respect 
to �

1
 in [0, 15] for Example 3 

with � = 0.1 , F = 2 , and � = 2
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Fig. 5  Oscillatory behavior the 
Mott polynomial (� = 1.5) and 
exact solutions with respect to 
�
1
 in [0, 15] for Example 3 with 

� = 0.45 , F = 2 and � = 2

Fig. 6  Phase plane behav-
ior of the Mott polynomial 
(� = 1.5) and exact solutions 
in phase plane for Example 3 
with � = 0.1 , F = 2 , � = 2 and 
L = 15
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and reliable for solving other well-known phenomena, such 
as partial differential and fractional differential equations 
after making some required modifications on the proposed 
method.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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