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Abstract

Healthy plant growth depends on a balanced metal homeostasis at the organ, tissue
and sub-cellular levels, which is mediated principally by plasma and vacuolar membrane
metal transporters. The genetic bases of metal acquisition in developing seeds has long
remained poorly understood. Recent technical advances have helped circumvent the
difficulties of conducting metal nutrient research on the extremely small seeds of
Arabidopsis thaliana. The review presents recent advances in our understanding of seed
metal homeostasis focussing on this model plant. Metals are loaded from phloem to the
seed coat and must pass through the endosperm to reach the embryo. The embryo
comprises several apoplastic and symplastic pathways that strictly depend on the
changing physiology of the developing seed organs. Metals that reach the developing
embryo fuel immediate cellular processes or accumulate in vacuoles to support forth-
coming germination. In the mature embryo, metal distribution is homogeneous, with
the exception of iron and manganese which localize to distinct cell layers. These metal
localizations are strictly dependent on expression of specific tonoplast transporters,
with putative functions that go beyond the storage of metals. Accumulating evidence
indicates that they can control the timing of metal entry into the embryo.
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1. GENERAL PRINCIPLES IN PLANT METAL
HOMEOSTASIS

A healthy plant growth requires a continuous supply of metal nutri-

ents. In plant cells, metals activate enzymes, contribute to protein synthesis

and function as signalling molecules. Particularly, transition metals mediate

electron transport reactions, such as photosynthesis, respiration, and detoxifi-

cation of reactive oxygen species, due to their ability to take several different

charges (Andresen, Peiter, & K€upper, 2018). In hyperaccumulator species,

metals can accumulate in leaf vacuoles at concentrations that are poisonous

for insects, thereby contributing to the protection of the plant from herbivory

(Boyd, 2007). However, meeting the demand for metals first requires the

scavenging of positively charged metal cations from the negatively charged

soil particles and subsequently their mobilization from roots to sink tissues.

Whenever plants fail to provide sufficient amounts of metals to sink tissues,

growth is restricted. In agriculture, plants often cannot meet the need for

metals (e.g. iron and zinc), making metal deficiencies one of the most wide-

spread problems of agricultural production.

Membrane metal transporters determine the majority of metal content in

plant organs, tissues, and organelles. For example, whether ferroportin2

(FPN2) transporter is truncated or full length can account for differential

cobalt levels in shoots of distinct Arabidopsis thaliana natural accessions

(Morrissey et al., 2009). How plants gain metal hypersensitivity (Castaings,

Caquot, Loubet, & Curie, 2016; Gao et al., 2017) or hypertolerance

(Morrissey et al., 2009) can often be explained by assessing a change in activity

of their membrane transporters. Comparison of hypertolerants with their

non-hypertolerant relatives shows a striking difference in the expression of

metal transporters upon metal stress. For example, in roots under cadmium

stress, cation exchanger1 (CAX1) of hypertolerant Arabidopsis halleri was

upregulated 15 times more than in A. thaliana (Baliardini, Meyer, Salis,

Saumitou-Laprade, & Verbruggen, 2015; Becher, Talke, Krall, & Kr€amer,

2003). Sufficient amounts of metals must be taken up from the soil and

transported to the sink tissues in order to complete the plant’s life cycle. Metal

transport from the soil to the seeds involves (i) root acquisition, comprising

uptake from the rhizosphere to the cytosol of epidermal and cortex cells of

the root, (ii) long-distance transport, including loading from root pericycle

into the xylem, root-to-shoot transport via the xylem and its subsequent

unloading, (iii) remobilization from source (e.g. leaves) to sink organs

(e.g. developing seeds) via the phloem and (iv) transport within the seed,
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including translocation from maternal to filial tissues and storage. At each of

these steps, metals must pass through several membranes with the help of

diverse families of metal transporters.

Metal transporters belong to several protein families such as the natural

resistance-associated macrophage proteins (NRAMPs), the metal-tolerance

proteins (MTPs), the vacuolar iron transporter-like family (VTLs), the

ZRT/IRT-like proteins (ZIPs) and yellow stripe1-like family (YSLs).

NRAMPs transport divalent cations, particularly Mn2+ and Fe2+ into the

cytosol (Thomine, Wang, Ward, Crawford, & Schroeder, 2000). Their

primary physiological function appears to be maintaining iron (Fe) and

manganese (Mn) homeostasis. Particularly, NRAMPs are associated with

the acquisition and radial transport of Fe and Mn from the outer to inner

parts of the root (Castaings et al., 2016) and their remobilization from the

vacuole (Mary et al., 2015).MTPs localize to the tonoplast to detoxify excess

of metals from the cytosol by sequestering them into the vacuole (Delhaize,

Kataoka, Hebb, White, & Ryan, 2003). According to their type, MTPs

principally catalyze Mn, Mn/Fe or zinc (Zn) transport (Montanini,

Blaudez, Jeandroz, Sanders, & Chalot, 2007). MTP expression profile often

overlaps with the presence of large concentrations of metals in vacuoles of

different tissues such as shoots of hyperaccumulators (Gustin et al., 2009;

Persans, Nieman, & Salt, 2001), the metal-rich aleurone layer of wheat

kernels (Vatansever, Filiz, & Eroglu, 2017) or the Mn-rich subepidermis of

A. thaliana embryos (Eroglu,Meier, vonWir�en, & Peiter, 2016). Thus,MTPs

are good targets for developing biofortification strategies due to their metal

sequestration capacity (Ricachenevsky, Menguer, Sperotto, Williams, &

Fett, 2013). vacuolar iron transporter1 (VIT1) is an ortholog of yeast tonoplast

Fe/Mn transporter CCC1 (Kim et al., 2006; Li, Chen, Ward, & Kaplan,

2001). Both VIT1 and a group of proteins that share homology with

VIT1, the family of VTLs, transport Fe and Mn into the vacuole and partic-

ipate in Fe homeostasis (Gollhofer, Timofeev, Lan, Schmidt, & Buckhout,

2014). The ZIP family comprises 15members in Arabidopsis, which transport

Zn, Fe, Mn and Cu (Milner, Seamon, Craft, & Kochian, 2013). Several ZIP

homologs are induced by Zn or Fe deficiency, suggesting their involvement

in homeostasis of thesemetals (Waters & Sankaran, 2011). Although a number

of ZIP proteins have not been yet characterized, a protein belonging to

this group, iron regulated transporter1 (IRT1), represents one of the most

extensively characterized metal transporters and is reviewed elsewhere

(Brumbarova, Bauer, & Ivanov, 2015; Jeong, Merkovich, Clyne, &

Connolly, 2017). YSLs transport metals that are chelated with nicotianamine

(NA), a nonpeptidyl chelation agent. NA is found in phloem sap and can form
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stable complexes with metals under neutral or slightly basic pH, suggesting

that it is the principal metal chelator in the phloem (Stephan & Scholz,

1993; vonWir�en et al., 1999). Thus, the crucial role of YSLs in long-distance
transport and seed metal loading is emerging (Curie et al., 2009; Waters et al.,

2006). Members of the oligopeptide transporter (OPT) family are character-

ized as peptide carriers and share a considerable homology with YSLs (Koh

et al., 2002). In contrast to other members of the family which generally carry

glutathione or glutathione complexes (Wongkaew et al., 2018), OPT3 trans-

ports Fe ions (Zhai et al., 2014).

Acquisition of Fe by the root is well understood and provides a good

example of how transporters operate cooperatively to retrieve metals from

the rhizosphere. First, Fe has to bemobilized, asmost of the Fe in soil is immo-

bile due to its precipitation in sparingly soluble oxides. Fe is mobilized through

acidification by the activity of proton pumps, particularly AHA2 (Santi &

Schmidt, 2009), and chelation by low molecular weight compounds, such

as coumarins, which are secreted into the rhizosphere (Schmid et al., 2014;

Tsai & Schmidt, 2017). The mobilized ferric Fe [Fe(III)] diffuses in the

apoplast, followed by the reduction of Fe(III) to ferrous Fe [Fe(II)] via plasma

membrane-bound ferric chelate reductase enzyme (Robinson, Procter,

Connolly, & Guerinot, 1999) and coumarins (Rajniak et al., 2018; Sisó-

Terraza et al., 2016). From the apoplast, Fe enters the cytosol of epidermal

and cortex cells through divalent cation transporter IRT1. IRT1 is the only

high-affinity Fe transporter involved in root Fe acquisition (Korshunova,

Eide, Clark, Guerinot, & Pakrasi, 1999). In contrast to IRT1, NRAMP1

and perhaps other low-affinity plasma membrane transporters contribute to

Fe transport provided that extracellular Fe concentration is sufficiently high

(Castaings et al., 2016).

IRT1 shows a broad range of affinity for divalent cations, which has

direct consequences on Fe acquisition and general plant health.While taking

up Fe, IRT1 also non-specifically takes up other metals as indicated by the

strong correlation of IRT1 expression with accumulation of Mn, Co, Zn,

Cd, and Ni in the root (Korshunova et al., 1999; Nishida et al., 2011). This

poses a heavy metal stress unless these metals are detoxified by sequestration

into the vacuole (Thomine & Vert, 2013). Vacuolar sequestration is medi-

ated by tonoplast-localized metal transporters that belong to diverse families

(Arrivault, Senger, & Kr€amer, 2006; Eroglu et al., 2016; Morrissey et al.,

2009; Schaaf et al., 2006). Interestingly, expression of these transporters is

tightly connected to that of IRT1 by a common transcription factor,

FER-like iron deficiency induced transcription factor (FIT), suggesting that
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heavy metal intake concomitant with Fe intake is coupled with subsequent

sequestration of the former into the vacuole (Colangelo & Guerinot, 2004).

In addition, similar to a safety fuse, Fe accompanying metals may shut down

Fe acquisition machinery to curb further intake. This can be achieved

either by inhibiting IRT1 (Dubeaux, Neveu, Zelazny, & Vert, 2018) or

ferric chelate reductase activity (Eroglu et al., 2016). Therefore, strategies

in the roots provide a perfect example of how several transporters and other

helper proteins have to work in concert, to ensure that an adequate amount

of Fe is taken up while the inhibitory or toxic effects of other metals are

suppressed.

In the cytoplasm, free Fe triggers oxidative stress through Fenton reac-

tions; therefore, most of the Fe should be kept chelated. Fe species differ at

the tissue and subcellular levels, depending on the availability and concentra-

tion of their chelators and the stability of complexes in that particular pH.

In plastids, Fe is stored in protein nanocages called ferritins which are

suggested to release Fe for photosynthetic reactions (Briat, Duc, Ravet, &

Gaymard, 2010; Harrison & Arosio, 1996).

Plant embryos are young plants that do need metals for development.

Unlike mature plants, they do not possess functional roots; thus, the devel-

oping embryo completely depends on the metal flow that is derived from the

maternal tissues. Knowledge of seedmetal homeostasis at the molecular level

has been very poor until recently, due to technical difficulties in quantifying

metals in small seeds of Arabidopsis. However, recent technical advances

now permit measurements in these organs with higher accuracy and

increased resolution. This review will discuss recent advances in seed metal

nutrient homeostasis focussing on Arabidopsis.

2. ARABIDOPSIS SEED METAL HOMEOSTASIS

Metal translocation from the mother plant to the seed and its subse-

quent distribution within the seed is critical for successful germination

and for food safety. Traditionally, seed metal nutrient research has ignored

Arabidopsis, since the tools and techniques that were available were simply

too limiting to conduct analyses on such small seeds. However, recent

advances seem to put Arabidopsis at the centre of seed nutrient research.

These advances include imaging techniques with increased resolution

(Punshon, Ricachenevsky, Hindt, Socha, & Zuber, 2013; Zhao, Moore,

Lombi, & Zhu, 2014), the availability of transcriptomes of individual seed

tissues (Belmonte et al., 2013; Dekkers et al., 2013; Le et al., 2010), and
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protocols that allow collecting higher biomass in a shorter time (Bates,

Jewell, & Browse, 2013; Perry & Wang, 2003; Raissig, Gagliardini,

Jaenisch, Grossniklaus, & Baroux, 2013).

Metal transporters must ensure that filial tissues (embryo and endosperm)

receive sufficient amounts of metals so that the metal demand of the develop-

ing seed is fulfilled, but not exceeded. The developing seed requires metals

for both immediate use and use after detachment from the mother plant until

the root of the germinating seed sets in. Regarding its immediate use, the

developing seed is not totally different from the mature plant, since it carries

out photosynthesis (although the rate is much lower than in the mature leaves

and its function may be rather to provide oxygen to heterotrophic embryos;

Rolletschek,Weber, & Borisjuk, 2003), it respires and detoxifies radicals all of

which require metal-bearing enzymes. Characterization of metal transport

mutants which can be rescued by additional metal supply has indicated that

embryos might be aborted when metal supply to the seed is not sufficient

(Stacey, Koh, Becker, & Stacey, 2002; Waters et al., 2006; Wong, Jarvis,

Sherson, & Cobbett, 2008). In addition, harvested seeds contain fairly con-

stant levels of metals, independent of how the mother plant was fed

(Rengel, Batten, & Crowley, 1999). As an example, in nature and in agro-

nomic practice, limited, i.e., basic soils, or excess Fe, i.e., acidic or fertilized

soils, can impact seed yield dramatically but not the final seed Fe concentration

(Tyler, 1998; Wiersma, 2005, 2012). Alternatively, recent findings show that

seed Fe concentrations are regulated genetically, by expression of certain tran-

scription factors such as basic helix-loop-helix 104 (bHLH104), Brutus (BTS),

and Brutus-like (BTSL). Increase in expression of bHLH104 (Li, Zhang, Ai,

Liang, & Yu, 2016) and decrease in expression of BTS (Li et al., 2016; Long

et al., 2010) as well as its two paralogs, BTSL1 and BTSL2, resulted in a strik-

ing increase in Fe concentration of the seed (Hindt et al., 2017; Li et al., 2016;

Long et al., 2010) Future research will have to pinpoint the metal transporter

genes that are regulated by these transcription factors.

3. POST-PHLOEM METAL TRANSPORT

Upon fertilization, the ovule transforms into a seed and becomes a sink

for metal nutrients. The micropyler region, which represents the open space

where the pollen tube enters into the ovule to fertilize the egg, subsequently

fuses to close the seed. The seed coat contains two integuments of the ovule.

Its chalazal region is connected to the silique via the funiculus. The funiculus

itself contains vascular bundles, comprising xylem, and phloem. Due to the

low level of transpiration in the seed, the xylem does not contribute
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significantly to the feeding of the seed. Thus, the phloem has been suggested

as the main source of metals arriving at the seed coat, and ultimately in the

embryo (Fig. 1).

In phloem, metal nutrients can be carried in chelated forms. Because the

phloem sap is neutral to basic, metals such as Fe tend to precipitate unless

they are chelated. A major chelator of metals in phloem is nicotianamine

(NA) (Ishimaru et al., 2010; Schmidke & Stephan, 2006; von Wir�en
et al., 1999). Consistent with the chelation function of NA, plant lines that

carry a mutation in NA-metal carrier proteins, YSLs, may show differential

Fig. 1 Metal translocation from phloem to the embryo inside the Arabidopsis seed.
Phloem ends in unloading domain of the chalazal seed coat. Metals that are unloaded
here diffuse through the outer and inner integuments, and chalazal seed coat. HMA2 is
expressed in all integuments, whereas HMA4 is mainly expressed in the innermost layer
of the seed coat, the endothelium. Both transport Zn. FRD3 transports citrate to the
space between the endosperm and embryo and chelates Fe. FRD3 expression localizes
to the protodermis of the embryo (not shown in the figure) and in the endosperm.
Chelated Fe(III) is reduced by ascorbate and taken up into the embryo cells. VIT1
and MTP8, which are tonoplast metal transporters, control Fe and Mn intake to the
embryo. Metals can be either directly taken up by the embryo or via the suspensor.
The embryo and suspensor form one single symplast at the globular stage, but as the
embryo develops, several distinct symplastic domains appear. In mature seeds, the sus-
pensor gets degraded. Fe is taken into vacuoles of endodermal cells of the embryo by
VIT1 and in subepidermal cells of the abaxial side of the cotyledons by MTP8. Fe in endo-
dermal cells is effluxed by NRAMP3/4. Red sketches at the bottom are seed organs
and zoom outs of the regions above them. Green arrows represent symplastic (passive)
pathways while red arrows represent apoplastic barriers, where active transport is
necessary. Dashed green arrows represent symplastic pathways that only exist during
the early stages of developing embryos.Oi’s, outer integument cell layers; ii’s, inner integ-
ument cell layers. Lightning-like symbol indicates signalling. ULD, unloading domain.
NR3/4, NRAMP3 and 4. PSV, protein storage vacuole.
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metal concentrations in the seed. For instance, ysl1 single and ysl1 ysl3 dou-

ble knock out lines in Arabidopsis and a ysl2mutant in rice exhibit lower Fe

accumulation in seeds ( Jean, Schikora, Mari, Briat, & Curie, 2005; Koike

et al., 2004; Waters et al., 2006). In order to address why ysl mutants

show such seed metal phenotype, Fe distribution in the shoot of NA-less

Arabidopsis mutants was investigated (Schuler, Rellán-Álvarez, Fink-

Straube, Abadı́a, & Bauer, 2012). NA-less mutant leaves accumulated an

excess of Fe in the vascular tissues although the leaf mesophyll was severely

Fe-deficient, suggesting a role for NA in the unloading of Fe from the

phloem to the nearby tissues (Schuler et al., 2012). It is possible that YSLs

that are localized to the phloem are also needed to unload NA-metal com-

plexes in the chalaza of the seed coat.

4. FROM SEED COAT TO THE ENDOSPERM, AND
FURTHER TO THE EMBRYO

Metals need to move from the seed coat to the endosperm in order to

reach the developing embryo. Since metal trafficking inside seed layers can-

not be observed in real time, the specific regions that are responsible for

efflux and subsequent uptakemust be inferred from indirect evidence. These

include (i) the presence and density of plasmodesmatal connections between

cells, which indicate whether tissues are symplastically connected, (ii) the

cell morphology, i.e., whether cells are specialized as transfer-cell-like

and (iii) whether tissues are covered with a waxy substance, such as suberin,

which blocks solute transport. Wherever tissues are not symplastically con-

nected, metal transport will depend on plasma membrane transport proteins.

Therefore, identifying new metal transporters and localizing the site of

their expression will aid our understanding of metal trafficking between

seed tissues.

Metals that are unloaded in chalazal seed coat are destined for translocation

to the endosperm (Fig. 1). Metals can then diffuse from the chalaza through-

out the three cell layers of the outer integument which are symplastically con-

nected (Stadler, Lauterbach, & Sauer, 2005). From the innermost cell layer

of the outer integument, metals are transferred to the outer cell layer of the

inner integument by means of an active transport. They subsequently diffuse

throughout the two cell layers of this integument (Stadler et al., 2005).

It should be noted that, even in tissues that are symplastically connected,

the additional presence of an apoplastic pathway cannot be ruled out

(Fig. 1). Such a pathway has been proposed for sucrose and aminoacid
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transport, based on expression of membrane transport proteins between inner

cell layers of each of the integuments (Chen et al., 2015; Karmann, M€uller, &
Hammes, 2018; M€uller et al., 2015).

From the innermost cell layer to the endosperm, metals must be trans-

ported via active processes (Stadler et al., 2005). Two proteins involved in

this process, heavy metal ATPase2 and 4 (HMA2/4), were first identified in

the vasculature of mature plants and associated with xylem loading of Zn

(Hussain et al., 2004; Verret et al., 2004). In seeds, expression of the two pro-

teins localized to the seed coat: HMA2 is expressed in all cell layers, whereas

HMA4 is mainly present in the innermost layer. In addition, in hma2/4

double knock-out seeds, Zn translocation from the seed coat to the develop-

ing embryo was reduced (Olsen et al., 2016). However, HMA2/4 are not the

only Zn exporters in the seed coat, as the embryo of double knock-out lines

can still receive Zn. Thus, lower affinity transporters may come into play upon

accumulation of Zn in the seed coat (Olsen et al., 2016).

The endosperm continuously transforms throughout seed development.

From the coenocyte stage where it is formed of a single multinuclei cell

harbouring a large central vacuole, the endosperm goes through uneven

cellularization events which lead to gradual shrinking of the central vacuole.

Depending on the location of cellularizations, the endosperm can be sub-

divided as micropyler (where the pollen tube enters the ovule), chalazal (above

the end of vascular bundles) and peripheral (starting from the peripheries then

extending to the centre) endosperms (Olsen, 2004). In contrast to the others,

the chalazal endosperm is cellularized much later and contains structures

resembling those of transfer cells (Nguyen, Brown, & Lemmon, 2000). Fur-

thermore, the chalazal endosperm contains a high number of mitochondria

and an abundant endoplasmic reticulum (Nguyen et al., 2000).

The above properties point to the chalazal endosperm as a promising

candidate for nutrient transport between the seed coat and the developing

embryo or the micropyler endosperm. A direct transport pathway from

the chalazal endosperm to the embryo proper and/or the suspensor (a single

cell layer attaching the embryo proper to the micropyler endosperm) has

been suggested to operate during the very early phase of embryogenesis.

This pathway would involve the central vacuole that is protruded into

the chalazal endosperm at one end, and at the other end placed in close prox-

imity of the embryo proper (Otegui, Capp, & Staehelin, 2002). However,

such a direct transport may only be operational during the early stages of seed

development; since, later on, the central vacuole shrinks, and the embryo

becomes completely surrounded by the micropyler endosperm.
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Seed tissues are covered with waxy substances known to restrict metal

transport in certain organs of mature plants. In particular, the cuticle, which

is a hydrophobic film over epidermis, is a major factor decreasing the effect

of foliar fertilizers (Fernández & Eichert, 2009). Hydrophilic nutrients can still

pass through the cuticle, albeit at much lower rates. Recent research showed

that in the developing Arabidopsis seed, both the endosperm (Beeckman, De

Rycke, Viane, & Inz�e, 2000; De Giorgi et al., 2015) and the embryo proper

(Delude, Moussu, Joubès, Ingram, & Domergue, 2016) are covered with a

cuticle. Very recently, the cuticle surrounding the endosperm has been

reported to have gaps in the micropyler and the chalazal regions (Loub�ery,
Giorgi, Utz-Pugin, Demonsais, & Lopez-Molina, 2018). Besides cuticle,

suberin is another waxy substance found in seeds. In contrast to the cuticle

which localizes to the outer surface of cell walls, suberin localizes to their inner

side. In roots, suberization of the endodermis was recently suggested as

nutrient-stress responsive, thereby regulating nutrient acquisition (Barberon

et al., 2016). In seeds, suberization occurs in the outer integument (Molina,

Ohlrogge, & Pollard, 2007) and chalazal plug (Franke et al., 2009;

Lashbrooke et al., 2016), and is mostly developmentally regulated. The exact

distribution of waxy substances and their implication in nutrient acquisition of

seed organs should be addressed in future research.

Nutrient transfer from endosperm to embryo may involve the suspensor.

This assumption is based on indirect evidence including the differentiation of

suspensor cells with transfer cell-like features in some species, absence of the

cuticle layer in suspensor in contrast to the cuticle-covered embryo proper and

expression of nutrient transporter gene families in the suspensor (Ingram &

Nawrath, 2017; Stacey et al., 2008; Yeung & Meinke, 1993). Furthermore,

histochemical analyses by Roschzttardtz, Con�ej�ero, Curie, and Mari (2009)

have revealed a Fe accumulation in the suspensor of developing Arabidopsis

embryos. However, this Fe accumulation extends to the symplastically con-

nected embryo proper (Stadler et al., 2005), making it impossible to interpret

whether and to which extent the embryo proper and the suspensor are

responsible for Fe intake. The suspensor can only feed the embryo proper

for a limited time since its symplastic connections are weakened and then

crushed by the developing embryo following heart stage (Stadler et al.,

2005). Thus, it is believed that, later on, the embryo proper acquires nutrients

from the surrounding endosperm tissues autonomously.

Metal acquisition by the embryo appears to be controlled in a nutrient-

specific manner and by complexmechanisms, having similarities and distinc-

tions to root metal acquisition. In the xylem sap of roots, the main chelator
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of Fe is citrate (Durrett, Gassmann, & Rogers, 2007; Rellán-Álvarez et al.,

2009). It is secreted to the xylem sap by an efflux transporter called ferric

reductase defective3 (FRD3) (Durrett et al., 2007). In addition to the root

vasculature, FRD3 is expressed in the chalazal endosperm throughout

development (Belmonte et al., 2013) and in the aleurone (Roschzttardtz,

S�egu�ela-Arnaud, Briat, Vert, & Curie, 2011), a single cell layer that is the

remainder of consumed endosperm in mature seeds. A direct evidence that

citrate chelates Fe in seeds came from the analysis of Fe ligands in the liquid

endosperm of pea (Grillet et al., 2014). Therefore, it has been suggested that

FRD3-mediated citrate efflux mobilizes Fe in the apoplast between the endo-

sperm and embryo (Grillet et al., 2014; Roschzttardtz et al., 2011). In roots,

Fe acquisition is dependent on a Fe(III) reduction step carried out by a

membrane-bound ferric chelate reductase (Robinson et al., 1999) and reduc-

tants, i.e., coumarins, that are exuded to the rhizosphere (Mladěnka et al.,

2010; Rajniak et al., 2018). Interestingly, the maturing embryo is also able

to perform a Fe(III) reduction in vitro, albeit by a differentmechanism involv-

ing an efflux of ascorbate. Fe(III) reduction capacity is impaired in the presence

of ascorbate scavengers in in vitro essays and mutants that are defective in

ascorbate synthesis could accumulate lower Fe levels (Grillet et al., 2014).

Well-known members of the Fe acquisition machinery of roots (IRT1,

FRO2, etc.) that are all regulated by FIT are not expressed in the embryo

(Belmonte et al., 2013). Therefore, the proteins determining Fe uptake in

the embryo seem to be distinct from those in roots and are yet to be elucidated.

Comparison of elemental concentrations of developing embryos revealed

that embryo acquisition of Fe takes place prior to that of Mn (Otegui et al.,

2002; Roschzttardtz et al., 2009; Socha, 2016).While Fe enters early into the

developing embryo, i.e., at torpedo stage (Roschzttardtz et al., 2009; Socha,

2016), Mn is sequestered in the endoplasmic reticulum of chalazal and

micropyler endosperms and not released until the early phase of the photo-

synthetic bent-cotyledon stage (Otegui et al., 2002). In mature plants, Mn is

transported into the endoplasmic reticulum by a P-type Ca2+ pump named

ECA1 (Liang, Cunningham, Harper, & Sze, 1997). Since the corresponding

gene is also transcribed in the chalazal and micropyler endosperms (Belmonte

et al., 2013); ECA1 might mediate the transitory accumulation of Mn in

these tissues. Because Fe andMn have similar atomic radii and charges, mem-

brane transporters often cannot differentiate between these two ions. Thus,

transient storage of Mn in the endosperm could be a strategy to prioritize

Fe transport to the embryo since essentiality of Fe for an organism is more

widespread.
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5. METAL TRANSPORT WITHIN THE EMBRYO

Metals are essential for metabolic processes occurring in rapidly devel-

oping embryos especially during early embryogenesis. Later on, metals are

directed to storage compartments, as a preparation for desiccation stage. This

is well illustrated in the case of Fe and photosynthesis. In green leaves of

mature plants, 80% of Fe is located in the chloroplast (Terry & Abadı́a,

1986). In seeds, chloroplasts develop and the embryo becomes photosyn-

thetically active at late globule stage (Tejos, Mercado, & Meisel, 2010).

Therefore, similar to what occurs in leaves, a large part of embryonic Fe

is stored in chloroplasts to support photosynthesis. In agreement with this

view, Perls/DAB staining revealed an enrichment of Fe under the shoot

apex of torpedo stage embryo (Fig. 2) showing an overlap with the region

Fig. 2 Overlap of Fe and chlorophyll distribution in torpedo stage embryos. On the left,
an isolated embryo was stained by Perls’/DAB and observed under a microscope. Fe is
revealed as a black band under the shoot apex. Note that chlorophyll was removed dur-
ing the staining protocol. On the right, distribution of chlorophyll in a similar embryo
was observed under the microscope without any treatment. Bar is 50μm. Red arrows
indicate preferential Fe (left) and chlorophyll (right) accumulation under the shoot apex.
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where strong chlorophyll accumulation is observed (Fig. 2 and see the chlo-

rophyll fluorescence in fig. 2R in Tejos et al., 2010). However, Fe pool in

the chloroplasts is obscured as the embryo develops, because the massive

amount of Fe localizes around the provascular strands and also possibly chlo-

roplast distribution no longer shows an obvious pattern (Fras, Smolen, &

Maluszynska, 2008; Roschzttardtz et al., 2009; Tejos et al., 2010). During

the subsequent maturation stages, Fe is effluxed from chloroplasts (Divol

et al., 2013). Therefore, prior to desiccation stage, the largest Fe pool is local-

ized around provascular strands which accounts for half of total seed Fe

(Ramos, Khodja, Mary, & Thomine, 2013). This means that the use of metals

that enter the embryo progressively shifts frommaintainingmetabolic needs to

building up reserves.

Several genetic factors that mediate metal homeostasis within the embryo

have recently been identified. Fe pools in dedifferentiating chloroplasts in

maturing embryos are mobilized by two YSL proteins, YSL4/6 (Divol

et al., 2013). In support of this, mutant plants that showed inactivation of these

two genes were susceptible to Fe toxicity and contained an excess of Fe in the

chloroplasts. Furthermore, at least one of these YSLs, YSL6 accumulated in

seeds during late maturation and localized to the chloroplast membrane in

embryos (Divol et al., 2013). However, it should be noted that this chloroplast

localization could not be confirmed by a different study in which YSL6-GFP

localized instead to the tonoplast or endoplasmic reticulum (Conte et al.,

2013). The release of Fe from the chloroplast may contribute to Fe accumu-

lation around the provascular strands. Transport of Fe into this hotspot has

been shown to be mediated by VIT1, an ortholog of the vacuolar metal

transporter CCC1 in yeast, based on complete loss of Fe enrichment around

provascular strands in vit1 knock out mutants (Kim et al., 2006). Vacuolar Fe

stores are mobilized during germination in order to support metabolism,

such as photosynthesis, before the root metal uptake machinery steps in

(Bastow et al., 2018; Lanquar et al., 2005). Mobilization of Fe stores from

the endodermal vacuoles depends on two tonoplast-localized proteins from

the NRAMP family, NRAMP3/4 (Lanquar et al., 2005). In germinating

seeds of wild-type plants, the staining of Fe around provascular strands disap-

pears during the first 3 days (Roschzttardtz et al., 2009) and thereafter, root

iron acquisition takes over, according to promoter activity of IRT1

(Lanquar et al., 2005). By contrast, in a nramp3/4 double knock-out, Fe

release from the endodermis was delayed (Roschzttardtz et al., 2009) and

germinating seeds could not survive under Fe deficiency. Interestingly, in a

vit1 background, where Fe stores are mislocalized, the susceptibility of

nramp3/4 to Fe deficiency during early germination disappears. Thus, it is
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proposed that NRAMP3/4 specifically mediate an efflux of Fe from endoder-

mal cells, and together with VIT1 constitute an influx-efflux unit in these cells

(Mary et al., 2015).

Among the micronutrients investigated so far, in addition to Fe, onlyMn

appears as clearly enriched in certain cell types of the embryo. This enrichment

is observed in the subepidermal cell layer of the abaxial sides of the cotyledons

and in hypocotyl cortex. It is mediated by the tonoplast metal transporter

MTP8 (Eroglu, 2015; Eroglu et al., 2017, 2016). MTP8-mediated enrich-

ment accounts for one-third of total Mn in the seed (Ramos et al., 2013).

Characterization of seeds that show genetic inactivation of VIT1, MTP8

and other metal transporter genes resulted in seeds that mislocalized Fe and

Mn in several different ways (Table 1). In contrast to the single large lytic

vacuole in cells of mature plants, embryo cells contain several smaller

vacuoles with one or few globules in each, containing phytic acid salts that

chelate metals (Bolte et al., 2011; Feeney, Kittelmann, Menassa, Hawes, &

Frigerio, 2018). Although Fe andMnwere differentially localized at cell-layer

level; at the subcellular levels, both were observed in these globules (Eroglu

et al., 2017; Lanquar et al., 2005; Roschzttardtz et al., 2009), probably asso-

ciated with phytate (Bruch, Thomine, Tabares, & Un, 2015). Cell layer-

specific distribution of Fe andMn immediately raised the question of whether

these highly specialized localizations have any kind of adaptive significance.

Table 1 Iron and Manganese Enriched Tissues in Mature Embryos of Mutant
Arabidopsis Lines
Genotype Fe Hotspots Mn Hotspots References

Col-0 e s Kim et al. (2006)

vit1 s s Kim et al. (2006)

mtp8 e e Eroglu (2015)

vit1 mtp8 h h Eroglu et al. (2017)

cax1/3 e s (l.p) Punshon et al. (2012)

nramp3/4 e s+e Socha (2016)

mtp8 nramp3/4 e h+e Socha (2016)

Imbibed Col-0 e+s s Eroglu et al. (2017)

Imbibed mtp8 e s Eroglu et al. (2017)

The table mostly refers to dry seeds. Imbibed seeds were incubated in water for 2 days. The metal dis-
tribution is described as follows: h: homogeneously distributed, e: enriched in endodermal cell layer,
s: enriched in sub-epidermal cell layer, (l.p): enriched but less pronounced than in wild type (Col-0).
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6. DO TONOPLAST TRANSPORTERS CONTROL METAL
ACQUISITION IN THE EMBRYO?

The functional significance of cell-layer specific accumulation of Fe

and Mn in the embryo is yet unclear. None of the cell layers, including

the Mn-enriched subepidermal or the Fe-enriched endodermal ones, differ

from each other under the microscope, regarding the number, distribution,

and size of storage organelles (Busse & Evert, 1999), thereby failing to

indicate any kind of specialization for these cell layers. Although a few

studies have suggested that Fe enrichment in the endodermis is critical for

germination under Fe deficient conditions (Gollhofer et al., 2014; Kim

et al., 2006; Mary et al., 2015), mechanistic explanations for the phenotypes

are lacking. In addition, the specific enrichment of Mn in subepidermal cells

could not be associated with any relevant physiological function.

Alternatively, the two transporters responsible for the cell layer specific

accumulations, VIT1 and MTP8, may be involved in embryo metal loading.

Three lines of evidence suggest that VIT1 andMTP8 affect metal translocation

from the endosperm to the embryo. Firstly, the activities of the VIT1 and

MTP8 promoters coincide with the entry into the embryo of Fe and Mn,

respectively (Belmonte et al., 2013; Eroglu et al., 2017; Otegui et al.,

2002). VIT1 is expressed as early as the torpedo stage, in contrast to MTP8,

which is not expressed until the bent-cotyledon stage. Secondly, qualitative

X-ray fluorescence imaging has shown that the absence of VIT1 delays Fe

loading to the embryo (Punshon et al., 2013; Socha, 2016). Whereas Fe can

be observed in endodermal cells of wild-type embryos, at the same develop-

mental stage of vit1 seeds, it is localized in the coat. Thirdly, the absence of

MTP8 somehow triggered embryo to switch on Mn uptake in the early phase

of germination (Eroglu et al., 2017). In wild-type plants, seed embryos take up

external Mn at millimolar concentrations only, suggesting that during germi-

nation Mn transport into the embryo is mediated by a low-affinity transport

system. In contrast, mtp8 embryos efficiently accumulate Mn at micromolar

concentrations, suggesting that an alternative, high-affinity acquisition system

is activated. Taken together, these data suggest that tonoplast transporters can

control metal acquisition in the embryo possibly by signalling the embryo

metal status to plasma membrane transporters expressed at its surface

(Fig. 1). Further exploration of this model offers a promising research direction.

Seed is the final target for nutrients in the life cycle of annual plants,

including staple crops and model plants such asA. thaliana. Up to date, many

metal transporter genes have been characterized in mature plants, but it has
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been neglected most often, to take one step further to investigate whether

these metal transporter genes also contribute to seed homeostasis. Therefore,

despite mature plants have been extensively studied, metal transportation to

the seed and within the seed is still poorly understood. Yet, metals in seeds

must be optimized for their concentration and localization to improve stress

tolerance in agriculture and to combat micronutrient deficiencies in humans.

The present review compiled the relevant literature and drew a picture of our

current understanding of seed metal nutrition. By interpreting existing data

and discussing knowledge gaps, we tried to generate new hypotheses and

pointed out some new research directions, which will hopefully be fruitful.
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Garcı́a-Alonso, J. I., et al. (2009). Identification of a tri-iron (III), tri-citrate complex in the
xylem sap of iron-deficient tomato resupplied with iron: New insights into plant iron long-
distance transport. Plant & Cell Physiology, 51, 91–102.

Rengel, Z., Batten, G. D., & Crowley, D. E. (1999). Agronomic approaches for improving
the micronutrient density in edible portions of field crops. Field Crops Research, 60,
27–40. https://doi.org/10.1016/S0378-4290(98)00131-2.

Ricachenevsky, F. K., Menguer, P. K., Sperotto, R. A., Williams, L. E., & Fett, J. P. (2013).
Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in bio-
fortification strategies. Frontiers in Plant Science, 4, 144. https://doi.org/10.3389/fpls.
2013.00144.

Robinson, N. J., Procter, C. M., Connolly, E. L., & Guerinot, M. L. (1999). A ferric-chelate
reductase for iron uptake from soils. Nature, 397, 694–697. https://doi.org/
10.1038/17800.

Rolletschek, H., Weber, H., & Borisjuk, L. (2003). Energy status and its control on embryo-
genesis of legumes. Embryo photosynthesis contributes to oxygen supply and is coupled
to biosynthetic fluxes. Plant Physiology, 132, 1196–1206. https://doi.org/10.1104/pp.
102.017376.

Roschzttardtz, H., Con�ej�ero, G., Curie, C., & Mari, S. (2009). Identification of the endo-
dermal vacuole as the iron storage compartment in the Arabidopsis embryo. Plant Phys-
iology, 151, 1329–1338. https://doi.org/10.1104/pp.109.144444.

Roschzttardtz, H., S�egu�ela-Arnaud, M., Briat, J.-F., Vert, G., & Curie, C. (2011). The
FRD3 citrate effluxer promotes Iron nutrition between symplastically disconnected tis-
sues throughout Arabidopsis development. The Plant Cell, 23, 2725–2737. Online.
https://doi.org/10.1105/tpc.111.088088.

Santi, S., & Schmidt, W. (2009). Dissecting iron deficiency-induced proton extrusion in
Arabidopsis roots. The New Phytologist, 183, 1072–1084. https://doi.org/10.1111/j.
1469-8137.2009.02908.x.

Schaaf, G., Honsbein, A., Meda, A. R., Kirchner, S., Wipf, D., & von Wir�en, N. (2006).
AtIREG2 encodes a tonoplast transport protein involved in iron-dependent nickel
detoxification in Arabidopsis thaliana roots. The Journal of Biological Chemistry, 281,
25532–25540. https://doi.org/10.1074/jbc.M601062200.

Schmid, N. B., Giehl, R. F., D€oll, S., Mock, H.-P., Strehmel, N., Scheel, D., et al. (2014).
Feruloyl-CoA 60-Hydroxylase1-dependent coumarins mediate iron acquisition from
alkaline substrates in Arabidopsis. Plant Physiology, 164, 160–172.

Schmidke, I., & Stephan, U. W. (2006). Transport of metal micronutrients in the phloem of
castor bean (Ricinus communis) seedlings. Physiologia Plantarum, 95, 147–153. https://
doi.org/10.1111/j.1399-3054.1995.tb00821.x.
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