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1. Introduction

For a given nonlinear integrable dynamical system there usually exists many different integrable extensions which equa-
tions of motion take a triangular form. They are usually called triangular systems. For Liouville integrable nonlinear ODE’s an
interesting class of triangular systems is given in [1]. For soliton systems we know more examples. Triangular extensions of
the KdV system was considered in [2]. In [3], the so-called ‘dark equations’, linear extensions of soliton systems which are
also of the triangular form were constructed. Another class of linear extensions the so-called linear integrable couplings of
soliton systems was introduced in [4] and then developed in [5] and many other papers. Recently, the theory of nonlinear
integrable couplings of ordinary soliton systems was presented in [6–8] and further developed in [9–12]. Particulary note-
worthy are the constructions of integrable couplings based on the non-semisimple Lie algebras, see for instance [6].

In the present paper, we introduce very natural triangular nonlinear couplings of integrable systems, including in partic-
ular those in [7–11], which are also integrable. The construction is made on the level of evolution equations by a modifica-
tion of the algebra of dynamical fields. We also propose the decoupling procedure for the considered class of integrable
couplings in the form of an appropriate change of variables.

In Section 2 we introduce the algebra of coupled scalars, which is the underlying algebra for the nonlinear integrable cou-
plings defined in Section 3. We derive soliton integrable couplings of field and lattice type. In Section 4, the general form of
solution of the coupled systems is obtained. An example of soliton solutions of the nonlinearly coupled KdV system is pre-
sented. In Section 5 we derive a matrix representation of the algebra of coupled scalars and in consequence the matrix Lax
representations for nonlinear couplings constructed in previous sections. Finally, in Section 6, we prove that any member of
the constructed family of coupled systems separates into copies of the original soliton systems. We also show the source of
the decoupling procedure.
. All rights reserved.
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2. The algebra of coupled scalars

Consider n-dimensional vector space over field of real numbers R. We define an algebra structure by the following
multiplication
ei � ej :¼ emaxði;jÞ; ð1Þ
where ei are the basis vectors. Let a ¼
Pn

i¼1aiei, then
a � b ¼
a1

..

.

an

0BB@
1CCA �

b1

..

.

bn

0BB@
1CCA ¼

c1

..

.

cn

0BB@
1CCA ¼ c;
where
ci ¼ aibi þ ai

Xi�1

k¼1

bk

 !
þ

Xi�1

k¼1

ak

 !
bi:
We find that the value of the coefficient ci is given by aibi plus terms depending on lower order elements, ak; bk with k < i.
Therefore, we call this algebra as an algebra of coupled scalars. This algebra is unital, commutative and associative, and ei are
idempotent elements, what follows immediately from the definition (1). The unity element is e1.

For n ¼ 4 we have
a1

a2

a3

a4

0BBBBBB@

1CCCCCCA �
b1

b2

b3

b4

0BBBBBB@

1CCCCCCA ¼
a1b1

a2b2 þ a2b1 þ a1b2

a3b3 þ a3ðb1 þ b2Þ þ ða1 þ a2Þb3

a4b4 þ a4ðb1 þ b2 þ b3Þ þ ða1 þ a2 þ a3Þb4

0BBBBBB@

1CCCCCCA:
In the algebra of coupled scalars, for product of m elements the following formula holds:
a1 � . . . � am ¼

a1
1

..

.

a1
n

0BB@
1CCA � . . . �

am
1

..

.

am
n

0BB@
1CCA ¼

b1

..

.

bn

0BB@
1CCA ¼ b; ð2aÞ
where
bk ¼
Ym
j¼1

Xk

r¼1

aj
r

 !
�
Ym
j¼1

Xk�1

r¼1

aj
r

 !
: ð2bÞ
3. Nonlinear couplings of soliton systems

Consider a commutative and associative algebra, with respect to the ordinary dot multiplication, of smooth functions on
Rm with m derivations @

@xi
: C1ðRmÞ ! C1ðRmÞ. Let us construct its coupled counterpart C1d ðRmÞ, that is an algebra of functions
fðxÞ ¼ f1ðxÞe1 þ � � � þ fnðxÞen ¼

f1ðxÞ
..
.

fnðxÞ

0BB@
1CCA;
where x ¼ ðx1; . . . ; xmÞ, taking values in the algebra of coupled scalars. So, it is a commutative and associative algebra with
respect to the multiplication (1) and the derivations in C1d ðRmÞ can be defined by
@

@xi
:¼ @

@xi
e1 i ¼ 1; . . . ;m:
These derivations are well-defined as
@

@xi
e1 � ðf � gÞ ¼

@

@xi
e1 � f

� �
� g þ f � @

@xi
e1 � g

� �

and
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fxi
:¼ @

@xi
e1 � f ¼

ðf1Þxi

..

.

ðfnÞxi

0BB@
1CCA:
Here we will concentrate on the coupled extension of nonlinear integrable PDE’s in ð1þ 1Þ-dimension in the evolutionary
form. Consider a one-field soliton system
ut ¼ K½u� � Kðu;ux; uxx;...Þ: ð3Þ
Its extension to the system of coupled PDE’s takes the form
ut ¼ K½u� � Kðu;ux;uxx; . . .Þ; ð4Þ
where
u ¼ u1e1 þ � � � þ unen ¼
u1

..

.

un

0BB@
1CCA u1 ¼ u
and in (4) the ordinary dot multiplication is replaced by (1).
The system of coupled Eqs. (4) takes the form
ðu1Þt ¼ K u1½ �

ðukÞt ¼ K
Xk

i¼1

ui

" #
� K

Xk�1

i¼1

ui

" #
k ¼ 2; . . . ;n;

ð5Þ
where K½�� is the same as in (3). To show that the form (5) holds one can use the power series expansion of K½u� and the rela-
tion (2). In fact, it is sufficient to consider homogenous terms as
ðui1x � ui2x � . . . � uimxÞk ¼
Ym
s¼1

Xk

r¼1

ur

 !
isx

�
Ym
s¼1

Xk�1

r¼1

ur

 !
isx

m > 0;
where ð�Þk means kth coefficient of ui1x � . . . � uimx and is are arbitrary nonnegative integers.
Note that the Eq. (5) reconstructs the basic equation for u1. Moreover, for linear PDE’s the procedure is trivial as all related

coupled systems are just copies of the basic equation. The extension to the multi-field systems is obvious.
As an instructive example let us consider the n-coupled KdV (nc-KdV):
ut ¼ uxxx þ 6u � ux

m
ðu1Þt ¼ ðu1Þxxx þ 6u1ðu1Þx
ðu2Þt ¼ ðu2Þxxx þ 6u2ðu2Þx þ 6ðu1u2Þx

..

.

ðunÞt ¼ ðunÞxxx þ 6unðunÞx þ 6
Xn�1

k¼1

ðukunÞx:

ð6Þ
It is a particular case of the triangular systems. Obviously in dispersionless limit we get n-coupled dispersionless KdV (nc-
dKdV).

The presented construction is also valid for differential-difference systems. If, for instance, instead of the derivative @
@xi

e1

one defines on C1d ðRmÞ a shift operator Tke1 :¼ exp @
@xk

� �
e1, then
Tke1 � f ¼

f1ðx1; . . . ; xk þ 1; . . . ; xmÞ
..
.

fnðx1; . . . ; xk þ 1; . . . ; xmÞ

0BB@
1CCA:
As an example we consider nc-Voltera differential-difference equation:
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vðxÞt ¼ vðxÞ � ½vðxþ 1Þ � vðx� 1Þ�
m

v1ðxÞt ¼ v1ðxÞ½v1ðxþ 1Þ � v1ðx� 1Þ�
v2ðxÞt ¼ v2ðxÞ½v2ðxþ 1Þ � v2ðx� 1Þ� þ v2ðxÞ½v1ðxþ 1Þ � v1ðx� 1Þ�

þ v1ðxÞ½v2ðxþ 1Þ � v2ðx� 1Þ�

..

.

vnðxÞt ¼ vnðxÞ½vnðxþ 1Þ � vnðx� 1Þ� þ vnðxÞ
Xn�1

i¼1

v iðxþ 1Þ �
Xn�1

i¼1

v iðx� 1Þ
" #

þ
Xn�1

i¼1

v iðxÞ
 !

½vnðxþ 1Þ � vnðx� 1Þ�:

ð7Þ
The two field case, that is 2c-Voltera, is equivalent to the lattice integrable coupling system in [7].
Each coupled soliton system have a Lax and zero-curvature representation, that can be obtained by replacing an under-

lying algebra by its tensor product with the algebra of coupled scalars. For the above examples, Lt ¼ ½L;A�, where the right-
hand side is the usual commutator, are equations in the algebras of pseudo-differential and shift operators, respectively, over
algebra of coupled functions. Actually, for the nc-KdV (6) the Lax pair is given by
L ¼ @2
x e1 þ u; A ¼ 4@3

x e1 þ 6u � @xe1 þ 3ux ð8Þ
and for nc-Voltera (7) by
L ¼ Te1 þ vðxÞ � T�1e1; A ¼ T2e1 þ vðxþ 1Þ þ vðxÞ: ð9Þ
As an example of coupled extension of two-field system let us consider 2-coupled AKNS (2c-AKNS), n ¼ 2:
pt ¼ �
1
2

pxx þ p � p � q; qt ¼
1
2

qxx � p � q � q

m

pt ¼ �
1
2

pxx þ p2q; qt ¼
1
2

qxx � pq2

rt ¼ �
1
2

rxx þ p2sþ 2pqr þ 2prsþ qr2 þ r2s

st ¼
1
2

sxx � ps2 � 2pqs� 2qrs� q2r � rs2;

ð10Þ
where
p ¼
p

r

� �
; q ¼

q

s

� �
:

In fact the system (10) was obtained in [9] in a different way and is equivalent to the one from [8]. Its zero-curvature rep-
resentation will be presented in Section 5.

4. Solutions of coupling systems

The solutions of the coupled systems (4) are completely determined by solutions of the basic equations.
We will show now that, assuming S1; . . . ; Sn to be n arbitrary different solutions of the basic equation ut ¼ K½u�, the solu-

tion of coupled system (4) is given by
u1 ¼ S1; uk ¼ Sk � Sk�1; k ¼ 2; . . . ;n: ð11Þ
Moreover, any solution of the coupled system is of the form (11).
After plugging (11) to (5),
ðSk � Sk�1Þt � ðK½S
k� � K½Sk�1�Þ ¼ 0;
it is evident that (11) solves (4). On the other hand, if the solution of the basic equation is u1 ¼ S1, then the first coupled
equation is
ðu2Þt ¼ K½u2 þ S1� � K½S1� () ðu2 þ S1Þt ¼ K½u2 þ S1�;
thus u2 þ S1 ¼ S2, where S2 is another solution of the basic equation. Thus, by the rest of the induction, it is obvious that any
solution of (4) must be in the form (11). The consequence of this fact is that for the coupled PDE’s any n different solutions of
the basic equation build up an appropriate solution of the coupled system.
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Fig. 1. Coupled 1-soliton, ui ¼ Si � Si�1 (i – 1).

1870 M. Błaszak et al. / Applied Mathematics and Computation 219 (2012) 1866–1873
Let us illustrate the whole construction on the example of solitons of nc-KdV (6) in the Hirota form. Let us start from 1-
soliton solution. Consider n one-soliton solutions of the KdV with the same wave velocities and different phases cj:
Sj ¼ 2@2
x logð1þ f jÞ; f j ¼ expðkxþ k3t þ cjÞ; k; cj ¼ const; j ¼ 1; . . . ;n:
Then, 1-soliton solution of (6) is given in the form
u1 ¼ S1 ¼ 2@2
x logð1þ f 1Þ; uj ¼ Sj � Sj�1 ¼ 2@2

x log
1þ f j

1þ f j�1

� �
; j ¼ 2; . . . ;n:
Obviously, u1 is the ordinary KdV soliton, while remaining ui are coupled solitons (illustrated in Fig. 1), that differ among
themselves by phase arguments.

The coupled 2-soliton solution of nc-KdV (6) is of the form
u1 ¼ S1 ¼ 2@2
x logð1þ f 1

1 þ f 1
2 þ af 1

1f 1
2 Þ;

uj ¼ Sj � Sj�1 ¼ 2@2
x log

1þ f j
1 þ f j

2 þ af j
1f j

2

1þ f j�1
1 þ f j�1

2 þ af j�1
1 f j�1

2

 !
; j ¼ 2; . . . ;n;
where
f j
1 ¼ expðk1xþ k3

1t þ c1jÞ; f j
2 ¼ expðk2xþ k3

2t þ c2jÞ; j ¼ 1; . . . ;n
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Fig. 2. Coupled 2-soliton, ui ¼ Si � Si�1 (i – 1).



M. Błaszak et al. / Applied Mathematics and Computation 219 (2012) 1866–1873 1871
and a ¼ ðk1 � k2Þ2=ðk1 þ k2Þ2. Notice that u1 is the ordinary 2-soliton solution of the KdV, while remaining ui are coupled 2-
soliton solutions, which interaction is presented in Fig. 2.

5. Matrix representation of the algebra of coupled scalars

Consider n quadratic matrices Ek of dimension n� n:
Ekð Þij ¼
1 if j ¼ k; i 6 k;

1 if j ¼ i; i > k;

0 otherwise;

8><>:

where k ¼ 1; . . . ;n. The matrices Ei constitute generating elements of commutative and associative sub-algebra of triangular
matrices. Let us call the matrix algebra spanned by Ek as a pseudo-scalar algebra of matrices, ps(n).

The algebra ps(n) is a matrix representation of the algebra of coupled scalars defined by the multiplication (1), which fol-
lows immediately by showing that
EiEj ¼ EjEi ¼ Emaxði;jÞ
for i; j ¼ 1; . . . ;n. For example if n ¼ 4:
E1 ¼

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0BBB@
1CCCA E2 ¼

0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0BBB@
1CCCA;

E3 ¼

0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1

0BBB@
1CCCA E4 ¼

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

0BBB@
1CCCA:
Then, a typical element for n ¼ 4 is
A ¼
Xn

i¼1

aiEi ¼

a1 a2 a3 a4

0 a1 þ a2 a3 a4

0 0 a1 þ a2 þ a3 a4

0 0 0 a1 þ a2 þ a3 þ a4

0BBB@
1CCCA: ð12Þ
The Lax representation Lt ¼ L;A½ � of nc-KdV (8) and nc-Voltera (9) in the matrix algebra psðnÞ are respectively given by
L ¼ @2
x E1 þ U; A ¼ 4@3

x E1 þ 6U@xE1 þ 3Ux;
where
U ¼ u1E1 þ u2E2 þ � � � þ unEn
and
L ¼ TE1 þ VðxÞT�1E1; A ¼ T2E1 þ Vðxþ 1Þ þ VðxÞ;
where
VðxÞ ¼ v1ðxÞE1 þ v2ðxÞE2 þ � � � þ vnðxÞEn:
Taking the tensor product of some Lie algebras, like in the above examples of pseudo-differential and shift operators, with
the pseudo-scalar algebra psðnÞ one can derive several examples of the coupled extensions of known integrable systems.

This is in fact the case of the coupled AKNS systems (10), where its zero-curvature equation,
Lt �Wx þ L;W½ � ¼ 0 ð13Þ
is from the Lie algebra being tensor product of psð2Þ with the loop algebra of slð2Þ.
The respective generating operators are given by
L ¼ E1 � U1 þ E2 � U2 ¼
U1 U2

0 U1 þ U2

� �
; ð14Þ
where
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U1 ¼
�k p

q k

� �
; U2 ¼

0 r

s 0

� �

and
W ¼ E1 �W1 þ E2 �W2 ¼
W1 W2

0 W1 þW2

� �
;

where
W1 ¼
�k2 þ 1

2 pq pk� 1
2 px

qkþ 1
2 qx k2 � 1

2 pq

 !
; W2 ¼

d e

f �d

� �

with
d ¼ ak2 þ 1
2
ð1� aÞðpsþ qr þ rsÞ � 1

2
apq;

e ¼ ðð1� aÞr � apÞkþ 1
2
apx �

1
2
ð1� aÞrx;

f ¼ ðð1� aÞs� aqÞk� 1
2
aqx þ

1
2
ð1� aÞsx:
We have left here some freedom related to the parameter a being integration constant from the computation of W. For var-
ious details on derivations of integrable systems we send the reader to [13] and the references therein. Then from the zero-
curvature Eq. (13) we get the following system
pt ¼ �
1
2

pxx þ p2q; qt ¼
1
2

qxx � pq2;

rt ¼
1
2
apxx � ap2qþ ð1� aÞ �1

2
r2x þ 2pqr þ 2prsþ qr2 þ p2sþ r2s

� �
;

st ¼ �
1
2
aqxx þ apq2 þ ða� 1Þ �1

2
s2x þ 2pqsþ 2qrsþ q2r þ ps2 þ rs2

� �
:

ð15Þ
The 2c-AKNS (10) (also derived in [9]) one obtains for a ¼ 0. Whereas, the coupled AKNS obtained in [8] is generated for
a ¼ �1. This system is in fact a linear composition of the symmetry (10) (the case of a ¼ 0) and the one obtained from
(15) for a ¼ 1.

In the papers [7–11] there are also other examples of integrable couplings for field and lattice soliton systems of the same
class. All of them are generated by the spectral Lax operators, from the Lie algebra psð2Þ � slð2Þ½½k; k�1��, being in the form
(14), however with different entries of U1 and U2.

6. Decoupling procedure

Consider the transformation of the pseudo-scalar algebra psðnÞ in the form of a similarity relation
TðAÞ :¼ S�1AS;
where
Sij ¼
1 for i 6 j
0 for i > j;

�
ðS�1Þij ¼

1 for j ¼ i;

�1 for j ¼ iþ 1;
0 otherwise:

8><>:

Then, this transformation is apparently an isomorphism of matrix algebras. One finds that
TðEkÞ ¼
1 for j ¼ i; j P k;

0 otherwise:

�

In particular, for n ¼ 4
S ¼

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

0BBB@
1CCCA; S�1 ¼

1 �1 0 0
0 1 �1 0
0 0 1 �1
0 0 0 1

0BBB@
1CCCA
and for A given by (12)
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TðAÞ :¼

a1 0 0 0
0 a1 þ a2 0 0
0 0 a1 þ a2 þ a3 0
0 0 0 a1 þ a2 þ a3 þ a4

0BBB@
1CCCA:
The above transformation naturally extends to any tensor product of some algebra g with psðnÞ, that is psðnÞ � g. Let
L ¼
Xn

k¼1

Ek � Ak; ð16Þ
where Ak belong to g. Then, the transformation extends to elements of the form (16) by the formula
TðLÞ :¼
Xn

k¼1

TðEkÞ � Ak: ð17Þ
Since this transformation is an algebra isomorphism it preserves the Lie algebraic construction of the coupled systems. Com-
bining (17) with the transformation of components:
eAk ¼
Xk

i¼1

Ai k ¼ 1; . . . ; n; ð18Þ
we decouple the whole construction into n independent copies, that is psðnÞ � g decouples into the direct product of n copies
of g.

As a consequence of the above decoupling procedure, the linear transformation to new field variables
euk ¼
Xk

i¼1

ui k ¼ 1; . . . ; n;
separates the coupled Eqs. (4) and (5) to n copies of the basic Eq. (3) in new fields euk, that is
ðeukÞt ¼ K½euk� k ¼ 1; . . . ; n:
In particular this is the case of nc-KdV (6) and for nc-Voltera (7) systems.
In the case of the coupled AKNS system (10) or (15) generated by the Lax operator (14) the decoupling transformation

(18) takes the form
eU1 ¼ U1eU2 ¼ U1 þ U2

()
ep1 ¼ p eq1 ¼ q;ep2 ¼ pþ r;eq2 ¼ qþ s;
where
eUi ¼
�k epieqi k

� �
i ¼ 1;2:
As result the coupled AKNS separates into two copies of the standard AKNS system.
All coupled triangular systems considered in previous sections as well as these from [7–11] (as their construction is based

on the Lie algebra psð2Þ � slð2Þ½½k; k�1��) separate (decouple) into copies of the basic equations in the same manner. In fact the
same situation is in the general case, when the underlying Lie algebra has the form psðnÞ � g. This follows from the fact that
the above transformation is in the form of similarity relation which naturally preserves Lie commutator, trace form, Lax and
zero-curvature representations, Hamiltonian structure and other related structures.
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