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The first order loss function and its complementary function are extensively used in prac-
tical settings. When the random variable of interest is normally distributed, the first order
loss function can be easily expressed in terms of the standard normal cumulative distribu-
tion and probability density function. However, the standard normal cumulative distribu-
tion does not admit a closed form solution and cannot be easily linearised. Several works in
the literature discuss approximations for either the standard normal cumulative distribu-
tion or the first order loss function and their inverse. However, a comprehensive study on
piecewise linear upper and lower bounds for the first order loss function is still missing. In
this work, we initially summarise a number of distribution independent results for the first
order loss function and its complementary function. We then extend this discussion by
focusing first on random variables featuring a symmetric distribution, and then on nor-
mally distributed random variables. For the latter, we develop effective piecewise linear
upper and lower bounds that can be immediately embedded in MILP models. These linear-
isations rely on constant parameters that are independent of the mean and standard devi-
ation of the normal distribution of interest. We finally discuss how to compute optimal
linearisation parameters that minimise the maximum approximation error.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Consider a random variable x and a scalar variable x. The first order loss function is defined as
Lðx;xÞ ¼ E½maxðx� x;0Þ�; ð1Þ
where E denotes the expected value. The complementary first order loss function is defined as
bLðx;xÞ ¼ E½maxðx�x;0Þ�: ð2Þ
The first order loss function and its complementary function play a key role in several application domains. In inventory con-
trol [13] it is often used to express expected inventory holding or shortage costs, as well as service level measures such as the
widely adopted ‘‘fill rate’’, also known as b service level [1, p. 94]. In finance the first order loss function may be employed to
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capture risk measures such as the so-called ‘‘conditional value at risk’’ (see e.g. [11]). These examples illustrate possible
applications of this function. Of course, the applicability of this function goes beyond inventory theory and finance.

In Section 2, we first summarise a number of distribution independent results for the first order loss function and its com-
plementary function. We then focus on symmetric and normal distributions, for which we discuss ad hoc results in Section 3.

According to one of these results, the first order loss function can be expressed in terms of the cumulative distribution
function of the random variable under scrutiny. Depending on the probability distribution adopted, integrating this function
may constitute a challenging task. For instance, if the random variable is normally distributed, no closed formulation exists
for its cumulative distribution function. Several approximations have been proposed in the literature (see e.g. [3–
5,10,12,16,17]), which can be employed to approximate the first order loss function. However, these approximations are gen-
erally nonlinear and cannot be easily embedded in mixed integer linear programming (MILP) models.

In Sections 4 and 5, we introduce piecewise linear lower and upper bounds for the first order loss function and its com-
plementary function for the case of normally distributed random variables. These bounds are based on standard bounding
techniques from stochastic programming, i.e. Jensen’s lower bound and Edmundson–Madansky upper bound [9, pp. 167–
168]. The bounds can be readily used in MILP models and do not require instance dependent tabulations. Our linearisation
strategy is based on standard optimal linearisation coefficients computed in such a way as to minimise the maximum
approximation error, i.e. according to a minimax approach – see [7,8,15] for a similar approach. Optimal coefficients for
approximations comprising from two to eleven segments will be presented in Tables 1 and 2; these can be reused to approx-
imate the loss function associated with any normally distributed random variable.

2. The first order loss function and its complementary function

Consider a continuous random variable x with support over R, probability density function gxðxÞ : R! ð0;1Þ and cumu-
lative distribution function GxðxÞ : R! ð0;1Þ. The first order loss function can be rewritten as
Lðx;xÞ ¼
Z 1

�1
maxðt � x;0ÞgxðtÞdt ¼

Z 1

x
ðt � xÞgxðtÞdt: ð3Þ
The complementary first order loss function can be rewritten as
bLðx;xÞ ¼ Z 1

�1
maxðx� t;0ÞgxðtÞdt ¼

Z x

�1
ðx� tÞgxðtÞdt: ð4Þ
We introduce the following two well-known lemmas.

Lemma 1 [14, p. 338, C.3]. The first order loss function Lðx;xÞ can also be expressed as
Lðx;xÞ ¼
Z 1

x
1� GxðtÞð Þdt: ð5Þ
Lemma 2 [14, p. 338, C.4]. The complementary first order loss function bLðx;xÞ can also be expressed as
bLðx;xÞ ¼ Z x

�1
GxðtÞdt: ð6Þ
There is a close relationship between the first order loss function and the complementary first order loss function.
Lemma 3 [14, p. 338, C.5]. The first order loss function Lðx;xÞ can also be expressed as
Lðx;xÞ ¼ bLðx;xÞ � ðx� ~xÞ; ð7Þ
where ~x ¼ E½x�.
Because of the relation discussed in Lemma 3, in what follows without loss of generality most of the results will be pre-

sented for the complementary first order loss function.
Another known result for the first order loss function and its complementary function is their convexity, which we pres-

ent next.

Lemma 4. Lðx;xÞ and bLðx;xÞ are convex in x.
Proof. It is sufficient to show that d2

dx2
bLðx;xÞ is positive; furthermore, the proof for Lðx;xÞ follows from Lemma 3 and from

the fact that �x is convex. h

For a random variable x with symmetric probability density function, we introduce the following results.
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Lemma 5. If the probability density function of x is symmetric about a mean value ~x, then
Lðx;xÞ ¼ bLð2 ~x� x;xÞ:
Proof.
Lðx;xÞ ¼
Z 1

x
1� GxðtÞð Þdt ¼

Z ~x�ðx� ~xÞ

�1
GxðtÞdt ¼ bLð2 ~x� x;xÞ �
Lemma 6. If the probability density function of x is symmetric about a mean value ~x, then
bLðx;xÞ ¼ bLð2 ~x� x;xÞ þ ðx� ~xÞ
and
Lðx;xÞ ¼ Lð2 ~x� x;xÞ � ðx� ~xÞ:
Proof. Follows immediately from Lemmas 3 and 5. h

The results presented so far are easily extended to the case in which the random variable is discrete. In the following sec-
tion we present results for the case in which the random variable is normally distributed.

3. The first order loss function for a normally distributed random variable

Let f be a normally distributed random variable with mean l and standard deviation r. Recall that the normal probability
density function is defined as
gfðxÞ ¼
1

r
ffiffiffiffiffiffiffi
2p
p e�

ðx�lÞ2

2r2 : ð8Þ
No closed form expression exists for the cumulative distribution function
GfðxÞ ¼
Z x

�1
gfðxÞdx:
Let /ðxÞ be the standard normal probability density function and UðxÞ the respective cumulative distribution function.
We next present three known results for a normally distributed random variable: a standardisation result in Lemma 7,

and two closed form expressions for the computation of the loss function and of its complementary function in Lemmas
8 and 9.

Lemma 7 [14, p. 338, C.13]. The complementary first order loss function of f can be expressed in terms of the standard Normal
cumulative distribution function as
bLðx; fÞ ¼ r
Z x�l

r

�1
UðtÞdt ¼ rbL x� l

r
; Z

� �
; ð9Þ
where Z is a standard Normal random variable.
Lemma 8 [14, p. 338, C.9]. The complementary first order loss function bLðx; fÞ can be rewritten in closed form as
bLðx; fÞ ¼ r /
x� l

r

� �
þU

x� l
r

� � x� l
r

� �
:

From Lemma 3 the first order loss function of f can be expressed as
Lðx; fÞ ¼ �ðx� lÞ þ r
Z x�l

r

�1
UðtÞdt: ð10Þ
Recall that an alternative expression is obtained via Lemma 1,
Lðx; fÞ ¼ r
Z 1

x�l
r

ð1�UðtÞÞdt: ð11Þ
From Lemmas 3 and 8 we obtain the closed form expression
Lðx; fÞ ¼ �ðx� lÞ þ r /
x� l

r

� �
þU

x� l
r

� � x� l
r

� �
: ð12Þ



492 R. Rossi et al. / Applied Mathematics and Computation 231 (2014) 489–502
Lemma 9 [14, p. 338, C.8]. The first order loss function Lðx; fÞ can be rewritten in closed form as
Lðx; fÞ ¼ r /
x� l

r

� �
� 1�U

x� l
r

� �� � x� l
r

� �
:

Furthermore, since the Normal distribution is symmetric, both Lemmas 5 and 6 hold.
4. Jensen’s lower bound for the standard normal first order loss function

We introduce a well-known inequality from stochastic programming.

4.1. Jensen’s lower bound

Theorem 1 (Jensen’s inequality, [2, p. 140]). Consider a random variable x with support X and a function f ðx; sÞ, which for a fixed
x is convex for all s 2 X, then
E½f ðx;xÞ�P f ðx;E½x�Þ:

Common discrete lower bounding approximations in stochastic programming are extensions of Jensen’s inequality. The

usual strategy is to find a low cardinality discrete set of realisations representing a good approximation of the true underling
distribution. Birge and Louveaux [2, p. 288], discuss one of these discrete lower bounding approximations which consists in
partitioning the support X into a number of disjoint regions, Jensen’s bound is then applied in each of these regions.

More formally, let gxð�Þ denote the probability density function of x and consider a partition of the support X of x into N
disjoint compact subregions X1; . . . ;XN . We define, for all i ¼ 1; . . . ;N
pi ¼ Prfx 2 Xig ¼
Z

Xi

gxðtÞdt
and
E½xjXi� ¼
1
pi

Z
Xi

tgxðtÞdt:
Theorem 2 [2, p. 289].
E½f ðx;xÞ�P
XN

i¼1

pif ðx;E½xjXi�Þ:
Theorem 3. Given a random variable x Jensen’s bound (Theorem 1) is applicable to the first order loss function Lðx;xÞ and its
complementary function bLðx;xÞ.

Proof. Follows immediately from Lemma 4. h

Having established this result, we must then decide how to partition the support x in order to obtain a good bound. In
fact, to generate good lower bounds, it is necessary to carefully select the partition of the support x. The optimal partitioning
strategy will depend, of course, on the probability distribution of the random variable x.

4.2. Minimax discrete lower bounding approximation

We discuss a minimax strategy for generating discrete lower bounding approximations of the (complementary) first or-
der loss function. In this strategy, we partition the support x into a predefined number of regions N in order to minimise the
maximum approximation error.

Consider a random variable x and the associated complementary first order loss function
bLðx;xÞ ¼ E½maxðx�x; 0Þ�;
assume that the support X of x is partitioned into N disjoint subregions X1; . . . ;XN .

Lemma 10. For the (complementary) first order loss function the lower bound presented in Theorem 2 is a piecewise linear
function with N þ 1 segments.
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Proof. Consider the bound presented in Theorem 2 and let f ðx;xÞ ¼ maxðx�x;0Þ,
bL lbðx;xÞ ¼
XN

i¼1

pi maxðx� E½xjXi�;0Þ
this function is equivalent to
bLlbðx;xÞ ¼

0 �1 6 x 6 E½xjX1�;
p1x� p1E½xjX1� E½xjX1� 6 x 6 E½xjX2�;
ðp1 þ p2Þx� ðp1E½xjX1� þ p2E½xjX2�Þ E½xjX2� 6 x 6 E½xjX3�;
..
. ..

.

ðp1 þ p2 þ . . .þ pNÞx� ðp1E½xjX1� þ p2E½xjX2� þ . . .þ pNE½xjXN�Þ E½xjXN�1� 6 x 6 E½xjXN �;

8>>>>>>><>>>>>>>:

which is piecewise linear in x with breakpoints at E½xjX1�;E½xjX2�; . . . ;E½xjXN�. The proof for the first order loss function fol-
lows a similar reasoning. h
Lemma 11. Consider the ith linear segment of bLlbðx;xÞ
bLi
lbðx;xÞ ¼ x

Xi

k¼1

pk �
Xi

k¼1

pkE½xjXk� E½xjXi� 6 x 6 E½xjXiþ1�;
where i ¼ 1; . . . ;N. Let Xi ¼ ½a; b�, then bLi
lbðx;xÞ is tangent to bLðx;xÞ at x ¼ b. Furthermore, the 0th segment x ¼ 0 is tangent tobLðx;xÞ at x ¼ �1.
Proof. Note that
bLi
lbðx;xÞ ¼ x

Xi

k¼1

Z
Xk

gxðtÞdt �
Xi

k¼1

Z
Xk

tgxðtÞdt
and that
X1 [X2 [ . . . [Xi ¼ ð�1; b�
it follows
bLi
lbðx;xÞ ¼ x

Z b

�1
gxðtÞdt �

Z b

�1
tgxðtÞdt
and
bLi
lbðx;xÞ ¼ GxðbÞðx� bÞ þ

Z b

�1
GxðtÞdt;
which is the equation of the tangent line to bLðx;xÞ at a given point b, that is
y ¼ bLðb;xÞ0ðx� bÞ þ bLðb;xÞ:

x ¼ 0 is tangent to bLðx;xÞ at x ¼ �1 since bLðx;xÞ is convex, positive and
lim
x!�1

bLðx;xÞ ¼ 0:
The very same reasoning can be easily applied to the first order loss function. h
Lemma 12. The maximum approximation error between bLlbðx;xÞ and bLðx;xÞ will be attained at a breakpoint.
Proof. By recalling that bLðx;xÞ is convex (Lemma 4), since bLlbðx;xÞ is piecewise linear (Lemma 10) and each segment ofbLlbðx;xÞ is tangent to bLðx;xÞ (Lemma 11), it follows that the maximum error will be attained at a breakpoint. h
Theorem 4. Given the number of regions N; X1; . . . ;XN is an optimal partition of the support X of x under a minimax strategy, if
and only if approximation errors at breakpoints are all equal.
Proof. The proof of this theorem follows a reasoning similar to the one presented in [8]. h

By using this last result it is possible to derive a set of equations that can be solved for computing an optimal partitioning.
Let us consider the error ei at breakpoint i, this can be expressed as
ei ¼ bLðE½xjXi�;xÞ � bLi
lbðE½xjXi�;xÞ;
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where Xi ¼ ½ai; bi�. Since we have N breakpoints to check, we must solve a system comprising the following N � 1 equations
e1 ¼ ei for i ¼ 2; . . . ;N
under the following restrictions
a1 ¼ �1;
bN ¼ 1;
ai 6 bi for i ¼ 1; . . . ;N;

bi ¼ aiþ1 for i ¼ 1; . . . ;N � 1;
The system therefore involves N � 1 variables, each of which identifies the boundary between two disjoint regions Xi and
Xiþ1.

Theorem 5. Assume that the probability density function of x is symmetric about a mean value ~x. Then, under a minimax
strategy, if X1; . . . ;XN is an optimal partition of the support X of x, breakpoints will be symmetric about ~x.
Proof. This follows from Lemma 6 and Theorem 4. h

In this case, by exploiting the symmetry of the piecewise linear approximation, an optimal partitioning can be derived by
solving a smaller system comprising dN=2e equations, where N is the number of regions Xi and dxe rounds x to the next inte-
ger value.

Unfortunately, equations in the above system are nonlinear and do not admit a closed form solution in the general case.

4.2.1. Normal distribution
We will next discuss the system of equations that leads to an optimal partitioning for the case of a standard Normal ran-

dom variable Z. This partitioning leads to a piecewise linear approximation that is, in fact, easily extended to the general case
of a normally distributed variable f with mean l and standard deviation r via Lemma 7. This equation suggests that the error
of this approximation is independent of l and proportional to r.

Consider a partitioning for the support X of Z into N adjacent regions Xi ¼ ½ai; bi�, where i ¼ 1; . . . ;N. From Theorem 5, if N
is odd, then bdN=2e ¼ 0 and bi ¼ �bNþ1�i, if N is even, then bi ¼ �bNþ1�i. We shall use Lemma 8 for expressing bLðx; ZÞ. Then, by
observing that
Z bi

ai

t/ðtÞdt ¼ /ðaiÞ � /ðbiÞ
and that p1 þ p2 þ � � � þ pi ¼ UðbiÞ, we rewrite
bLi
lbðE½ZjXi�; ZÞ ¼ UðbiÞE½ZjXi� �

Xi

k¼1

ð/ðaiÞ � /ðbiÞÞ ð13Þ

¼ UðbiÞE½ZjXi� � ð/ða1Þ � /ðbiÞÞ ð14Þ
¼ UðbiÞE½ZjXi� þ /ðbiÞ: ð15Þ
To express the conditional expectation E½ZjXi� we proceed as follows: let pi ¼ UðbiÞ �UðaiÞ, it follows
E½ZjXi� ¼
/ðaiÞ � /ðbiÞ
UðbiÞ �UðaiÞ

:

To solve the above system of non-linear equations we will exploit the close connections between finding a local minimum
and solving a set of nonlinear equations. In particular, we will use the Gauss–Newton method to find a partition X1; . . . ;XN of
the support of Z that minimises the following sum of squares
XN

k¼2

ðe1 � ekÞ2
This minimisation problem can be solved by software packages such as Mathematica (see NMinimize).

4.2.2. Numerical examples
The classical Jensen’s bound for the complementary first order loss function of a standard Normal random variable Z is

show in Fig. 1. This is obtained by considering a degenerate partition of the support of Z comprising only a single region
X1 ¼ ½�1;1�. In practice, we simply replace Z by its expected value, i.e. zero. Therefore we simply have bLlb ¼maxðx;0Þ.
The maximum error of this piecewise linear approximation occurs for x ¼ 0 and it is equal to 1=

ffiffiffiffiffiffiffi
2p
p

.
If we split the support of Z into four regions (Fig. 2), the solution to the system of nonlinear equations prescribes to split X

at b1 ¼ �0:886942; b2 ¼ 0; b3 ¼ 0:886942. The maximum error is 0.0339052 and it is observed at x 2 f�1:43535;�0:415223g.
In Table 1 we report parameters of bLlbðx; ZÞ with up to eleven segments. In Fig. 3 we present the approximation error ofbLlbðx; ZÞ with up to eleven segments.
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Fig. 1. Classical Jensen’s bound for bLðx; ZÞ.
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Fig. 2. Five-segment piecewise Jensen’s bound for bLðx; ZÞ.
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In Fig. 4 we exploited Lemma 7 to obtain the five-segment piecewise Jensen’s bound for bLðx; fÞ, where f is a normally
distributed random variable with mean l ¼ 20 and standard deviation r ¼ 5. The maximum error is r0:0339052 and it is
observed at x 2 frð�1:43535Þ þ l;rð�0:415223Þ þ lg.

5. A piecewise linear upper bound for the standard normal first order loss function

In this section we introduce a simple bounding technique that exploits convexity of the (complementary) first order loss
function to derive a piecewise linear upper bound.

5.1. A piecewise linear upper bound

Without loss of generality we shall introduce the bound for the complementary first order loss function. Consider a
random variable x with support X. From Lemma 4, bLðx;xÞ is convex in x regardless of the distribution of x. Given an
interval ½a; b� 2 R, it is possible to construct an upper bound by exploiting the very same definition of convexity, that is
by constructing a straight line bLubðx;xÞ between the two points ða; bLða;xÞÞ and ðb; bLðb;xÞÞ. The slope (a) and the intercept
(b) of this line can be easily computed



Table 1
Parameters of bLlbðx; ZÞ with up to eleven segments.

Segments Error i 1 2 3 4 5 6 7 8 9 10

Piecewise linear approximation parameters
2 0.398942 bi 1

pi 1
E½xjXi� 0

3 0.120656 bi 0 1
pi 0.5 0.5
E½xjXi� �0.797885 0.797885

4 0.0578441 bi �0.559725 0.559725 1
pi 0.287833 0.424333 0.287833
E½xjXi� �1.18505 0 1.18505

5 0.0339052 bi �0.886942 0 0.886942 1
pi 0.187555 0.312445 0.312445 0.187555
E½xjXi� �1.43535 �0.415223 0.415223 1.43535

6 0.0222709 bi �1.11507 �0.33895 0.33895 1.11507 1
pi 0.132411 0.234913 0.265353 0.234913 0.132411
E½xjXi� �1.61805 �0.691424 0 0.691424 1.61805

7 0.0157461 bi �1.28855 �0.579834 0 0.579834 1.28855 1
pi 0.0987769 0.182236 0.218987 0.218987 0.182236 0.0987769
E½xjXi� �1.7608 �0.896011 �0.281889 0.281889 0.896011 1.7608

8 0.0117218 bi �1.42763 �0.765185 �0.244223 0.244223 0.765185 1.42763 1
pi 0.0766989 0.145382 0.181448 0.192942 0.181448 0.145382 0.0766989
E½xjXi� �1.87735 �1.05723 �0.493405 0 0.493405 1.05723 1.87735

9 0.00906529 bi �1.54317 �0.914924 �0.433939 0 0.433939 0.914924 1.54317 1
pi 0.0613946 0.118721 0.152051 0.167834 0.167834 0.152051 0.118721 0.0613946
E½xjXi� �1.97547 �1.18953 �0.661552 �0.213587 0.213587 0.661552 1.18953 1.97547

10 0.00721992 bi �1.64166 �1.03998 �0.58826 �0.19112 0.19112 0.58826 1.03998 1.64166 1
pi 0.0503306 0.0988444 0.129004 0.146037 0.151568 0.146037 0.129004 0.0988444 0.0503306
E½xjXi� �2.05996 �1.30127 �0.8004 �0.384597 0. 0.384597 0.8004 1.30127 2.05996

11 0.00588597 bi �1.72725 �1.14697 �0.717801 �0.347462 0. 0.347462 0.717801 1.14697 1.72725 1
pi 0.0420611 0.0836356 0.110743 0.127682 0.135878 0.135878 0.127682 0.110743 0.0836356 0.0420611
E½xjXi� �2.13399 �1.39768 �0.9182 �0.526575 �0.17199 0.17199 0.526575 0.9182 1.39768 2.13399
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Fig. 3. Approximation error of bLlbðx; ZÞ with up to eleven segments.
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Fig. 4. Five-segment piecewise Jensen’s bound for bLðx; fÞ, where l ¼ 20 and r ¼ 5.
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a ¼
bLðb;xÞ � bLða;xÞ

b� a
; b ¼ bbLða;xÞ � abLðb;xÞ

b� a
:

The upper bound is then
bLubðx;xÞ ¼ axþ b a 6 x 6 b ð16Þ

¼ bLða;xÞ b� x
b� a

þ bLðb;xÞ x� a
b� a

a 6 x 6 b ð17Þ
We can improve the quality of this bound by partitioning the domain R of bLðx;xÞ into N disjoint regions
Di ¼ ½ai; bi�; i ¼ 1; . . . ;N. The selected regions must be all compact and adjacent. Because of the convexity of bLðx;xÞ the
bound can be then applied to each of these regions considered separately.

However, since bLðx;xÞ is defined over R, it is not possible to guarantee a complete covering of the domain by using com-
pact regions. We must therefore add two extreme regions D0 ¼ ½�1; b0 ¼ a1� and DNþ1 ¼ ½aNþ1 ¼ bN;1� to ensure the one
obtained is indeed an upper bound for each x 2 R. By noting that
lim
x!�1

bLðx;xÞ ¼ 0 and lim
x!1

bLðx;xÞ ¼ x
it is easy to derive equations for the lines associated with these two extra regions. In particular, we associate with D0 a hor-
izontal line with slope a ¼ 0 and intercept b ¼ bLða1;xÞ, and with DNþ1 a line with slope a ¼ 1 and intercept
b ¼ bLðbN;xÞ � bN .
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Also in this case, we must then decide how to partition the domain R into N þ 2 intervals D0; . . . ;DNþ1 to obtain a tight
bound. Once more, the optimal partitioning strategy will depend on the probability distribution of the random variable x.

5.2. Minimax piecewise linear upper bound

We discuss a minimax strategy for generating a piecewise linear upper bound of the (complementary) first order loss
function bLðx;xÞ. In this strategy, we partition the domain R of x into a predefined number of regions N þ 2 in order to
minimise the maximum approximation error. Note that, since this domain is not compact, one needs at least two regions
to derive a piecewise linear upper bound.

Consider a random variable x and the associated complementary first order loss function
bLðx;xÞ ¼ E½maxðx�x; 0Þ�;
assume that the domain R of x is partitioned into N þ 2 disjoint adjacent subregions D0; . . . ;DNþ1, where
D0 ¼ ½�1; a1�; Di ¼ ½ai; bi�, for i ¼ 1; . . . ;N, and DNþ1 ¼ ½bN;1�, and consider the following piecewise linear upper bound
bLubðx;xÞ ¼

bLða1;xÞ x 2 D0;

..

.

bLðai;xÞ bi�x
bi�ai
þ bLðbi;xÞ x�ai

bi�ai
x 2 Di;

..

.

xþ bLðbN ;xÞ � bN x 2 DNþ1:

8>>>>>>>>><>>>>>>>>>:

Let bLi

ubðx;xÞ be the linear segment of bLubðx;xÞ over Di, for i ¼ 0; . . . ;N þ 1.

Lemma 13. Consider bLi
ubðx;xÞ, where i ¼ 1; . . . ;N; the maximum approximation error between bLi

ubðx;xÞ and bLðx;xÞ will be
attained for
�xi ¼ G�1
x

bLðbi;xÞ � bLðai;xÞ
bi � ai

 !
:

Proof. The idea here is to derive a line that is tangent to bLðx;xÞ and that has a slope equal to that of the ith linear segment ofbLubðx;xÞ. We have already discussed in Lemma 11 that the equation of the tangent to bLðx;xÞ at a given point �xi is
y ¼ bLð�xi;xÞ0ðx� pÞ þ bLð�xi;xÞ
that is
bLi
lbðx;xÞ ¼ Gxð�xiÞðx� pÞ þ

Z �xi

�1
GxðtÞdt:
The slope Gxð�xiÞ only depends on �xi. To find a tangent with a slope equal to that of the ith linear segment of bLubðx;xÞ, we
simply let
Gxð�xiÞ ¼
bLðbi;xÞ � bLðai;xÞ

bi � ai
and invert the cumulative distribution function. h

Note that the maximum approximation error for the linear segment over D0 is bLða1;xÞ and the maximum approximation
error for the linear segment over DNþ1 is bLðbN;xÞ � bN . This can be inferred from the fact that bLðx;xÞ monotonically ap-
proaches 0 for x! �1 and x for x!1.

Theorem 6. D0; . . . ;DNþ1 is an optimal partition under a minimax strategy, if and only if the maximum approximation error
between bLðx;xÞ and each linear segment of bLubðx;xÞ is the same.
Proof. The proof follows from Lemma 13 and Theorem 4. h

The key insight needed to understand this result is the following. In Theorem 4 we showed that the approximation
errors at breakpoints for the piecewise linear lower bound presented are all equal to each other and also equal to the
maximum approximation error; in Lemma 11 we showed that the ith piecewise linear segment of this lower bound
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agrees with the original function at point bi, where Xi ¼ ½ai; bi� is the ith partition of the support of Z, for i ¼ 1; . . . ;N.
Since the first order loss function is convex and we know the maximum approximation error, by shifting up the piece-
wise linear lower bound by a value equal to the maximum approximation error we immediately obtain a piecewise lin-
ear upper bound comprising N þ 1 segments. This upper bound agrees with the original function at E½ZjXi�, for
i ¼ 1; . . . ;N. The maximum approximation error will be attained at those points in which the lower bound was tangent
to the original function, that is a1; b1; b2; . . . ; bN .

By using this result it is possible to derive a set of equations that can be solved for computing an optimal partition-
ing. Let us consider the maximum approximation error ei associated with the ith linear segment of bLubðx;xÞ, this can be
expressed as
ei ¼ bLi
ubð�xi;xÞ � bLð�xi;xÞ;
where i ¼ 1; . . . ;N; furthermore e0 ¼ bLða1;xÞ and eNþ1 ¼ bLðbN;xÞ � bN . Since we have N þ 2 segments to check, we must
solve a system comprising the following N þ 1 equations
e0 ¼ ei for i ¼ 1; . . . ;N þ 1
under the following restrictions
ai 6 bi for i ¼ 1; . . . ;N;

bi ¼ aiþ1 for i ¼ 1; . . . ;N � 1:
The system involves N þ 1 variables, each of which identifies the boundary between two disjoint adjacent regions Di and
Diþ1.

Theorem 7. Assume that the probability density function of x is symmetric about a mean value ~x. Then, under a minimax
strategy, if D0; . . . ;DNþ1 is an optimal partition of the domain, breakpoints will be symmetric about the mean value ~x.

Proof. This follows from Lemma 6 and Theorem 6. h

In this case, by exploiting the symmetry of the piecewise linear approximation, an optimal partitioning can be derived by
solving a smaller system comprising dðN þ 1Þ=2e equations, where N þ 2 is the number of regions Di and dxe rounds x to the
next integer value.

As in the case of Jensen’s bound, equations in the above system are nonlinear and do not admit a closed form solution in
the general case. We will briefly discuss next how to derive the system of nonlinear equations for the case of a standard nor-
mal random variable Z. The upper bound presented is closely related to a well-known inequality from stochastic program-
ming, see e.g. [9, p. 168], [6, p. 316], and [2, pp. 291–293]. As pointed out in [9, p. 168], Edmundson–Madanski’s upper bound
can be seen as a bound where the original distribution is replaced by a two point distribution and the problem itself is un-
changed, or it can be viewed as a bound where the distribution is left unchanged and the original function is replaced by a
linear affine function represented by a straight line. The above discussion clearly demonstrates the dual nature of this upper
bound.

5.3. Normal distribution

We will next discuss the system of equations that leads to an optimal partitioning for the case of a standard Normal ran-
dom variable Z. This partitioning leads to a piecewise linear approximation that is, in fact, easily extended to the general case
of a normally distributed variable f with mean l and standard deviation r via Lemma 7. Also for this second approximation
this equation suggests that the error is independent of l and proportional to r.

Consider a partitioning for the domain of x in bLðx;xÞ into N þ 2 adjacent regions Di ¼ ½ai; bi�, where i ¼ 0; . . . ;N þ 1. From
Theorem 7, if N is odd, then bdN=2e ¼ 0 and bi ¼ �bNþ1�i, if N is even, then bi ¼ �bNþ1�i. Also in this case, we shall use Lemma 8
for expressing bLðx; ZÞ, and we will exploit the close connections between finding a local minimum and solving a set of non-
linear equations. We will therefore use the Gauss–Newton method to minimise the following sum of squares
XNþ1

k¼1

ðe0 � ekÞ2:
This minimisation problem can be solved by software packages such as Mathematica (see NMinimize).

5.3.1. Numerical examples
A two-segment piecewise linear upper bound for the complementary first order loss function of a standard Normal

random variable Z is shown in Fig. 5. This bound has been obtained, under the minimax criterion previously described,
by considering a single breakpoint in the domain, i.e. x ¼ 0. Of course, the maximum error of this piecewise linear approx-
imation occurs for x ¼ �1 and it is equal to 1=

ffiffiffiffiffiffiffi
2p
p

. It is easy to observe that this upper bound can be obtained by adding to
the classical Jensen’s lower bound presented in Fig. 1 a constant value equal to its maximum approximation error, i.e. 1=

ffiffiffiffiffiffiffi
2p
p

.
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Fig. 5. Two-segment piecewise linear upper bound for bLðx; ZÞ.
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Fig. 6. Five-segment piecewise linear upper bound for bLðx; ZÞ.
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We next present a more interesting case, in which the domain has been split into five regions (Fig. 6). Breakpoints are
positioned at x 2 f�1:43535;�0:415223g. These were the locations at which the maximum error, i.e. 0.0339052, was
observed in Fig. 2. Also in this case, the five-segment piecewise linear upper bound can be obtained by adding to the
five-segment piecewise Jensen’s lower bound a value equal to its maximum approximation error.

Finally, in Fig. 7, we show an example in which we exploited Lemma 7 to obtain, from the approximation presented in
Fig. 6, the five-segment piecewise linear upper bound for bLðx; fÞ, where f is a normally distributed random variable with
mean l ¼ 20 and standard deviation r ¼ 5. The maximum error is r0:0339052 and it is observed at
x 2 f�1;rð�0:886942Þ þ l;lg.

In Table 2 we report parameters of bLubðx; ZÞ with up to eleven segments.

6. Conclusions

We summarised a number of distribution independent results for the first order loss function and its complementary
function. We then focused on symmetric distributions and on normal distributions; for these we discussed ad hoc results.
Based on the results discussed, we developed effective piecewise linear approximation strategies based on a minimax frame-
work. More specifically, we developed piecewise linear upper and lower bounds for the first order loss function and its



Table 2
Parameters of bLubðx; ZÞ with up to eleven segments.

Segments Error i 0 1 2 3 4 5 6 7 8 9

Piecewise linear approximation parameters
2 0.398942 bi 0bLðx; ZÞ 1=

ffiffiffiffiffiffiffi
2p
p

3 0.120656 bi �0.797885 0.797885bLðx; ZÞ 0.120656 0.918541

4 0.0578441 bi �1.18505 0 1.18505bLðx; ZÞ 0.0578441 0.398942 1.2429

5 0.0339052 bi �1.43535 �0.415223 0.415223 1.43535bLðx; ZÞ 0.0339052 0.225236 0.640459 1.46926

6 0.0222709 bi �1.61805 �0.691424 0 0.691424 1.61805bLðx; ZÞ 0.0222709 0.144966 0.398942 0.83639 1.64032

7 0.0157461 bi �1.7608 �0.896007 �0.281886 0.281886 0.896007 1.7608bLðx; ZÞ 0.0157462 0.101168 0.273745 0.555631 0.997175 1.77654

8 0.0117218 bi �1.87735 �1.05723 �0.493404 0 0.493404 1.05723 1.87735bLðx; ZÞ 0.0117218 0.0746248 0.199839 0.398942 0.693243 1.13185 1.88907

9 0.00906529 bi �1.97547 �1.18953 �0.661552 �0.213587 0.213587 0.661552 1.18953 1.97547bLðx; ZÞ 0.00906529 0.0573174 0.152415 0.301214 0.514801 0.813967 1.24685 1.98453

10 0.00721992 bi �2.05996 �1.30127 �0.8004 �0.384597 0 0.384597 0.8004 1.30127 2.05996bLðx; ZÞ 0.00721992 0.0454051 0.120123 0.23579 0.398942 0.620387 0.920523 1.34668 2.06718

11 0.00588597 bi �2.13399 �1.39768 �0.9182 �0.526575 �0.17199 0.17199 0.526575 0.9182 1.39768 2.13399bLðx; ZÞ 0.00588598 0.0368557 0.0971251 0.189721 0.318833 0.490823 0.716296 1.01533 1.43454 2.13987
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Fig. 7. Five-segment piecewise linear upper bound for bLðx; fÞ, where l ¼ 20 and r ¼ 5.
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complementary function. These bounds rely on constant parameters that are independent of the means and standard devi-
ation of the normal distribution considered. We discussed how to compute optimal parameters that minimise the maximum
approximation error and we also provided a table with pre-computed optimal parameters for piecewise bound with up to
eleven segments. These bounds can be easily embedded in existing MILP models.
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