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a b s t r a c t

Using the new periodicity concept based on shifts, we construct a unified Floquet theory for

homogeneous and nonhomogeneous hybrid periodic systems on domains having continuous,

discrete or hybrid structure. New periodicity concept based on shifts enables the construction

of Floquet theory on hybrid domains that are not necessarily additive periodic. This makes pe-

riodicity and stability analysis of hybrid periodic systems possible on non-additive domains.

In particular, this new approach can be useful to know more about Floquet theory for linear

q-difference systems defined on qZ := {qn : n ∈ Z} ∪ {0} where q > 1. By constructing the solu-

tion of matrix exponential equation we establish a canonical Floquet decomposition theorem.

Determining the relation between Floquet multipliers and Floquet exponents, we give a spec-

tral mapping theorem on closed subsets of reals that are periodic in shifts. Finally, we show

how the constructed theory can be utilized for the stability analysis of dynamic systems on

periodic time scales in shifts.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

The theory of periodic systems has taken a prominent attention in the existing literature due to its tremendous application

potential in engineering, biology, biomathematics, chemistry etc. Floquet theory is an important tool for the investigation of

periodic solutions and stability analysis of dynamic systems. Floquet theory of differential and difference systems can be found

in [22,23], respectively. Floquet theory of Volterra equation has been handled in [10]. An extension of the Floquet theory to

the systems with memory has been studied in [11]. In [7], Floquet theory has been employed for stability analysis of nonlinear

integro-differential equations. Moreover, a generalization of Floquet theory in continuous case is studied in [28].

Providing a wide perspective to discrete and continuous analysis, time scale calculus is a useful theory for the unification of

differential and difference systems. For the sake of brevity, we suppose familiarity with fundamental theory of time scales. For

a comprehensive review on time scale theory, we may refer readers to [12,13]. Unification of discrete and continuous dynamic

systems under the theory of time scales avoids the separate studies for differential and difference systems by using the similar

arguments. Motivated by unification and extension capabilities of time scale calculus, the researchers in recent years have been

developing the time scale analogues of existing results for difference, q-difference, and differential equations. For instance in [9],

the authors construct a Floquet theory for additive periodic time scales and focus on Putzer representations of matrix logarithms.

We use the terminology “additive periodic time scale” to refer to an arbitrary, closed, non-empty subset T of reals satisfying the
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following property ([21]):

there exists a fixed P ∈ T such that t ± P ∈ T for all t ∈ T. (1.1)

In [17], DaCunha unified Floquet theory for nonautonomous linear dynamic systems based on Lyapunov transformations by using

matrix exponential on time scales (see [12, Section 5]). Afterward, DaCunha and Davis improved the results of [17] in [16]. Note

that the results in [16,17] regarding Floquet theory are valid only on additive periodic time scales. This strong restriction prevents

investigation of periodicity on very important particular time scales. For instance, the q-difference equations are established on

the time scale

qZ := {qn : n ∈ Z} ∪ {0}, q > 1

which is not additive periodic. Hence, the existing unified Floquet theory does not cover the systems of q-difference equations. A

q-difference equation is an equation including a q-derivative Dq, given by

Dq( f )(t) = f (qt) − f (t)

(q − 1)t
, t ∈ qZ,

of its unknown function. Observe that the q-derivative Dq(f) of a function f turns into ordinary derivative f′ if we let q → 1. The

theory of q-difference equations is a useful tool for the discretization of differential equations used for modeling continuous

processes (see e.g. [19,24,25], and references therein). In [27] the author says “in the p-adic context, q-difference equations are

not simply a discretization of solutions of differential equations, but they are actually equal”. We may also refer to [8] for further

discussion about the equivalence between q-difference equations and differential equations. There is a vast literature on the

existence of periodic solutions of differential equations, unlike the existence of periodic solutions of q-difference equations.

Thus, it is of importance to study the existence of periodic solutions of q-difference equations.

In recent years, the shift operators, denoted δ±(s, t), are introduced to construct delay dynamic equations and a new period-

icity concept on time scales (see [1,4,5]). We give a detailed information about the shift operators in further sections. We may

also refer to the studies [2,3,5] for the basic definitions, properties and some applications of shift operators on time scales. In

particular, we direct the readers to [1] for the construction of new periodicity concept on time scales. The motivation of new

periodicity concept in [1] stems from the following ideas:

I.1. Addition is not always the only way to step forward and backward on a time scale, for instance, the operators δ±(2, t) =
2±1t determine backward and forward shifts on the time scale {2n : n ∈ Z} ∪ {0}.

I.2. We may use shift operators δ± with certain properties to obtain a backward and forward motion on a general time scale.

Similar to (1.1) a periodic time scale in shifts can be defined to be the one satisfying the following property:

there exists a fixed P ∈ T such that δ±(P, t) ∈ T for all t ∈ T. (1.2)

This approach enables the study of periodicity notion on a large class of time scales that are not necessarily additive periodic.

For instance, the time scale qZ is periodic in shifts δ±(s, t) = s±t since

δ±(q, t) = q±t ∈ T for all t ∈ T.

Therefore, one may define a qk-periodic function f on qZ as follows:

f
(
q±kt

)
= f (t) for all t ∈ qZ and a fixed k ∈ {1, 2, . . .}.

More generally, a T-periodic function f on a P-periodic time scale T in shifts δ± can be defined as follows

f (δ±(T, t)) = f (t) for all t ∈ T and a fixed T ∈ [P,∞) ∩ T.

In this paper, we use Lyapunov transformation (see [16, Definition 2.1]) and the new periodicity concept developed in [1] to

construct a unified Floquet theory for hybrid systems on hybrid domains. As an alternative to the existing literature, our Floquet

theory and stability results are valid on more time scales, such as qZ and

∪∞
k=1[3±k, 2.3±k] ∪ {0}

which cannot be covered by [16,17]. It should be mentioned that periodicity notion and Floquet theory on the time scale

qN0 = {qn : q > 1 and n = 0, 1, 2, . . .}
have been studied in [14,15]. In [14,15] a ω-periodic function f on qN0 is defined to be the one satisfying

f (qωt) = 1

qω
f (t) for all t ∈ qN0 and a fixed ω ∈ {1, 2, . . .}.

According to this periodicity definition the function g(t) = 1/t is q-periodic over the time scale qN0 . Unlike the conventional

periodic functions in the existing literature, the function g(t) = 1/t does not repeat its values at each period t, qωt, (qω)2t,….

In parallel with conventional periodicity perception, we define a periodic function to be the one repeating its values at each

forward/backward step on its domain with a certain size. For instance, according to our definition the function h(t) = (−1)
ln t
ln q is

a q2-periodic function on qZ = {q > 1 : qn, n ∈ Z} since

h(δ±(q2, t)) = (−1)
ln t
ln q

±2 = (−1)
ln t
ln q = h(t).
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Obviously, the function h(t) repeats the values −1 and 1 at each backward/forward step with the size q2. Consequently, the use of

new periodicity concept based on shifts δ± in Floquet theory provides not only a generalization but also an alternative approach

and new stability results to already existing literature in particular cases (e.g. [14,15]).

We organize the rest of the paper as follows. In Section 2, we introduce the basic concepts and in Section 3 we develop Floquet

theory based on new periodicity concept on time scales. We end the paper by applying our results to stability analysis of linear

systems.

2. Preliminaries

2.1. Matrix exponential

In this section we give some basic definitions and results that we require in our further analysis.

A time scale, denoted by T, is an arbitrary, nonempty and closed subset of real numbers. A time scale may have a discrete

or connected structure as well as a hybrid structure consisting of intervals and isolated points. The operator σ : T → T called

forward jump operator is defined by σ(t) := inf {s ∈ T, s > t}. The step size function μ : T → R is given by μ(t) := σ(t) − t . We

say a point t ∈ T is right dense if μ(t) = 0, and right scattered if μ(t) > 0. Furthermore, a point t ∈ T is said to be left dense if

ρ(t) := sup {s ∈ T, s < t} = t and left scattered if ρ(t) < t. A function f : T → R is said to be rd-continuous if it is continuous at

right dense points and its left sided limits exists at left dense points. The set T
k is defined in the following way: If T has a left-

scattered maximum m, then T
k = T − {m}; otherwise T

k = T. Moreover, the delta derivative of a function f : T → R at a point

t ∈ T
k is defined by

f �(t) := lim
s→t

s	=σ(t)

f (σ (t)) − f (s)

σ (t) − s
.

Definition 1. A function p : T → R is said to be regressive if 1 + μ(t)p(t) 	= 0 for all t ∈ T
k. We denote by R the set of all regres-

sive functions.

Definition 2 (Exponential function). Let ϕ ∈ R and μ(t) > 0 for all t ∈ T. The exponential function on T is defined by

eϕ(t, s) = exp

(∫ t

s

1

μ(z)
log(1 + μ(z)ϕ(z))�z

)
.

It is well known that if p ∈ R+, then ep(t, s) > 0 for all t ∈ T. Also, the exponential function y(t) = ep(t, s) is the solution to

the initial value problem y� = p(t)y, y(s) = 1. Other properties of the exponential function are given in the following lemma:

Lemma 1 ([12, Theorem 2.36] ). Let p, q ∈ R. Then

i. e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

ii. ep(σ (t), s) = (1 + μ(t)p(t))ep(t, s);

iii. 1
ep(t,s)

= e�p(t, s) where, �p(t) = − p(t)
1+μ(t)p(t)

;

iv. ep(t, s) = 1
ep(s,t)

= e�p(s, t);

v. ep(t, s)ep(s, r) = ep(t, r);

vi.

(
1

ep(·,s)

)�

= − p(t)
eσ

p (·,s) .

Definition 3 (Matrix exponential). [12, Definition 5.18] Let t0 ∈ T and assume that A ∈ R is an n × n matrix-valued function. The

unique matrix solution of the IVP

Y�(t) = A(t)Y, Y(t0) = I,

where I denotes as usual n × n identity matrix, is called the matrix exponential function, and is denoted by eA(., t0).

Theorem 1 ([12, Theorem 5.21]). Let A, B ∈ R be n × n matrix-valued functions on time scale T, then we have

1. e0(t, s) ≡ I and eA(t, t) ≡ I, where 0 and I indicate the zero matrix and the identity matrix, respectively;

2. eA(σ (t), s) = (I + μ(t)A(t))eA(t, s);
3. eA(t, s) = e−1

A
(s, t);

4. eA(t, s)eA(s, r) = eA(t, r);
5. eA(t, s)eB(t, s) = eA⊕B(t, s), where

(A ⊕ B)(t) = A(t) + B(t) + μ(t)A(t)B(t).

Theorem 2 ([12, Theorem 5.24] (variation of constants)). Let A ∈ R be an n × n matrix-valued function on T and suppose that

f : T → R
n is rd-continuous. Let t0 ∈ T and y0 ∈ R

n. Then the initial value problem

y� = A(t)y + f (t), y(t0) = y0
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Table 1

Shift operators on some time scales.

T t0 T
∗ δ−(s, t) δ + (s, t)

R 0 R t − s t + s

Z 0 Z t − s t + s

qZ ∪ {0} 1 qZ t
s

st

N
1/2 0 N

1/2 (t2 − s2)1/2 (t2 + s2)1/2
has a unique solution y : T → R
n. Moreover, this solution is given by

y(t) = eA(t, t0)y0 +
∫ t

t0

eA(t, σ (τ )) f (τ )�τ.

2.2. Shift operators and new periodicity concept based on shift operators

In this section, we aim to introduce basic definitions and properties of shift operators. The following definitions, lemmas and

examples can be found in [1–3,5].

Definition 4 (Shift operators). Let T
∗ be a nonempty subset of the time scale T including a fixed number t0 ∈ T

∗ such that there

exists operators δ± : [t0, ∞)T × T
∗ → T

∗ satisfying the following properties:

1. The functions δ± are strictly increasing with respect to their second arguments, if

(T0, t), (T0, u) ∈ D± := {(s, t) ∈ [t0,∞)T × T
∗ : δ±(s, t) ∈ T

∗},
then

T0 ≤ t < u implies δ±(T0, t) < δ±(T0, u).

2. If (T1, u), (T2, u) ∈ D− with T1 < T2, then δ−(T1, u) > δ−(T2, u) and if (T1, u), (T2, u) ∈ D+ with T1 < T2, then δ+(T1, u) <

δ+(T2, u).
3. If t ∈ [t0,∞)T, then (t, t0) ∈ D+ and δ+(t, t0) = t. Moreover, if t ∈ T

∗, then (t0, t) ∈ D+ and δ+(t0, t) = t.

4. (a) If (s, t) ∈ D+, then (s, δ+(s, t)) ∈ D− and δ−(s, δ+(s, t)) = t;
(b) If (s, t) ∈ D−, then (s, δ−(s, t)) ∈ D+ and δ+(s, δ−(s, t)) = t.

5. (a) If (s, t) ∈ D+ and (u, δ+(s, t)) ∈ D−, then (s, δ−(u, t)) ∈ D+ and δ−(u, δ+(s, t)) = δ+(s, δ−(u, t));
(b) If (s, t) ∈ D− and (u, δ−(s, t)) ∈ D+, then (s, δ+(u, t)) ∈ D− and δ+(u, δ−(s, t)) = δ−(s, δ+(u, t)).

Then the operators δ+ and δ− are called forward and backward shift operators associated with the initial point t0 on T
∗ and the

sets D+ and D− are domain of the operators, respectively.

Example 1. Table 1 shows the shift operators δ±(s, t) on several time scales.

Lemma 2. Let δ± be the shift operators associated with the initial point t0. Then we have the following:

1. δ−(t, t) = t0 for all t ∈ [t0, ∞)T;
2. δ−(t0, t) = t for all t ∈ T

∗;
3. If (s, t) ∈ D+, then δ+(s, t) = u implies δ−(s, u) = t and if (s, u) ∈ D−, then δ−(s, u) = t implies δ+(s, t) = u;
4. δ+(t, δ−(s, t0)) = δ−(s, t) for all (s, t) ∈ D+ with t ≥ t0;

5. δ+(u, t) = δ+(t, u) for all (u, t) ∈ ([t0, ∞)T × [t0, ∞)T) ∩ D+;
6. δ+(s, t) ∈ [t0,∞)T for all (s, t) ∈ D+ with t ≥ t0;

7. δ−(s, t) ∈ [t0,∞)T for all (s, t) ∈ ([t0, ∞)T × [s, ∞)T) ∩ D−;
8. If δ+(s, .) is �-differentiable in its second variable, then δ�t+ (s, .) > 0;
9. δ+(δ−(u, s), δ−(s, v)) = δ−(u, v) for all (s, v) ∈ ([t0, ∞)T × [s, ∞)T) ∩ D− and (u, s) ∈ ([t0, ∞)T × [u, ∞)T) ∩ D−;

10. If (s, t) ∈ D− and δ−(s, t) = t0, then s = t.

Definition 5 (Periodicity in shifts). Let T be a time scale with the shift operators δ± associated with the initial point t0 ∈ T
∗, then

T is said to be periodic in shifts δ±, if there exists a p ∈ (t0, ∞)T∗ such that (p, t) ∈ D∓ for all t ∈ T
∗. P is called the period of T if

P = inf{p ∈ (t0, ∞)T∗ : (p, t) ∈ D∓ for all t ∈ T
∗} > t0.

Observe that an additive periodic time scale must be unbounded. The following example indicates that a time scale, periodic

in shifts, may be bounded.

Example 2. The following time scales are not additive periodic but periodic in shifts δ±.

1. T1 = {±n2 : n ∈ Z}, δ±(P, t) =

⎧⎨⎩(
√

t ±
√

P)2 if t > 0

±P if t = 0

−(
√−t ±

√
P)2 if t < 0

, P = 1, t0 = 0,
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2. T2 = qZ, δ±(P, t) = P±1t, P = q, t0 = 1,

3. T3 = ∪n∈Z[22n, 22n+1], δ±(P, t) = P±1t, P = 4, t0 = 1,

4. T4 = { qn

1+qn : q > 1 is constant and n ∈ Z} ∪ {0, 1},

δ±(P, t) = q(
ln ( t

1−t
)±ln ( P

1−P
)

ln q
)

1 + q(
ln ( t

1−t
)±ln ( P

1−P
)

ln q
)

, P = q

1 + q
, t0 = 1

2
.

Note that the time scale T4 in Example 2 is bounded above and below and

T
∗
4 =

{
qn

1 + qn
: q > 1 is constant and n ∈ Z

}
.

Corollary 1. Let T be a time scale that is periodic in shifts δ± with the period P. Then we have

δ±(P, σ (t)) = σ(δ±(P, t)) for all t ∈ T
∗. (2.1)

Example 3. The time scale T̃ = (−∞, 0] ∪ [1,∞) cannot be periodic in shifts δ±. Because if there was a p ∈ (t0,∞)
T̃∗ such that

δ±(p, t) ∈ T̃
∗, then the point δ−(p, 0) would be right scattered due to (2.1). However, we have δ−(p, 0) < 0 by (i) of Definition 4.

This leads to a contradiction since every point less than 0 is right dense.

Definition 6 (Periodic function in shifts δ±). Let T be a time scale that is P-periodic in shifts δ±. We say that a real valued function

f defined on T
∗ is periodic in shifts δ± if there exists a T ∈ [P, ∞)T∗ such that

(T, t) ∈ D± and f
(
δT

±(t)
)

= f (t) for all t ∈ T
∗, (2.2)

where δT±(t) = δ±(T, t). The number T is called the period of f, if it is the smallest number satisfying (2.2).

Example 4. Let T = R with initial point t0 = 1, the function

f (t) = sin

(
ln |t|

ln (1/2)
π

)
, t ∈ R

∗ := R−{0}
is four-periodic in shifts δ± since

f (δ±(4, t)) =
{

f (t4±1) if t ≥ 0

f (t/4±1) if t < 0

= sin

(
ln |t| ± 2 ln (1/2)

ln (1/2)
π

)
= sin

(
ln |t|

ln (1/2)
π ± 2π

)
= sin

(
ln |t|

ln (1/2)
π

)
= f (t).

Definition 7 (�-periodic function in shifts δ±). Let T be a time scale P-periodic in shifts. A real valued function f defined on T
∗

is �-periodic function in shifts if there exists a T ∈ [P, ∞)T∗ such that

(T, t) ∈ D± for all t ∈ T
∗ (2.3)

the shifts δT
± are �-differentiable with rd-continuous derivatives (2.4)

and

f
(
δT

±(t)
)
δ�T

± (t) = f (t) (2.5)

for all t ∈ T
∗, where δT±(t) = δ±(T, t). The smallest number T satisfying (2.3–2.5) is called period of f.

Example 5. The function f (t) = 1/t is �-periodic function on qZ with the period T = q.

The following result is useful for integration of functions which are �-periodic in shifts.

Theorem 3. Let T be a time scale that is periodic in shifts δ± with period P ∈ (t0, ∞)T∗ and f a �-periodic function in shifts δ± with

the period T ∈ [P, ∞)T∗ . Suppose that f ∈ Crd(T), then∫ t

t0

f (s)�s =
∫ δT

±(t)

δT±(t0)
f (s)�s.

For more examples of periodic time scales, periodic functions and �-periodic functions in shifts, we may direct readers to [1].
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3. Floquet theory based on new periodicity concept

In this section we use Lyapunov transformation and construct a unified Floquet theory based on new periodicity concept

to give necessary and sufficient conditions for existence of periodic solutions of homogenous and nonhomogeneous dynamic

equations on time scales.

Hereafter, we suppose that T is a periodic time scale in shifts δ± and that the shift operators δ± are �-differentiable with rd-

continuous derivatives. For brevity, we use the term “periodic in shifts” to mean periodicity in shifts δ±. Throughout the paper,

we use the notation δT±(t) to indicate the shifts δ±(T, t). Furthermore, we denote by δ(k)
± (T, t), k ∈ N, the k-times composition of

shifts of δT± with itself, namely,

δ(k)
± (T, t) := δT

± ◦ δT
± ◦ ... ◦ δT

±︸ ︷︷ ︸
k-times

(t).

Observe that, the period of a function f does not have to be equal to period of the time scale on which f is determined. However,

for simplicity of our results we set the period of time scale T to be equal to period of the all functions defined on T.

Definition 8. [16, Definition 2.1] A Lyapunov transformation is an invertible matrix L(t) ∈ C1
rd(T, R

n×n) satisfying∥∥L(t)
∥∥ ≤ ρ and

∣∣det L(t)
∣∣ ≥ η for all t ∈ T

where ρ and η are arbitrary positive reals.

3.1. Homogenous case

In this section we consider the regressive time varying linear dynamic initial value problem

x�(t) = A(t)x(t), x(t0) = x0, (3.1)

where A : T
∗→ R

n×n is �-periodic in shifts with period T. Note that if the time scale is additive periodic, then δ�± (T, t) = 1 and

�-periodicity in shifts becomes the same as the periodicity in shifts. Hence, the homogeneous system we consider in this section

is more general than that of [16,17].

In [18], the solution of the system (3.1) (for an arbitrary matrix A) is expressed by the equality

x(t) = �A(t, t0)x0,

where �A(t, t0), called the transition matrix for the system (3.1), is given by

�A(t, t0) = I +
∫ t

t0

A(τ1)�τ1 +
∫ t

t0

A(τ1)

∫ τ1

t0

A(τ2)�τ2�τ1 + . . .

+
∫ t

t0

A(τ1)

∫ τ1

t0

A(τ2) . . .

∫ τi−1

t0

A(τi)�τi . . .�τ1 + . . . . (3.2)

As mentioned in [16] the matrix exponential eA(t, t0) is not always identical to �A(t, t0) since

A(t)eA(t, t0) = eA(t, t0)A(t)

is always true but the equality

A(t)�A(t, t0) = �A(t, t0)A(t)

is not. It can be seen from (3.9) that one has eA(t, t0) ≡ �A(t, t0) only if the matrix A satisfies

A(t)

∫ t

s

A(τ )�τ =
∫ t

s

A(τ )�τA(t).

In preparation for the next result we define the set

P(t0) :=
{
δ(k)

+ (T, t0), k = 0, 1, 2, . . .
}

(3.3)

and the function

�(t) :=
m(t)∑
j=1

δ−
(
δ( j−1)

+ (T, t0), δ
( j)
+ (T, t0)

)
+ G(t), (3.4)

where

m(t) := min
{

k ∈ N : δ(k)
+ (T, t0) ≥ t

}
(3.5)

and

G(t) :=
{

0 if t ∈ P(t0)

−δ−
(
t, δ(m(t))

+ (T, t0)
)

if t /∈ P(t0)
. (3.6)
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Remark 1. For an additive periodic time scale we always have �(t) = t − t0.

For the construction of matrix R, a solution of the matrix exponential equation, it is necessary to define the real power of a

matrix.

Definition 9 (Real power of a matrix [16, Definition A.5]). Given an n × n nonsingular matrix M with elementary divisors {(λ −
λi)

mi}k
i=1

and any r ∈ R, the real power of the matrix M is given by

Mr :=
k∑

i=1

Pi(M)λr
i

[
mi−1∑
j=0

�(r + 1)

j!�(r − j + 1)

(
M − λiI

λi

) j
]

, (3.7)

where

Pi(λ) := ai(λ)bi(λ),

bi(λ) := �k
j 	=i
j=1

(λ − λ j),

1

p(λ)
=

k∑
i=1

ai(λ)

(λ − λi)
mi

,

and p(λ) is the characteristic polynomial of M.

It has been deduced by [16, Proposition A.3] that the set {Pi(M)}k
i=1

is orthogonal. That is, for any r, s ∈ R we have Ms+r = MsMr .

In the following theorem we construct the matrix R as a solution of matrix exponential equation.

Theorem 4. Let M be a nonsingular n × n constant matrix. Then a solution R : T → C
n×n of the matrix exponential equation

eR

(
δT

+(t0), t0

)
= M

can be given by

R(t) = lim
s→t

M
1
T [�(σ(t))−�(s)] − I

σ(t) − s
, (3.8)

where I is the n × n identity matrix and � is as in (3.4).

Proof. Let’s construct the matrix exponential function eR(t, t0) as follows

eR(t, t0) := M
1
T �(t) for t ≥ t0, (3.9)

where � is given by (3.4) and real power of a nonsingular matrix M is given by (3.7). To show that the function eR(t, t0) constructed

in (3.9) is the matrix exponential we first observe that

eR(t0, t0) = M
1
T �(t0) = I,

where we use (3.9) along with �(t0) = G(t0) = 0. Second, differentiating (3.9) we obtain

e�
R (t, t0) = R(t)eR(t, t0).

To see this, first suppose that t is right-scattered. Then, we have

e�
R (t, t0) = eR(σ (t), t0) − eR(t, t0)

σ (t) − t

= M
1
T �(σ(t)) − M

1
T �(t)

σ (t) − t

= M
1
T [�(σ(t))−�(t)] − I

σ(t) − t
M

1
T �(t)

= R(t)eR(t, t0).

If t is right dense, then σ(t) = t . Setting s = t + h in (3.4) and using (3.9) we get

e�
R (t, t0) = lim

h→0

eR(t + h, t0) − eR(t, t0)

h

= lim
h→0

M
1
T �(t+h) − M

1
T �(t)

h

= lim
h→0

M
1
T [�(t+h)−�(t)] − I

h
M

1
T �(t)

= R(t)eR(t, t0).
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In any case, we have e�
R (t, t0) = R(t)eR(t, t0). Finally, it follows from Lemma 2 that

�
(
δT

+(t0)
)

= δ−
(
t0, δT

+(t0)
)

= δT
+(t0) = T,

and therefore,

eR

(
δT

+(t0), t0

)
= M

1
T �(δT

+(t0)) = M.

The proof is complete. �

Corollary 2. The matrices R(t) and M have identical eigenvectors.

Proof. For any eigenpairs {λi, vi}, i = 1, 2, . . . , n of M, we get by using Mvi = λivi that

lim
s→t

M
1
T [�(σ(t))−�(s)]vi = lim

s→t
λ

1
T [�(σ(t))−�(s)]

i
vi.

This implies

R(t)vi = lim
s→t

(
λ

1
T [�(σ(t))−�(s)]

i
− 1

σ(t) − s

)
vi. (3.10)

Substituting γi(t) = lims→t (
λ

1
T

[�(σ(t))−�(s)]

i
−1

σ(t)−s
) into (3.10) we conclude that R(t) has the eigenpairs {γi(t), vi}n

i=1
. �

Lemma 3. Let T be a time scale and P ∈ R(T∗, R
n×n) a �-periodic matrix valued function in shifts with period T, i.e.

P(t) = P
(
δT

±(t)
)
δ�T

± (t).

Then the solution of the dynamic matrix initial value problem

Y�(t) = P(t)Y(t), Y(t0) = Y0, (3.11)

is unique up to a period T in shifts. That is

�P(t, t0) = �P

(
δT

+(t), δT
+(t0)

)
(3.12)

for all t ∈ T
∗.

Proof. By [18, Theorem 3.2], the unique solution to (3.11) is Y(t) = �P(t, t0)Y0. Observe that

Y�(t) = ��
P (t, t0)Y0 = P(t)�P(t, t0)Y0

and

Y(t0) = �P(t0, t0)Y0 = Y0.

To verify (3.12) we first need to show that �P

(
δT+(t), δT+(t0)

)
Y0 is also solution for (3.11). Since the shift operator δ+ is strictly

increasing, the chain rule ([12, Theorem 1.93]) yields[
�P

(
δT

+(t), δT
+(t0)

)
Y0

]� = P
(
δT

±(t)
)
δ�T

± (t)�P

(
δT

+(t), δT
+(t0)

)
Y0

= P(t)�P

(
δT

+(t), δT
+(t0)

)
Y0.

On the other hand, we have

�P

(
δT

+(t), δT
+(t0)

)
t=t0

Y0 = �P

(
δT

+(t0), δ
T
+(t0)

)
Y0 = Y0.

This means �P

(
δT+(t), δT+(t0)

)
Y0 solves (3.11). From the uniqueness of solution of (3.11), we get (3.12). �

One may similarly prove the next result.

Corollary 3. Let T be a time scale and P ∈ R(T∗, R
n×n) be a �-periodic matrix valued function in shifts, i.e.

P(t) = P
(
δT

±(t)
)
δ�T

± (t).

Then

eP(t, t0) = eP

(
δT

+(t), δT
+(t0)

)
. (3.13)

Theorem 5 (Floquet decomposition). Let A be a matrix valued function that is �-periodic in shifts with period T. The transition

matrix for A can be given in the form

�A(t, τ ) = L(t)eR(t, τ )L−1(τ ), for all t, τ ∈ T
∗, (3.14)

where R : T → C
n×n is �-periodic function in shifts and L(t) ∈ C1

rd(T
∗, R

n×n) is periodic in shifts with the same period T.
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Proof. Setting M := �A

(
δT+(t0), t0

)
define the matrix R as in Theorem 4. Then we have

eR

(
δT

+(t0), t0

)
= �A

(
δT

+(t0), t0

)
.

Define the matrix L(t) by

L(t) := �A(t, t0)e−1
R (t, t0). (3.15)

Obviously, L(t) ∈ C1
rd(T

∗, R
n×n) and L is invertible. The equality

�A(t, t0) = L(t)eR(t, t0), (3.16)

along with (3.16) implies

�A(t0, t) = e−1
R (t, t0)L−1(t)

= eR(t0, t)L−1(t). (3.17)

Combining (3.16) and (3.17), we obtain (3.14). To show periodicity of L in shifts we use (3.12)–(3.13) to get

L
(
δT

+(t)
)

= �A

(
δT

+(t), t0

)
e−1

R

(
δT

+(t), t0

)
= �A

(
δT

+(t), δT
+(t0)

)
�A

(
δT

+(t0), t0

)
eR

(
t0, δT

+(t)
)

= �A

(
δT

+(t), δT
+(t0)

)
�A

(
δT

+(t0), t0

)
eR

(
t0, δT

+(t0)
)
eR

(
δT

+(t0), δ
T
+(t)

)
= �A

(
δT

+(t), δT
+(t0)

)
eR

(
δT

+(t0), δ
T
+(t)

)
= �A

(
δT

+(t), δT
+(t0)

)
e−1

R

(
δT

+(t), δT
+(t0)

)
= �A(t, t0)e−1

R (t, t0)

= L(t).

This completes the proof. �

Hereafter, we shall refer to (3.14) as the Floquet decomposition for �A. The following result can be proven similar to

[16, Theorem 3.7].

Theorem 6. Let �A(t, t0) = L(t)eR(t, t0) be a Floquet decomposition for �A. Then, x(t) = �A(t, t0)x0 is a solution of the T-periodic

system (3.1) if and only if z(t) = L−1(t)x(t) is a solution of the system

z�(t) = R(t)z(t), z(t0) = x0.

Theorem 7. There exists an initial state x(t0) = x0 	= 0 such that the solution of (3.1) is T-periodic in shifts if and only if one of the

eigenvalues of

eR

(
δT

+(t0), t0

)
= �A

(
δT

+(t0), t0

)
is 1.

Proof. Suppose that x(t0) = x0 and x(t) is a solution of (3.1) which is T-periodic in shifts. By Theorem 5, the Floquet decomposi-

tion of x is given by

x(t) = �A(t, t0)x0 = L(t)eR(t, t0)L−1(t0)x0,

which also yields

x
(
δT

+(t)
)

= L
(
δT

+(t)
)
eR

(
δT

+(t), t0

)
L−1(t0)x0.

By T-periodicity of x and L in shifts, we have

eR(t, t0)L−1(t0)x0 = eR

(
δT

+(t), t0

)
L−1(t0)x0,

and therefore,

eR(t, t0)L−1(t0)x0 = eR

(
δT

+(t), δT
+(t0)

)
eR

(
δT

+(t0), t0

)
L−1(t0)x0.

Since eR

(
δT+(t), δT+(t0)

)
= eR(t, t0) the last equality implies

eR(t, t0)L−1(t0)x0 = eR(t, t0)eR

(
δT

+(t0), t0

)
L−1(t0)x0

and thus

L−1(t0)x0 = eR

(
δT

+(t0), t0

)
L−1(t0)x0.

Since L−1(t0)x0 	= 0, we see that L−1(t0)x0 is an eigenvector of the matrix eR

(
δT+(t0), t0

)
corresponding to an eigenvalue of 1.
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Conversely, let us assume that 1 is an eigenvalue of eR

(
δT+(t0), t0

)
with corresponding eigenvector z0. This means z0 is real

valued and nonzero. Using eR(t, t0) = eR

(
δT+(t), δT+(t0)

)
, we arrive at the following equality

z
(
δT

+(t)
)

= eR

(
δT

+(t), t0

)
z0

= eR

(
δT

+(t), δT
+(t0)

)
eR

(
δT

+(t0), t0

)
z0

= eR

(
δT

+(t), δT
+(t0)

)
z0

= eR(t, t0)z0

= z(t),

which shows that z(t) = eR(t, t0)z0 is T-periodic in shifts. Applying the Floquet decomposition and setting x0 := L(t0)z0, we obtain

the nontrivial solution x of (3.1) as follows

x(t) = �A(t, t0)x0 = L(t)eR(t, t0)L−1(t0)x0 = L(t)eR(t, t0)z0 = L(t)z(t),

which is T-periodic in shifts since L and z are T-periodic in shifts. �

3.2. Nonhomogeneous case

Let us focus on the nonhomogeneous regressive time varying linear dynamic initial value problem

x�(t) = A(t)x(t) + F(t), x(t0) = x0, (3.18)

where A : T
∗→ R

n×n, F ∈ Crd(T
∗, R

n) ∩ R(T∗, R
n). Hereafter, we suppose both A and F are �-periodic in shifts with the period T.

Lemma 4. A solution x(t) of (3.18) is T-periodic in shifts if and only if x
(
δT+(t)

)
= x(t) for all t ∈ T

∗.

Proof. Suppose that x(t) is T-periodic in shifts. Let us define z(t) as

z(t) = x
(
δT

+(t)
)

− x(t). (3.19)

Obviously z(t0) = 0. Moreover, if we take delta derivative of both sides of (3.19), we have the following:

z�(t) =
[
x
(
δT

+(t)
)

− x(t)
]�

= x�
(
δT

+(t)
)

− x�(t)

= x�
(
δT

+(t)
)
δ�T

+ (t) − x�(t)

= A
(
δT

+(t)
)
x
(
δT

+(t)
)
δ�T

+ (t) + F
(
δT

+(t)
)
δ�T

+ (t) − A(t)x(t) − F(t).

Since A and F are both �-periodic in shifts with the period T, we have

z�(t) = A(t)x
(
δT

+(t)
)

+ F(t) − A(t)x(t) − F(t)

= A(t)
[
x
(
δT

+(t)
)

− x(t)
]

= A(t)z(t).

By uniqueness of solutions, we can conclude that z(t) ≡ 0 and that x
(
δT+(t)

)
= x(t) for all t ∈ T

∗. �

Theorem 8. For any initial point t0 ∈ T
∗ and for any function F, �-periodic in shifts with period T, there exists an initial state x(t0) =

x0 such that the solution of (3.18) is T-periodic in shifts if and only if there is no a nonzero z(t0) = z0 and t0 ∈ T
∗ such that the

homogeneous initial value problem

z�(t) = A(t)z(t), z(t0) = z0, (3.20)

(where A is �-periodic in shifts with period T) has a T-periodic solution in shifts.

Proof. In [6], the following representation for the solution of (3.18) is given

x(t) = X(t)X−1(τ )x0 +
∫ t

τ
X(t)X−1(σ (s))F(s)�s,

where X(t) is a fundamental matrix solution of the homogenous system (3.1) with respect to initial condition x(τ ) = x0. As it is

done in [6], we can express x(t) as follows

x(t) = �A(t, t0)x0 +
∫ t

t0

�A(t, σ (s))F(s)�s.

By the previous lemma we know that x(t) is T-periodic in shifts if and only if x(δT+(t0)) = x0 or equivalently[
I − �A

(
δT

+(t0), t0

)]
x0 =

∫ δT
+(t0)

t

�A

(
δT

+(t0), σ (s)
)
F(s)�s. (3.21)
0
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By guidance of Theorem 7, we have to show that (3.18) has a solution with respect to initial condition x(t0) = x0 if and only if

eR

(
δT+(t0), t0

)
has no eigenvalues equal to 1.

Let eR

(
δT+(η), η

)
= �A

(
δT+(η), η

)
, for some η ∈ T

∗, has no eigenvalues equal to 1. That is,

det
[
I − �A

(
δT

+(η), η
)]

	= 0.

Invertibility and periodicity of �A imply

0 	= det
[
�A

(
δT

+(t0), δ
T
+(η)

)(
I − �A

(
δT

+(η), η
))

�A(η, t0)
]

= det
[
�A

(
δT

+(t0), δ
T
+(η)

)
�A(η, t0) − �A

(
δT

+(t0), t0

)]
. (3.22)

By periodicity of �A, the invertibility of [I − �A(δ
T+(t0), t0)] is equivalent to (3.22) for any t0 ∈ T

∗. Thus, (3.21) has a solution

x0 =
[
I − �A

(
δT

+(t0), t0

)]−1
∫ δT

+(t0)

t0

�A

(
δT

+(t0), σ (s)
)
F(s)�s

for any t0 ∈ T
∗ and for any �-periodic function F in shifts with period T.

Suppose that (3.21) has a solution for every t0 ∈ T
∗ and every �-periodic function F in shifts with period T. Let us define the

set P−(t) as

P−(t) = {k ∈ Z : δ(k)
− (T, t)}.

It is clear that, P−(t) = P−(δT+(t)). Additionally, let the function ξ be defined by

ξ(t) :=
∏

s∈P−(t)∩[t0,t)

(
δ�T

+ (s)
)−1

=
(
δ�T

+ (δ−(T, t))
)−1 ×

(
δ�T

+
(
δ(2)

− (T, t)
))−1 × . . . ×

(
δ�T

+
(
δ(m−(t))

− (T, t)
))−1

,

where m−(t) = max{k ∈ Z : δ(k)
− (T, t) ≥ t0}. By definition of ξ , we have

ξ
(
δT

+(t)
)

=
∏

s∈P−(δT+(t))∩[t0,δT+(t))

(
δ�T

+ (s)
)−1

=
∏

s∈P−(t)∩[t0,δT+(t))

(
δ�T

+ (s)
)−1

=
(
δ�T

+ (t)
)−1 ∏

s∈P−(t)∩[t0,t)

(
δ�T

+ (s)
)−1

=
(
δ�T

+ (t)
)−1

ξ(t),

which shows that ξ is �-periodic in shifts with period T. For an arbitrary t0 and corresponding F0, we can define a regressive and

�-periodic function F in shifts as follows

F(t) := �A

(
σ(t), δT

+(t0)
)
ξ(t)F0, t ∈

[
t0, δT

+(t0)
)

∩ T. (3.23)

Then, we have∫ δT
+(t0)

t0

�A

(
δT

+(t0), σ (s)
)
F(s)�s = F0

∫ δT
+(t0)

t0

ξ(s)�s. (3.24)

Thus, (3.21) can be rewritten as follows[
I − �A

(
δT

+(t0), t0

)]
x0 =

∫ δT
+(t0)

t0

ξ(s)�s. (3.25)

For any F that is constructed in (3.23), and hence for any corresponding F0, (3.25) has a solution for x0 by assumption. Therefore,

det
[
I − �A

(
δT

+(t0), t0

)]
	= 0.

Consequently, eR

(
δT+(t0), t0

)
= �A

(
δT+(t0), t0

)
has no eigenvalue 1. Then, we can conclude by Theorem 7, (3.20) has no periodic

solution in shifts. The proof is complete. �

Example 6. Consider the time scale T = qZ that is q-periodic in shifts δ±(s, t) = s±1t associated with the initial point t0 = 1. Let

us define the matrix function A(t) : T
∗→ R

n×n as follows

A(t) =
[

1
t

0

0 1

]
.

t
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Then

A
(
δq

+(t)
)
δ�q

+ (t) =

⎡⎣ 1

qt
0

0
1

qt

⎤⎦× q =

⎡⎢⎣
1

t
0

0
1

t

⎤⎥⎦ = A(t),

which shows that A is �-periodic in shifts with period q.

Consider the system

x�(t) =

⎡⎢⎣
1

t
0

0
1

t

⎤⎥⎦x(t),

with the transition matrix �A(t, 1) given by

�A(t, 1) =
[

e1/t(t, 1) 0
0 e1/t(t, 1)

]
,

where q-exponential function defined as

ep(t, t0) =
∏

s∈[t0,t)

[1 + (q − 1)sp(s)].

By (3.12), we get

�A

(
δq

+(t), δq
+(1)

)
= �A(t, 1)

and

�A

(
δq

+(1), 1
)

= �A(q, 1) =
[

q 0
0 q

]
.

Now, as in Theorem 4 we have

eR(q, 1) = �A(q, 1) =
[

q 0
0 q

]
= M.

Then R(t) in the Floquet decomposition is given by

R(t) = 1

qt − t
[M

1
q (�(qt)−�(t)) − I]

= 1

(q − 1)t
[M

1
q ×q − I]

= 1

(q − 1)t
[M − I]

=

⎡⎢⎣
q − 1

(q − 1)t
0

0
q − 1

(q − 1)t

⎤⎥⎦ =

⎡⎢⎣
1

t
0

0
1

t

⎤⎥⎦.

By (3.9), we have

eR(t, 1) = M
1
q �(t)

= M
1
q [δ−(1,q)+...+δ−(tm(t)−1,tm(t))]

= M
1
q qm(t) = Mm(t).

Then, the matrix function L which is q-periodic in shifts is obtained as follows:

L(t) = �A(t, 1)e−1
R (t, 1)

=
[

t 0
0 t

][
q−m(t) 0

0 q−m(t)

]
=
[

t 0
0 t

][
1
t

0

0 1
t

]
= I

since q−m(t) = q−n = t−1 for T = qZ.
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Example 7. Suppose that T = ∪∞
k=0

[3±k, 2.3±k] ∪ {0}. Then, T is three-periodic in shifts δ±(s, t) = s±1t . If we set A(t) = 1/t, then

we get

A(δ±(3, t))δ�
± (3, t) = A(3t)3 = 1

t
= A(t)

which shows that A is �-periodic in shifts with the period 3. Consider the system

x�(t) =

⎡⎢⎣
1

t
0

0
1

t

⎤⎥⎦x(t)

whose transition matrix is given by

�A(t, 1) =
[

e1/t(t, 1) 0
0 e1/t(t, 1)

]
.

Then

�A

(
δ3

+(1), 1
)

= �A(3, 1) =
[

e1/3(3, 1) 0
0 e1/3(3, 1)

]
.

As in Theorem 4, we can write that

eR(3, 1) = �A(3, 1) =
[

e1/3(3, 1) 0
0 e1/3(3, 1)

]
= M.

On the other hand, by (3.8) and (3.9) we have

eR(t, 1) = M
1
3 �(t)

=
{

M
1
3 [3m(t)−3m(t)/t] if t /∈ P(1)

M
1
3 m(t) if t ∈ P(1)

,

and

R(t) = lim
s→t

M
1
3 [�(σ(t))−�(s)] − I

σ(t) − s

=

⎧⎪⎨⎪⎩
2

t
(M

1
3 [�( 3

2 t)−�(t)] − I) if σ(t) > t

1

3
log[M] if σ(t) = t

,

where P(t) and m(t) are defined by (3.3) and (3.5), respectively. Then we obtain the matrix function L(t) which is three-periodic

in shifts as follows:

L(t) = �A(t, 1)e−1
R (t, 1)

=
[

e1/t(t, 1) 0
0 e1/t(t, 1)

][
e1/3(3, 1) 0

0 e1/3(3, 1)

]− 1
3 �(t)

.

Example 8. Consider the time scale T = R that is periodic in shifts δ±(s, t) = s±1t associated with the initial point t0 = 1. Let us

define the matrix function A(t) : T
∗→ R

n×n as follows

A(t) =

⎡⎢⎢⎣
1

t
sin

(
π

ln t

ln 2

)
0

0
1

t
sin

(
π

ln t

ln 2

)
⎤⎥⎥⎦.

Then A(t) is �-periodic in shifts with the period 4. The following system

x�(t) =

⎡⎢⎢⎣
1

t
sin

(
π

ln t

ln 2

)
0

0
1

t
sin

(
π

ln t

ln 2

)
⎤⎥⎥⎦x(t)
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has the transition matrix

�A(t, 1) =
[

eu(t)(t, 1) 0
0 eu(t)(t, 1)

]
,

where u(t) = 1
t sin (π ln t

ln 2
). Moreover,

�A

(
δ4

+(1), 1
)

= �A(4, 1) =
[

1 0
0 1

]
= M.

Thus, R(t) is 2 × 2 zero matrix, and hence, eR(t, 1) = I. Finally, the matrix function L(t) which is four-periodic in shifts is obtained

as follows:

L(t) = �A(t, 1)e−1
R (t, 1)

= �A(t, 1).

3.3. Floquet multipliers and Floquet exponents

In this section we investigate Floquet multipliers and exponents for the system (3.1). Let �A(t, t0) be the transition matrix

and �(t) the fundamental matrix at t = τ (i.e. �(τ) = I) for the system (3.1). Then, we can write any fundamental matrix �(t) as

follows

�(t) = �(t)�(τ) or �(t) = �A(t, t0)�(t0). (3.26)

Definition 10. Let x0 ∈ R
n be a nonzero vector and �(t) be any fundamental matrix for the linear dynamic system (3.1). The

vector solution of the system with initial condition x(t0) = x0 is given by �A(t, t0)x0. We define the monodromy operator M :

R
n → R

n as follows:

M(x0) := �A

(
δT

+(t0), t0

)
x0 = �

(
δT

+(t0)
)
�−1(t0)x0. (3.27)

The eigenvalues of the monodromy operator are called Floquet multipliers of the linear system (3.1).

Similar to [16, Theorem 5.2 (i)] we can give the following result.

Remark 2. The monodromy operator of the linear system (3.1) is invertible. In particular, every characteristic multiplier is

nonzero.

Theorem 9. The monodromy operator M corresponding to different fundamental matrices of the system (3.1) is unique.

Proof. Suppose that M1 and M2 are the monodromy operators corresponding to fundamental matrices �1(t) and �2(t), respec-

tively. By using Definition 10, we can express the monodromy operator M2(x0) corresponding to �2(t) as

M2(x0) = �2

(
δT

+(t0)
)
�−1

2 (t0)x0.

Using (3.26), we get

M2(x0) = �2

(
δT

+(t0)
)
�−1

2 (t0)x0

= �1

(
δT

+(t0)
)
�2(τ )�−1

2 (τ )�−1
1 (t0)x0

= �1

(
δT

+(t0)
)
�−1

1 (t0)x0

= M1(x0).

The proof is complete. �

By using Theorem 5, (3.26) and (3.27), we obtain

�A(t, t0) = �1(t)�−1
1 (t0) = L(t)eR(t, t0)L−1(t0) (3.28)

and

M(x0) = �A

(
δT

+(t0), t0

)
x0 = �1

(
δT

+(t0)
)
�−1

1 (t0)x0. (3.29)

If we combine (3.28) and (3.29), we get

�A

(
δT

+(t0), t0

)
= �1

(
δT

+(t0)
)
�−1

1 (t0) = L
(
δT

+(t0)
)
eR

(
δT

+(t0), t0

)
L−1

(
δT

+(t0)
)
.

By using the periodicity in shifts of L, we have

�A

(
δT

+(t0), t0

)
= L(t0)eR

(
δT

+(t0), t0

)
L−1(t0). (3.30)

Hence, we arrive at the next result:

Corollary 4. The Floquet multipliers of the system (3.1) are the eigenvalues of the matrix eR(δ
T+(t0), t0).
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Definition 11 (Floquet exponent). The Floquet exponent of the system (3.1) is the function γ (t) satisfying the equation

eγ

(
δT

+(t0), t0

)
= λ,

where λ is the Floquet multiplier of the system.

Definition 12 ([12, Definition 2.4]). Let −π
h

< ω ≤ π
h

. Then Hilger purely imaginary number
◦
ıω is defined by

◦
ıω = eiwh−1

h
. For

z ∈ Ch, we have
◦
ıImh(z) ∈ Ih. Also

◦
ıω = iω provided h = 0.

Theorem 10. Suppose that γ (t) ∈ R is a Floquet exponent of the system (3.1) satisfying eγ

(
δT+(t0), t0

)
= λ, where λ is corresponding

Floquet multiplier of the T-periodic system. Then γ (t) ⊕ ◦
ı 2πk

δT+(t0)−t0
is also a Floquet exponent for (3.1) for all k ∈ Z.

Proof. For all k ∈ Z and any t0 ∈ T
∗ we have

e
γ ⊕◦

ı 2πk

δT+(t0)−t0

(
δT

+(t0), t0

)
= eγ

(
δT

+(t0), t0

)
e◦

ı 2πk

δT+(t0)−t0

(
δT

+(t0), t0

)
= eγ

(
δT

+(t0), t0

)
exp

⎛⎝∫ δT
+(t0)

t0

log

(
1 + μ(τ)

◦
ı 2πk
δT+(t0)−t0

)
μ(τ)

�τ

⎞⎠
= eγ

(
δT

+(t0), t0

)
exp

⎛⎝∫ δT
+(t0)

t0

log

(
exp

(
i 2πkμ(τ)
δT+(t0)−t0

))
μ(τ)

�τ

⎞⎠
= eγ

(
δT

+(t0), t0

)
exp

(∫ δT
+(t0)

t0

i2πk

δT+(t0) − t0

�τ

)
= eγ

(
δT

+(t0), t0

)
ei2πk

= eγ

(
δT

+(t0), t0

)
,

which gives the desired result. �

The next result can be proven similar to [16, Theorem 5.3].

Theorem 11. Let R(t) be a matrix function as in Theorem 4, with eigenvalues γ1(t), . . . , γn(t) repeated according to multiplicities.

Then γ k
1
(t), . . . , γ k

n (t) are the eigenvalues of Rk(t) and eigenvalues of eR are eγ1
, . . . , eγn .

Lemma 5. Let T be a time scale that is p-periodic in shifts δ± associated with the initial point t0 and k ∈ Z. If
δp
+(t)−t

δp
+(t0)−t0

∈ Z, then the

functions e◦
ı 2πk

δT+(t0)−t0

and e�◦
ı 2πk

δT+(t0)−t0

are p periodic in shifts.

Proof. If
δp
+(t)−t

δp
+(t0)−t0

∈ Z, then we have

e◦
ı 2πk

δT+(t0)−t0

(
δp

+(t), t0

)
= exp

(∫ δp
+(t)

t0

i2πk

δp
+(t0) − t0

�τ

)
= exp

(∫ δp
+(t)

t

i2πk

δp
+(t0) − t0

�τ

)
exp

(∫ t

t0

i2πk

δp
+(t0) − t0

�τ

)
= exp

(
i2πk

δp
+(t) − t

δp
+(t0) − t0

)
exp

(∫ t

t0

i2πk

δp
+(t0) − t0

�τ

)
= exp

(∫ t

t0

i2πk

δp
+(t0) − t0

�τ

)
= e◦

ı 2πk

δT+(t0)−t0

(t, t0)

which proves the periodicity of e◦
ı 2πk

δT+(t0)−t0

. The periodicity of e�◦
ı 2πk

δT+(t0)−t0

can be proven by using the periodicity of e◦
ı 2πk

δT+(t0)−t0

and

the identity e�α = 1/eα . �

Remark 3. Note that the condition
δp
+(t)−t

δp
+(t0)−t0

∈ Z holds not only for all additive periodic time scales but also for the many time

scales that are periodic in shifts. For example for the two-periodic time scales 2Z and ∪∞
k=0

[2±k, 2±(k+1)] ∪ {0} in shifts δ±(s, t) =
s±1t associated with the initial point t0 = 1, the condition

δp
+(t)−t

δp
+(t0)−t0

∈ Z is always satisfied.
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Theorem 12. If γ (t) is a Floquet exponent for the system (3.1) and �A(t, t0) is the associated transition matrix, then there exists a

Floquet decomposition of the form

�A(t, t0) = L(t)eR(t, t0)

such that γ (t) is an eigenvalue of R(t).

Proof. Consider the Floquet decomposition �A(t, t0) = L̃(t)eR̃(t, t0). By Definition 11, there exists a characteristic multiplier λ

such that eγ

(
δT+(t0), t0

)
= λ. Moreover, there is an eigenvalue γ̃ (t) of R̃(t) so that eγ̃

(
δT+(t0), t0

)
= λ, where γ̃ (t) can be defined

as

γ̃ (t) := γ (t) ⊕ ◦
ı

2πk

δT+(t0) − t0

by Theorem 10. If we set

R(t) := R̃(t) � ◦
ı

2πk

δT+(t0) − t0

I

and

L(t) := L̃(t)e◦
ı 2πk

δT+(t0)−t0
I
(t, t0),

then we can write

R̃(t) := R(t) ⊕ ◦
ı

2πk

δT+(t0) − t0

I,

and hence,

L(t)eR(t, t0) = L̃(t)e◦
ı 2πk

δT+(t0)−t0
I
(t, t0)eR(t, t0) = L̃(t)e◦

ı 2πk

δT+(t0)−t0
I⊕R

(t, t0) = L̃(t)eR̃(t, t0).

This means �A(t, t0) = L(t)eR(t, t0) is another Floquet decomposition where γ (t) is an eigenvalue of R(t). �

Theorem 13. Suppose that λ is a characteristic multiplier of the system (3.1) and that γ (t) is the corresponding Floquet exponent.

Then, (3.1) has a nontrivial solution of the form

x(t) = eγ (t, t0)q(t) (3.31)

satisfying

x
(
δT

+(t)
)

= λx(t),

where q is a T-periodic function in shifts.

Proof. Let �A(t, t0) be the transition matrix of (3.1) and �A(t, t0) = L(t)eR(t, t0) is Floquet decomposition such that γ (t) is an

eigenvalue of R(t). There exists a nonzero vector u 	= 0 such that R(t)u = γ (t)u, and therefore, eR(t, t0)u = eγ (t, t0)u. Then, we

can represent the solution x(t) := �A(t, t0)u as follows

x(t) = L(t)eR(t, t0)u = eγ (t, t0)L(t)u.

If we set q(t) = L(t)u, the last equality implies (3.31). Thus, the first part of the theorem is proven.

The second part is proven by the following equality.

x
(
δT

+(t)
)

= eγ

(
δT

+(t), t0

)
q
(
δT

+(t)
)

= eγ

(
δT

+(t), δT
+(t0)

)
eγ

(
δT

+(t0), t0

)
q(t)

= eγ

(
δT

+(t0), t0

)
eγ (t, t0)L(t)u

= eγ

(
δT

+(t0), t0

)
x(t)

= λx(t).

�
The preceding theorem provides a procedure for the construction of a solution to the system (3.1) when a characteristic

multiplier is given. In the following theorem, we show that two solutions corresponding to two distinct characteristic multipliers

are linearly independent.

Theorem 14. Let λ1 and λ2 be the characteristic multipliers of the system (3.1) and γ 1 and γ 2 are Floquet exponents such that

eγi
(δT

+(t0), t0) = λi, i = 1, 2.

If λ1 	= λ2, then there exist T-periodic functions q1 and q2 in shifts such that

xi(t) = eγi
(t, t0)qi(t), i = 1, 2
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are linearly independent solutions of (3.1).

Proof. Let �A(t, t0) = L(t)eR(t, t0) and γ 1(t) be an eigenvalue of R(t) corresponding to nonzero eigenvector v1. Since λ2 is an

eigenvalue of �A(δ
T+(t0), t0), by Theorem 11 there is an eigenvalue γ (t) of R(t) satisfying

eγ

(
δT

+(t0), t0

)
= λ2 = eγ2

(
δT

+(t0), t0

)
.

Hence, for some k ∈ Z we have γ2(t) = γ (t) ⊕ ◦
ı 2πk

δT+(t0)−t0
. Furthermore, λ1 	= λ2 implies that γ (t) 	= γ 1(t). If v2 is a nonzero

eigenvector of R(t) corresponding to eigenvalue γ (t), then the eigenvectors v1 and v2 are linearly independent. Similar to the

related part in the proof of Theorem 13, we can state the solutions of the system (3.1) as follows:

x1(t) = eγ1(t, t0)L(t)v1 (3.32)

and

x2(t) = eγ (t, t0)L(t)v2.

Since x1(t0) = L(t0)v1 and x2(t0) = L(t0)v2, the solutions x1(t) and x2(t) are linearly independent. Moreover, the solution x2 can

be rewritten in the following form

x2(t) = eγ2(t, t0)eγ �γ2
(t, t0)L(t)ν2

= eγ2(t, t0)e�◦
ı 2πk

δT+(t0)−t0

(t, t0)L(t)ν2. (3.33)

Letting q1(t) = L(t)v1 and q2(t) = e�◦
ı 2πk

δT+(t0)−t0

(t, t0)L(t)ν2 in (3.32) and (3.33), respectively, we complete the proof. �

4. Floquet theory and stability

In this section, we employ the unified Floquet theory that we established in previous sections to investigate the stability

characteristics of the regressive periodic system

x�(t) = A(t)x(t), x(t0) = x0. (4.1)

We know by Theorem 4 that the matrix R in the Floquet decomposition of �A is given by

R(t) = lim
s→t

�A

(
δT

+(t0), t0

) 1
T [�(σ(t))−�(s)] − I

σ(t) − s
. (4.2)

Also, Theorem 6 concludes that the solution z(t) of the regressive system

z�(t) = R(t)z(t), z(t0) = x0 (4.3)

can be expressed in terms of the solution x(t) of the system (4.1) as follows: z(t) = L−1(t)x(t), where L(t) is the Lyapunov trans-

formation given by (3.15).

In preparation for the main result we can give the following definitions and results which can be found in [16].

Definition 13 (Stability). The time varying linear dynamic Eq. (4.1) is uniformly stable if there exists a positive constant α such

that for any t0 the corresponding solution x(t) satisfies

‖x(t)‖ ≤ α‖x(t0)‖, t ≥ t0.

Theorem 15. The time varying linear dynamic Eq. (4.1) is uniformly stable if and only if there exists a α > 0 such that the transition

matrix �A satisfies

‖�A(t, t0)‖ ≤ α, t ≥ t0.

Definition 14 (Exponential stability). The time varying linear dynamic Eq. (4.1) is uniformly exponentially stable if there exist

positive constants α, β with −β ∈ R+ such that for any t0 the corresponding solution x(t) satisfies

‖x(t)‖ ≤ ‖x(t0)‖αe−β(t, t0), t ≥ t0.

Moreover, necessary and sufficient conditions for exponential stability can be stated as the following:

Theorem 16. The time varying linear dynamic Eq. (4.1) is uniformly exponentially stable if and only if there exist α, β > 0 with

−β ∈ R+ such that the transition matrix �A satisfies

‖�A(t, t0)‖ ≤ αe−β(t, t0), t ≥ t0.

Definition 15 (Asymptotical stability). The system (4.1) is said to be uniformly asymptotically stable if it is uniformly stable and

given any c > 0, there exists a K > 0 so that for any t0 and x(t0), the corresponding solution x(t) satisfies

‖x(t)‖ ≤ c‖x(t0)‖, t ≥ t0 + K.
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Given a constant n × n matrix M, let S be a nonsingular matrix that transforms M into its Jordan canonical form

J := S−1MS = diag[Jm1
(λ1), . . . , Jmk

(λk)],

where k ≤ n,
∑k

i=1mi = n, λi are the eigenvalues of M, and Jm(λ) is an m × m Jordan block given by

Jm(λ) =

⎡⎢⎢⎢⎢⎢⎣
λ 1

λ 1

. . .
. . .

. . . 1
λ

⎤⎥⎥⎥⎥⎥⎦.

Definition 16 ([26] See also [16, Definition 7.1]). The scalar function γ : T → C is uniformly regressive if there exists a constant

θ > 0 such that 0 < θ−1 ≤
∣∣1 + μ(t)γ (t)

∣∣, for all t ∈ T
κ .

Lemma 6. Each eigenvalue of the matrix R(t) in (4.3) is uniformly regressive.

Proof. Define �(t, s) by

�(t, s) := �(σ(t)) − �(s). (4.4)

As we did in Corollary 2, let

γi(t) = lim
s→t

(
λ

1
T �(t,s)

i
− 1

σ(t) − s

)
, i = 1, 2, . . . , k

be any of the k ≤ n distinct eigenvalues of R(t). Now, there are two cases:

1. If |λi| ≥ 1, then

|1 + μ(t)γi(t)| = lim
s→t

∣∣∣∣∣1 + μ(s)
λ

1
T �(t,s)

i
− 1

σ(t) − s

∣∣∣∣∣ = lim
s→t

∣∣λ 1
T �(t,s)

i

∣∣ > 1.

2. If 0 ≤ |λi| < 1, then,∣∣1 + μ(t)γi(t)
∣∣ = lim

s→t

∣∣∣∣∣1 + μ(s)
λ

1
T �(t,s)

i
− 1

σ(t) − s

∣∣∣∣∣ = lim
s→t

∣∣∣λ 1
T �(t,s)

i

∣∣∣ ≥ |λi|.

If we set θ−1 := min{1, |λ1|, . . . , |λk|}, then we obtain

0 < θ−1 <
∣∣1 + μ(t)γi(t)

∣∣,
where we used Remark 2 to get 0 < θ−1. �

Definition 17 ([16, Definition 7.3]). A nonzero, delta differentiable vector w(t) is said to be a dynamic eigenvector of a matrix

H(t) associated with the dynamic eigenvalue ξ (t) if the pair satisfies the dynamic eigenvalue problem

w�(t) = H(t)w(t) − ξ(t)wσ (t), t ∈ T
k. (4.5)

We call {ξ(t), w(t)} a dynamic eigenpair. Also, the nonzero, delta differentiable vector

χi := eξi
(t, t0)wi(t), (4.6)

is called the mode vector of M(t) associated with the dynamic eigenpair {ξi(t), wi(t)}.

Now, we can give the following results similar to [ 16, Lemma 7.4, Theorem 7.5]:

Lemma 7. Given the n × n regressive matrix K, there always exists a set of n dynamic eigenpairs with linearly independent eigenvec-

tors. Each of the eigenpairs satisfies the vector dynamic eigenvalue problem (4.5) associated with H. Furthermore, when the n vectors

form the columns of W(t), then W(t) satisfies the equivalent matrix dynamic eigenvalue problem

W�(t) = H(t)W(t) − Wσ (t)�(t), where �(t) := diag[ξ1(t), . . . , ξn(t)]. (4.7)

Theorem 17. Solutions to the uniformly regressive (but not necessarily periodic) time varying linear dynamic system (4.1) are:

1. stable if and only if there exists a γ > 0 such that every mode vector χ i(t) of A(t) satisfies ‖χ i(t)‖ ≤ γ < ∞, t > t0, for all

1 ≤ i ≤ n;

2. asymptotically stable if and only if, in addition to (1), ‖χ i(t)‖ → 0, t > t0, for all 1 ≤ i ≤ n,

3. exponentially stable if and only if there exists γ , λ > 0 with −λ ∈ R+(T, R) such that ‖χ i(t)‖ ≤ γ eλ(t, t0), t > t0, for all

1 ≤ i ≤ n.
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Definition 18. For each k ∈ N0 the mappings hk : T × T
k → R

+, recursively defined by

h0(t, t0) :≡ 1, hk+1(t, t0) =
∫ t

t0

(
lim
s→τ

�(τ, s)

σ (τ ) − s

)
hk(τ, t0)�τ for n ∈ N0, (4.8)

are called monomials, where �(t, s) is given by (4.4).

Remark 4. For an additive periodic time scale we always have �(t) = t − t0, and hence, �(t, s) = σ(t) − s.

Lemma 8. Let T be a time scale which is unbounded above and γ (t) be an eigenvalue of R(t). If there exists a constant H ≥ t0

such that

inf
t∈[H,∞)T

[
−
(

lim
s→t

(
�(t, s)

σ (t) − s

))−1

Reμγ (t)

]
> 0 (4.9)

holds, then

lim
t→∞

hk(t, t0)eγ (t, t0) = 0, k ∈ N0. (4.10)

Proof. It suffices to show that limt→∞ hk(t, t0)eReμγ (t)(t, t0) = 0 (see [20, Theorem 7.4]). We proceed by mathematical induction.

For k = 0, we know that h0(t, t0) = 1 and by [26], we have

lim
t→∞

eReμγi(t)(t, t0) = 0 for t0 ∈ T.

Suppose that it is true for a fixed k ∈ N and focus on the (k + 1)th step.

lim
t→∞

hk+1(t, t0)eReμγ (t)(t, t0)

= lim
t→∞

[∫ t

t0

R lim
s→τ

(
�(τ, s)

σ (τ ) − s

)
hk(τ, t0)�τ +

∫ t

t0

İ lim
s→τ

(
�(τ, s)

σ (τ ) − s

)
hk(τ, t0)�τ

]
e�Reμγ (t)(t, t0)

−1

= lim
t→∞

[
R lim

s→t

(
�(t, s)

σ (t) − s

)
hk(t, t0) + İ lim

s→t

(
�(t, s)

σ (t) − s

)
hk(t, t0)

]
eReμγ (t)(t, t0)

�Reμγ (t)

= lim
t→∞

[
lims→t

(
�(t,s)
σ (t)−s

)
hk(t, t0)eReμγ (t)(t, t0)

�Reμγ (t)

]
, (4.11)

where we used (4.9) together with [12, Theorem 1.120] to obtain the second equality. Since

�Reμγi(t) = −Reμγ (t)

1 + μ(t)Reμγ (t)
,

the last term in (4.11) can be written as

lim
t→∞

[
lims→t

(
�(t,s)
σ (t)−s

)
hk(t, t0)eReμγ (t)(t, t0)

�Reμγ (t)

]

= lim
t→∞

[
(1 + μ(t)Reμγ (t))hk(t, t0)eReμγ (t)(t, t0)

−
(
lims→t

(
�(t,s)
σ (t)−s

))−1
Reμ(γ (t))

]

≤ lim
t→∞

⎡⎣ (1 + μ(t)Reμγ (t))hk(t, t0)eReμγ (t)(t, t0)

inft∈[H,∞)T

[
−
(
lims→t

(
�(t,s)
σ (t)−s

))−1
Reμ(γ (t))

]
⎤⎦. (4.12)

Now, one may use (3.4) and (4.4) to get the inequality

1 + μ(t)Reμγ (t) =
∣∣∣∣1 + μ(t) lim

s→t

(
λ

1
T �(t,s) − 1

σ(t) − s

)∣∣∣∣ ≤ max {1, |λ|}

which along with (4.12) implies

lim
t→∞

hk+1(t, t0)eReμγ (t)(t, t0) = 0

as desired. �
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Theorem 18. Let {γi(t)}n
i=1

be the set of conventional eigenvalues of the matrix R(t) given in (4.2) and {wi(t)}n
i=1

be the set of corre-

sponding linearly independent dynamic eigenvectors as defined by Lemma 7. Then, {γi(t), wi(t)}n
i=1

is a set of dynamic eigenpairs of

R(t) with the property that for each 1 ≤ i ≤ n there are positive constants Di > 0 such that

‖wi(t)‖ ≤ Di

mi−1∑
k=0

hk(t, t0), (4.13)

holds where hk(t, t0), k = 0, 1, . . . , mi − 1, are the monomials defined as in (4.8) and mi is the dimension of the Jordan block which

contains the ith eigenvalue, for all 1 ≤ i ≤ n.

Proof. By Lemma 7, it is obvious that, {γi(t), wi(t)}n
i=1

is the set of eigenpairs of R(t). First, there exists an appropriate n × n

constant, nonsingular matrix S which transforms �A(δ
T+(t0), t0) to its Jordan canonical form given by

J := S−1�A

(
δT

+(t0), t0

)
S

=

⎡⎢⎢⎣
Jm1(λ1)

Jm2(λ2)
. . .

Jmd(λd)

⎤⎥⎥⎦
n×n

, (4.14)

where d ≤ n,
∑d

i=1 mi = n, λi are the eigenvalues of �A

(
δT+(t0), t0

)
. By utilizing above determined matrix S, we define the

following:

K(t) := S−1R(t)S

= S−1

(
lim
s→t

�A

(
δT

+(t0), t0

) 1
T �(t,s) − I

σ(t) − s

)
S

= lim
s→t

S−1�A

(
δT

+(t0), t0

) 1
T �(t,s)

S − I

σ(t) − s
.

This along with [16, Theorem A.6] yields

K(t) = lim
s→t

J
1
T �(t,s) − I

σ(t) − s
.

Note that, K(t) has the block diagonal form

K(t) = diag[K1(t), . . . , Kd(t)]

in which each Ki(t) given by

Ki(t) := lim
s→t

Ki(t) := lim
s→t

⎡⎢⎢⎢⎢⎢⎢⎣

λ
1
T

�(t,s)

i
−1

σ(t)−s

1
T �(t,s)λ

1
T

�(t,s)−1

i

(σ (t)−s)2!
. . .

(
∏n−2

k=0[ 1
T �(t,s)−k])λ

1
T

�(t,s)−n+1

i

(n−1)!(σ (t)−s)

λ
1
T

�(t,s)

i
−1

σ(t)−s
. . .

(
∏n−3

k=0[ 1
T �(t,s)−k])λ

1
T

�(t,s)−n+2

i

(n−2)!(σ (t)−s)

. . .
...

λ
1
T

�(t,s)

i
−1

σ(t)−s

⎤⎥⎥⎥⎥⎥⎥⎦
mi×mi

.

It should be mentioned that, since R(t) and K(t) are similar, they have the same conventional eigenvalues

γi(t) = lim
s→t

(
λ

1
T [�(t,s)]

i
− 1

σ(t) − s

)
, i = 1, 2, . . . , n,

with corresponding multiplicities. Moreover, if we set the dynamic eigenvalues of K(t) to be same as conventional eigenvalues

γ i(t), then the corresponding dynamic eigenvectors {ui(t)}n
i=1

of K(t) can be given by ui(t) = S−1wi(t).

We can prove this claim by showing that {γi(t), ui(t)}n
i=1

is a set of dynamic eigenpairs of K(t). By Definition 17, we can write

that

u�
i (t) = S−1w�

i (t)

= S−1R(t)wi(t) − S−1γi(t)wσ
i (t)

= K(t)S−1wi(t) − γi(t)S−1wσ
i (t)

= K(t)ui(t) − γi(t)uσ (t), (4.15)
i
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for all 1 ≤ i ≤ n and this proves our claim. Now, we have to show that ui(t) satisfies (4.13). Since
{
γi(t), ui(t)

}n

i=1
is the set of

dynamic eigenpairs of K(t), it satisfies (4.15) for all 1 ≤ i ≤ n. By choosing the ith block of K(t) with dimension mi × mi, we can

construct the following linear dynamic system:

v�(t) = K̃i(t)v(t) = lim
s→t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
T �(t,s)

(σ (t)−s)λi

( 1
T �(t,s))( 1

T �(t,s)−1)
(σ (t)−s)λi2!

. . .
(
∏n−2

k=0[ 1
T �(t,s)−k])

(n−1)!(σ (t)−s)λn−1
i

0
1
T �(t,s)

(σ (t)−s)λi

(
∏n−3

k=0[ 1
T �(t,s)−k])

(n−2)!(σ (t)−s)λn−2
i

0
. . .

...

. . .
1
T �(t,s)

(σ (t)−s)λi

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
v(t), (4.16)

where K̃i(t)(t) := Ki(t) � γi(t)I. There are mi linearly independent solutions of (4.16). Let us denote these solutions by vi, j(t),

where i corresponds to the ith block matrix Ki(t) and j = 1, . . . , mi. For 1 ≤ i ≤ d, we define li = ∑i−1
s=0ms, with m0 = 0. Then, the

form of an arbitrary n × 1 column vector uli+ j for i ≤ j ≤ m can be given as

uli+ j = [ 0, . . . , 0︸ ︷︷ ︸
m1+...+mi−1

, vT
i, j(t)︸ ︷︷ ︸

mi

, 0, . . . , 0︸ ︷︷ ︸
mi+1,...,md

]1×n. (4.17)

When we consider the all vector solutions of (4.15), the solution of the n × n matrix dynamic equation

U�(t) = K(t)U(t) − Uσ (t)�(t),

where �(t) := diag[γ1(t), . . . , γn(t)], can be written as

U(t) :=
[

u1, . . . , um1
, . . . , u(

∑i−1
k=1 mk), . . . , u(

∑i
k=1 mk), . . . , u(

∑d
k=1 mk)−1

, un

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎣
v1,1 v1,2 . . . v1,m1

v1,1

. . . v1,m1−1

. . .
...

v1,1

⎤⎥⎥⎥⎦
m1×m1

. . . ⎡⎢⎢⎢⎣
vd,1 vd,2 . . . vd,md

vd,1

. . . vd,md−1

. . .
...

vd,1

⎤⎥⎥⎥⎦
md×md

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
n×n

.

The mi linearly independent solutions of (4.16) have the form

vi,1(t) := [vi,mi
(t), 0, . . . , 0]T

mi×1,

vi,2(t) := [vi,mi−1(t), vi,mi
(t), 0, . . . , 0]T

mi×1,

...

vi,mi
(t) := [vi,1(t), vi,2(t), . . . , vi,mi−1(t), vi,mi

(t)]T
mi×1.

Then, we have the dynamic equations

v�
i,mi

(t) = 0,

v�
i,mi−1(t) = lim

s→t

[
�(t, s)

]
T(σ (t) − s)λi

vi,mi
(t),

v�
i,mi−2(t) = lim

s→t

(∏1
k=0[ 1

T
�(t, s) − k]

)
2(σ (t) − s)λ2

i

vi,mi
(t) + lim

s→t

�(t, s)

T(σ (t) − s)λi

vi,mi−1(t),

...

v�
i,1(t) = lim

s→t

(∏mi−2

k=0
[ 1

T
�(t, s) − k]

)
(mi − 1)!(σ (t) − s)λmi−1

vi,mi
(t)
i
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+ lim
s→t

(∏mi−3

k=0
[ 1

T
�(t, s) − k]

)
(mi − 2)!(σ (t) − s)λmi−2

vi,mi−1(t)

+ . . . + lim
s→t

(∏1
k=0[ 1

T
�(t, s) − k]

)
2(σ (t) − s)λ2

i

vi,3(t) + lim
s→t

�(t, s)

T(σ (t) − s)λi

vi,2(t).

Moreover, we have the following solutions:

vi,mi
(t) = 1, vi,mi−1(t) =

∫ t

t0

lim
s→τ

�(τ, s)

T(σ (τ ) − s)λi

vi,mi
(τ )�τ,

vi,mi−2(t) =
∫ t

t0

lim
s→τ

(∏1
k=0[ 1

T
�(τ, s) − k]

)
2(σ (τ ) − s)λ2

i

vi,mi
(τ )�τ +

∫ t

t0

lim
s→τ

�(τ, s)

T(σ (τ ) − s)λi

vi,mi−1(τ )�τ,

...

vi,1(t) =
∫ t

t0

lim
s→τ

(∏mi−2

k=0
1
T
�(τ, s) − k]

)
(mi − 1)!(σ (τ ) − s)λmi−1

i

vi,mi
(τ )�τ

+
∫ t

t0

lim
s→τ

(∏mi−3

k=0
1
T
�(τ, s) − k]

)
(mi − 2)!(σ (τ ) − s)λmi−2

i

vi,mi−1(τ )�τ + . . . +
∫ t

t0

lim
s→τ

�(τ, s)

T(σ (τ ) − s)λi

vi,2(τ )�τ.

Then we can show that each vi, j is bounded. There exist constants Bi, j, i = 1, . . . , d and j = 1, . . . , mi, such that∣∣vi,mi
(t)
∣∣ = 1 ≤ Bi,mi

h0(t, t0) = Bi,mi
,∣∣vi,mi−1(t)

∣∣ ≤
∫ t

t0

lim
s→τ

(
�(τ, s)

T(σ (τ ) − s)λi

)
vi,mi

(τ )�τ ≤ 1

Tλi

∫ t

t0

lim
s→τ

(
�(τ, s)

σ (τ ) − s

)
h0(τ, t0)�τ

≤ h1(t, t0)

Tλi

≤ Bi,mi−1h1(t, t0),

∣∣vi,mi−2(t)
∣∣ ≤

∫ t

t0

∣∣∣∣∣lims→τ

(∏1
k=0[ 1

T
�(τ, s) − k]

)
2(σ (τ ) − s)λ2

i

∣∣∣∣∣vi,mi
(τ )�τ +

∫ t

t0

lim
s→τ

(
�(τ, s)

T(σ (τ ) − s)λi

)
vi,mi−1(τ )�τ.

Since

0 ≤ �(σ(τ)) − �(s) ≤ T as s → τ,

we get∣∣∣1

T
�(τ, s) − k

∣∣∣ ≤ k as s → τ for k = 1, 2, . . . .

Then

|vmi−2(t)| ≤ 1

2Tλ2
i

∫ t

t0

lim
s→τ

(
�(τ, s)

σ (τ ) − s

)
h0(τ, t0)�τ + 1

T 2λ2
i

∫ t

t0

lim
s→τ

(
�(τ, s)

σ (τ ) − s

)
h1(τ, t0)�τ

= h1(t, t0)

2Tλ2
i

+ h2(t, t0)

T 2λ2
i

≤ Bi,mi−2

2∑
j=1

hj(t, t0)

...

|v1| ≤ Bi,1

mi−1∑
j=1

hj(t, t0).

If we set βi := max j=1,...,mi
{Bi, j} for each 1 ≤ i ≤ d, we obtain

‖uli+ j(t)‖ ≤ βi

mi−1∑
k=0

hk(t, t0)

for 1 ≤ i ≤ d and j = 1, 2, . . . , m . Since w = Su we have
i i i
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‖wi(t)‖ = ‖Sui(t)‖ ≤ ‖S‖βi

mi−1∑
k=0

hk(t, t0)

= Di

mi−1∑
k=0

hk(t, t0),

where Di := ‖S‖β i, for all 1 ≤ i ≤ n. The proof is complete. �

Definition 19 ([16, Definition 7.8]). Let Cμ := {z ∈ C : z 	= − 1
μ(t)

}. Given an element t ∈ T
k with μ(t) > 0, the Hilger circle is

defined by

Ht := {z ∈ Cμ : Reμ(z) < 0}.
If μ(t) = 0, Hilger circle becomes

Ht := {z ∈ C : Re(z) < 0}.
Now, we can state the main stability theorem. This theorem shows strong relationship between the stability results of the

T-periodic time varying linear dynamic system (4.1) and the eigenvalues of the corresponding time varying linear dynamic

system (4.3).

Theorem 19 (Floquet stability theorem). Let T be a periodic time scale in shifts that is unbounded above. We get the following

stability results of the solutions of the system (4.1) based on the eigenvalues {γi(t)}n
i=1

of system (4.3):

1. If there is a positive constant H such that

inf
t∈[H,∞)T

[
−
(

lim
s→t

(
�(t, s)

σ (t) − s

))−1

Reμγi(t)

]
> 0 (4.18)

for all i = 1, . . . , n, then the system (4.1) is asymptotically stable. Moreover, if there are positive constants H and ε such that

(4.18) and

−Reμγi(t) ≥ ε (4.19)

for all t ∈ [H,∞)T and all i = 1, . . . , n, then the system (4.1) is exponentially stable.

2. If there is a positive constant H such that

inf
t∈[H,∞)T

[
−
(

lim
s→t

(
�(t, s)

σ (t) − s

))−1

Reμγi(t)

]
≥ 0 (4.20)

for all i = 1, . . . , n, and if, for each characteristic exponent with

Reμ(γi(t)) = 0 for all t ∈ [H,∞)T,

the algebraic multiplicity equals the geometric multiplicity, then the system (4.1) is stable; otherwise the system (4.1) is unstable.

3. If there exists a number H ∈ R such that

Reμ(γi(t)) > 0

for all t ∈ [H,∞)T and some i = 1, . . . , n, then the system (4.1) is unstable.

Proof. Let eR(t, t0) be the transition matrix of the system (4.3) and R(t) be defined as in (4.2). Given the conventional eigenvalues

{γi(t)}n
i=1

of R(t), we can define the set of dynamic eigenpairs
{
γi(t), wi(t)

}n

i=1
and from Theorem 18, the dynamic eigenvector

wi(t) satisfies (4.13). Moreover, let us define W(t) as the following:

W(t) = eR(t, τ )e��(t, τ ) (4.21)

and we have

eR(t, τ ) = W(t)e�(t, τ ), (4.22)

where τ ∈ T and �(t) is given as in Lemma 7. Employing (4.22), we can write that

eR(τ, t0) = e�(τ, t0)W
−1(t0). (4.23)

By combining (4.22) and (4.23), the transition matrix of the system (4.3) can be represented by

eR(t, t0) = W(t)e�(t, t0)W
−1(t0), (4.24)
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where W(t) := [w1(t), w2(t), . . . , wn(t)]. Furthermore, we can denote the matrix W−1(t0) as follows:

W −1(t0) =

⎡⎢⎢⎢⎣
vT

1(t0)

vT
2(t0)

...

vT
n(t0)

⎤⎥⎥⎥⎦.

Since �(t) is a diagonal matrix, we can write (4.24) as

eR(t, t0) =
n∑

i=1

eγi(t, t0)W(t)FiW
−1(t0), (4.25)

where Fi := δi, j is n × n matrix. Using vT
i
(t)w j(t) = δi, j for all t ∈ T, we rewrite Fi as follows:

Fi = W −1(t)[0, . . . , 0, wi(t), 0, . . . , 0]. (4.26)

By means of (4.25) and (4.26) we have

eR(t, t0) =
n∑

i=1

eγi(t, t0)wi(t)vT
i (t0) =

n∑
i=1

χi(t)vT
i (t0),

where χ i(t) is mode vector of system (4.3).

Case 1. By (4.6), for each 1 ≤ i ≤ n, we can write that

‖χi(t)‖ ≤ Di

di−1∑
k=0

hk(t, t0)|eγi
(t, t0)|

≤ Di

di−1∑
k=0

hk(t, t0)eReμ(γi
)(t, t0)

where Di is as in Theorem 18, di represents the dimension of the Jordan block which contains ith eigenvalue of R(t). Using

Lemma 8 we get

lim
t→∞

hk(t, t0)eReμ(γi
)(t, t0) = 0

for each 1 ≤ i ≤ n and all k = 1, 2, . . . , di − 1. This along with Theorem 17 implies that (4.3) is asymptotically stable. By Theorem 6,

since the solutions of (4.1) and (4.3) are related by Lyapunov transformation, we can state that solution of (4.1) is asymptotically

stable. For the second part, we first write

‖χi(t)‖ ≤ Di

di−1∑
k=0

hk(t, t0)|eγi
(t, t0)|

≤ Di

di−1∑
k=0

hk(t, t0)eReμ(γi
)⊕ε(t, t0)e�ε(t, t0). (4.27)

If (4.19) holds, then Reμ(γ i⊕ε) satisfies (4.9). Hence, by Lemma 8 the term hk(t, t0)eReμ(γi
)⊕ε(t, t0) converges to zero as t → ∞.

That is, there is an upper bound Cε for the sum
∑di−1

k=0
hk(t, t0)eReμ(γi

)⊕ε(t, t0). This along with (4.27) yields

‖χi(t)‖ ≤ DiCεe�ε(t, t0).

Thus, Theorem 17 implies that (4.3) is exponentially stable. Using the above given argument (4.1) is exponentially stable.

Case 2. Assume that Reμ[γk(t)] = 0 for some 1 ≤ k ≤ n with equal algebraic and geometric multiplicities corresponding to γ k(t).

Then the Jordan block of γ k(t) is 1 × 1 and this implies

χk(t) = βkeγk(t, t0).

Thus,

lim
t→∞

‖χk(t)‖ ≤ lim
t→∞

βk|eγk
(t, t0)|

≤ lim
t→∞

βkeReμ(γk
)(t, t0)

= 0.

By Theorem 17, the system (4.3) is stable. By Theorem 6, the solutions of (4.1) and (4.3) are related by Lyapunov transformation.

This implies that the system (4.1) is stable.
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Case 3. Suppose that Reμ(γ i(t)) > 0 for some i = 1, . . . , n. Then, we have

lim
t→∞ ‖eR(t, t0)‖ = ∞,

and by the relationship between solutions of (4.1) and (4.3), we can write that

lim
t→∞ ‖�A(t, t0)‖ = ∞.

Therefore, (4.1) is unstable. �

Remark 5. In the case when the time scale is additive periodic, Theorem 19 gives its additive counterpart [16, Theorem 7.9]. For

an additive time scale the graininess function μ(t) is bounded above by the period of the time scale. However, this is not true in

general for the times scales that are periodic in shifts. The highlight of Theorem 19 is to rule out strong restriction that obliges the

time scale to be additive periodic. Hence, unlike [16, Theorem 7.9] our stability theorem (i.e. Theorem 19) is valid for q-difference

systems.

We can state the following corollary as a consequence of Theorem 19.

Corollary 5. Consider the T-periodic linear dynamic system (3.1);

1. If all the Floquet multipliers have modulus less than 1, then the system (3.1) is exponentially stable;

2. If all of the Floquet multipliers have modulus less than or equal to 1, and if, for each Floquet multiplier with modulus less than 1,

the algebraic multiplicity equals to geometric multiplicity, then the system (3.1) is stable, otherwise the system (3.1) is unstable,

growing at rates of generalized polynomials of t;

3. If at least one of the Floquet multipliers have modulus greater than 1, then the system (3.1) is unstable.

Now, we can revisit our examples to make stability analysis:

Example 9. Let T = qZ, q > 1 and consider the following system

x�(t) = A(t)x(t)

=

⎡⎢⎣
1

t
0

0
1

t

⎤⎥⎦x(t). (4.28)

As we did in Example 6 we obtain R(t) as follows:

R(t) =

⎡⎣1

t
0

0
1

t

⎤⎦.

Then R(t) has eigenvalues γ1,2(t) = 1/t and

Reμ(γ1,2(t)) = |μ(t)γ1,2(t) + 1| − 1

μ(t)

= |(qt − t) 1
t

+ 1| − 1

qt − t

= q − 1

qt − t

= 1

t
> 0.

Thus, we can conclude by the preceding theorem that the system (4.28) is unstable.

References

[1] M. Adıvar, A new periodicity concept for time scales, Math. Slovaca 63 (4) (2013) 817–828.

[2] M. Adıvar, Function bounds for solutions of Volterra integro dynamic equations on time scales, Electron. J. Qual. Theory Differ. Equ. 7 (2010) 1–22.
[3] M. Adıvar, Y.N. Raffoul, Existence of resolvent for Volterra integral equations on time scales, Bull. Aust. Math. Soc. 82 (1) (2010) 139–155.

[4] M. Adıvar, Y.N. Raffoul, Shift operators and stability in delayed dynamic equations, Rend. Semin. Mat. Univ. Politec. Torino 68 (4) (2010) 369–396.
[5] M. Adıvar, E.A. Bohner, Halanay type inequalities on time scales with applications, Nonlin. Anal. 74 (18) (2011) 7519–7531.

[6] M. Adıvar, Principal matrix solutions and variation of parameters formula for Volterra integro-dynamic equations on time scales, Glasg. Math. J. 53 (3)

(2011) 1–18.
[7] R. Agarwal, M. Bohner, A. Domoshnitsky, Y. Goltser, Floquet theory and stability of nonlinear integro-differential equations, Acta Math. Hung. 109 (4) (2005)

305–330.
[8] Y. André, L.D. Vizio, q-difference equations and p-adic local monodromy, Astérisque 296 (2004) 55–111.

[9] C.H. Ahlbrandt, J. Ridenhour, Floquet theory for time scales and Putzer representations of matrix logarithms, J. Differ. Equ. Appl. 1 (2003) 77–92.
[10] L.C. Becker, T.A. Burton, T. Krisztin, Floquet theory for a Volterra equation, J. London Math. Soc. 37 (2) (1988) 141–147.

http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0001
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0001
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0002
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0002
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0003
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0003
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0003
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0004
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0004
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0004
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0005
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0005
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0005
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0006
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0006
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0007
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0007
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0007
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0007
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0007
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0008
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0008
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0008
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0009
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0009
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0009
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0010
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0010
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0010
http://refhub.elsevier.com/S0096-3003(15)01205-9/sbref0010
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