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• Using Stäckel transform, separable Hamiltonians are expressed by flat coordinates.
• The concept of admissible flat minimal quantizations is developed.
• The class of Stäckel systems, separable after minimal flat quantization is established.
• Separability of related stationary Schrödinger equations is presented in explicit form.
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a b s t r a c t

In this paper, we consider the problem of quantization of classical
Stäckel systems and the problemof separability of related quantum
Hamiltonians. First, using the concept of Stäckel transform, natural
Hamiltonian systems from a given Riemann space are expressed
by some flat coordinates of related Euclidean configuration space.
Then, the so-called flat minimal quantization procedure is applied
in order to construct an appropriate Hermitian operator in the
respective Hilbert space. Finally, we distinguish a class of Stäckel
systems which remains separable after any of admissible flat
minimal quantizations.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

There exists a connection between classical Hamiltonian systems and quantum systems, through
an appropriate quantization procedure [1–4]. It is of great interest to investigate this connection
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as it could help to transfer results from classical theory to quantum theory. One of the particularly
interesting problems, is a relation between integrability and in particular separability of classical and
quantum systems. Some partial results on that subject can be found in literature [5–8]. In this paper
we are going to investigate systematically a separability of quantum systems received from classical
Stäckel systems, i.e. these systems for which all constants of motion are quadratic in momenta, by
means of an appropriate quantizations. It should be noted that there is a variety of quantization
procedures leading to different quantum systems [9]. In this paper we are going to focus on so-called
minimal quantizations.

In our approach a minimal quantization depends on a metric tensor from a configuration space.
With every classical Stäckel system is associated a naturalmetric tensor,which can beused to quantize
such a system. In [10] it was shown that so called Benenti class of Stäckel systems after such minimal
quantization leads to quantum separable systems (the respective system of stationary Schrödinger
equations is separable [11,12]). In this paper we are going to consider the whole family of admissible
minimal quantizations of Stäckel systems and investigate the problem of their quantum separability.

It is known that for each pair of classical Stäckel systems there exists a Stäckel transform relating
them [13,14]. Using this fact we can relate any Stäckel systemwith a chosen flat system and introduce
quantization by means of a natural flat metric induced by that system.

In Section 2 we refer basic notions about Stäckel systems and Stäckel transform. Section 3
contains a description of minimal quantization procedure. In Section 4 we investigate a family of
flat minimal quantizations of Benenti class of Stäckel systems. In particular, we prove that for any
Benenti system, there exists an n-parameter family of minimal flat quantizations, which preserves
quantum separability. In Section 5 we investigate flat minimal quantizations of arbitrary classical
Stäckel system.We receive the result that all admissible flatminimal quantizations of anynon-Benenti
class destroy a quantum separability. Section 6 presents a procedure of deformation of Stäckel systems
so as to preserve the separability of deformed operators which however destroy their Hermicity.
Finally, in Section 7, we illustrate the theory by few examples.

2. Stäckel systems in flat coordinates

Let us recall basic notions from the theory of separable Hamiltonian systems. Consider a Liouville-
integrable system on a 2n-dimensional phase space (M,P ), where P is a non-degenerated Poisson
tensor. Then, there exist n functions Hi in involution with respect to a Poisson bracket:

{Hi,Hj}P := P (dHi, dHj) = 0, i, j = 1, 2, . . . , n. (2.1)

The functions Hi generate n Hamiltonian dynamic systems

uti = PdHi, i = 1, 2, . . . , n, u ∈ M. (2.2)

One of the methods of solving the system of equations (2.2) is a Hamilton–Jacobi method. In this
method one linearizes equations (2.2) by performing an appropriate canonical transformation of co-
ordinates (q, p) → (b, a), ai = Hi. The generating function W (q, a) of such canonical transformation
is then calculated by solving the Hamilton–Jacobi equations

Hi


q1, . . . , qn,

∂W
∂q1

, . . . ,
∂W
∂qn


= ai, i = 1, 2, . . . , n. (2.3)

A system of equations (2.3) can be solved by separation of variables, i.e. we have to find a canonical
transformation (q, p) → (λ, µ) to a new coordinate system (λ, µ), called separation coordinates, in
which (2.3) separates to a system of n decoupled ordinary differential equations, which in turn can
be solved by quadratures. In other words, in separation coordinates (λ, µ) there exist the following
relations

ϕi(λi, µi; a1, . . . , an) = 0, i = 1, 2, . . . , n

ai ∈ R, det

∂ϕi

∂aj


≠ 0, (2.4)
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such that each of these relations involves only a single pair of canonical coordinates. The relations (2.4)
are called separation relations [15,16]. In this paper we consider Liouville-integrable systems having
separation relations in the following form

H1λ
γ1
i + H2λ

γ2
i + · · · + Hnλ

γn
i =

1
2
f (λi)µ2

i + σ(λi), i = 1, 2, . . . , n, (2.5)

where γi ∈ Z and are such that no two γi coincide, and f , σ are arbitrary smooth functions. Systems
described by separation relations (2.5) are called classical Stäckel systems.

Consider a Stäckel system described by a class of irreducible separation relations given by n copies
of the following separation curve (substitution λ = λi, µ = µi for i = 1, 2, . . . , n yields n separation
relations (2.5))

H1λ
γ1 + H2λ

γ2 + · · · + Hn =
1
2
f (λ)µ2

+ σ(λ), (2.6)

where γ1 > γ2 > · · · > γn = 0, γi ∈ Z+ and f , σ are rational functions. Irreducible means, that
the set {γ1, . . . , γn−1} of integers do not have a common divisor α. Otherwise, separation curve (2.6)
can be reduced to the one with γi →

γi
α

∈ Z+ by a transformation λ → λ
1
α . The n copies of (2.6)

constitute a system of n equations linear in the unknowns Hi with the solution of the form

Hr =
1
2
(Ar)

iiµ2
i + Vr(λ) =

1
2
(KrG)iiµ2

i + Vr(λ), r = 1, . . . , n, (2.7)

whereKr are Killing tensors of themetric tensorG = A1 andK1 = I (Kr andG are diagonal in separation
coordinates (λ, µ)). Introducing a Stäckel matrix

Sγ =

λ
γ1
1 λ

γ2
1 · · · 1

...
...

...
λγ1n λγ2n · · · 1

 (2.8)

separation relations following from (2.6) can be written in a compact form

SγH = U, (2.9)

where H = (H1, . . . ,Hn)
T and U = ( 12 f (λ1)µ

2
1 + σ(λ1), . . . ,

1
2 f (λn)µ

2
n + σ(λn))

T is a Stäckel vector.
It also means that tensor Ar and potential Vr in (2.7) can be expressed as

Ar = diag((S−1
γ )1r f (λ1), . . . , (S

−1
γ )nr f (λn)), Vr = (S−1

γ )irσ(λi) r = 1, . . . , n, (2.10)

and hence

Hr =
1
2
(S−1
γ )ir f (λi)µ

2
i + (S−1

γ )irσ(λi). (2.11)

The Stäckel matrix Sγ , or equivalently the set γ = {γ1, γ2, . . . , 1}, determines a given class of Stäckel
systems [16] and we will call it a γ -class of classical Stäckel systems. For a fixed Sγ the metric tensor
G is determined by f (λ) and the separable potentials Vr(λ) are determined by σ(λ). In general metric
G is non-flat.

There is one distinguished class of (2.6) when γk = n − k, i.e.

H1λ
n−1

+ H2λ
n−2

+ · · · + Hn =
1
2
f (λ)µ2

+ σ(λ), (2.12)

called Benenti class.
Notice, that all Stäckel systems (2.6) of two degrees of freedom (n = 2) are of Benenti type, as the

only separation curve (2.12) is irreducible in that case.
For Benenti class, in separation coordinates (λ, µ), the Stäckel matrix

S =

λ
n−1
1 · · · 1
...

. . .
...

λn−1
n · · · 1

 (2.13)
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is a Vandermonde matrix and metric tensors are

Gii
=

f (λi)
∆i

, ∆i =


k≠i

(λi − λk), i = 1, . . . , n. (2.14)

All metric tensors (2.14) have a common set of Killing tensors (also diagonal)

(Kr)
i
i = −

∂ρr

∂λi
, r = 1, . . . , n, (2.15)

where ρr(λ) are signed symmetric polynomials (Viéte polynomials)

ρ1 = −(λ1 + · · · + λn), . . . , ρn = (−1)nλ1λ2 · · · λn. (2.16)

The matrix

F = S−1ΛS, Λ = diag(λ1, . . . , λn) (2.17)

is a recursion matrix [14] for basic potentials σ(λ) = λk

V(k) = F kV(0), k ∈ Z, (2.18)

where V(k) = (V (k)1 , . . . , V (k)r )T , V (0) = (0, . . . , 0, 1)T are separable potentials determined respec-
tively by σ(λ) = λk and σ(λ) = 1 from separation curve (2.12). In explicit form

F =


−ρ1 1 · · · 0
...

...
. . .

...
−ρn−1 0 · · · 1
−ρn 0 · · · 0

 . (2.19)

Benenti class of Stäckel systems contains a sub-class of systemswith flatmetricsG (ofmixed signature
in general), when

f (λ) =

m
k=1

(λ− βk) =: fflat(λ), m = 0, 1, . . . , n. (2.20)

In such case a phase spaceM is the cotangent bundle to the pseudo-Euclidean space Er,s:M = T ∗Er,s.
The important fact about Stäckel systems (2.6) is the existence of a so called Stäckel transform

[13,14] relating all of them. In [14] it was proved that from a set of Benenti systems with fixed metric
tensor Ḡ (by fixing f̄ (λ)), one can construct the rest of Stäckel systems (2.6), both from Benenti class
as well as from other classes. The transformation is known as a Stäckel transform:

H̄1λ
n−1

+ H̄2λ
n−2

+ · · · + H̄n =
1
2
f̄ (λ)µ2

+ σ̄ (λ) Stäckel transform (2.21)

H1λ
γ1 + H2λ

γ2 + · · · + Hn =
1
2
f (λ)µ2

+ σ(λ).

Explicitly it is given in a matrix form

H = Wγ R(F)H̄, (2.22)

where H = (H1, . . . ,Hn)
T , H̄ = (H̄1, . . . , H̄n)

T ,Wγ = S−1
γ S, where Sγ , S are respective Stäckel matri-

ces (2.8), (2.13) and R(F) = f (F)f̄ −1(F). What is important, the inverse of thematrixWγ is expressible

by basic potentials V
(γj)

i (2.18)

(S−1Sγ )ij = (W−1
γ )ij = V

(γj)

i . (2.23)
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Now, let us choose f̄ (λ) = f̄flat(λ) andwrite {H̄r} in respective flat coordinates (x, y) (not necessary
orthogonal). It means that all Stäckel Hamiltonians {Hr} of (2.6) can be expressed by a flat coordinates
as well, so can be considered as some quadratic in momenta functions on a phase spaceM = R2n.

Consider Stäckel Hamiltonians (2.22) written in a flat coordinates (x, y) of the metric tensor Ḡ
(2.20)

Hr =
1
2
Aij
r yiyj + Vr(x), r = 1, . . . , n. (2.24)

There are two natural settings for Hamiltonians (2.24) as functions on a phase space M = T ∗Q (a
cotangent bundle to a configuration spaceQ).We can considerQ as two different pseudo-Riemannian
spaces. Either Q = (Rn, ḡ) = Er,s or Q = (Rn, g), where ḡ = Ḡ−1, g = G−1, and G = A1. In the first
case we simple have Q = Er,s, while in the second case the curvature tensor is nonzero and there are
regions of Rn where g is degenerated so Q is not pseudo-Euclidean any more. Moreover, the second
case is natural for classical separability theory, as then

Hr =
1
2
Aij
r yiyj + Vr(x) =

1
2
(KrG)ijyiyj + Vr(x), (2.25)

K1 = I and Kr are Killing tensors of the metric G, non-flat in general. Obviously, in the first case,
Hamiltonians (2.24) can be written as

Hr =
1
2
Aij
r yiyj + Vr(x) =

1
2
(Tr Ḡ)ijyiyj + Vr(x). (2.26)

Although tensors Tr are not Killing tensors for the flat metric Ḡ, but the representation (2.26) will be
useful for admissible quantizations of Hr .

3. Minimal quantizations of Stäckel systems

Let (Q, g) be a pseudo-Riemannian configuration space and

H =
1
2
Aijpipj + V (q) (3.1)

be a function on T ∗Q, written in some local canonical chart (q, p) and associated with a symmetric
contravariant two-tensor A onQ. Aminimal quantization procedure [17,9,11,12] associates with (3.1)
a self-adjoint linear operator

Ĥ = −
1
2
h̄2

∇iAij
∇j + V (q) (3.2)

acting in a Hilbert space L2(Q, ωg) of square integrable functions defined on the configuration space
Q with respect to the metric volume form ωg . By ∇i we denote the covariant derivative with respect
to the Levi-Civita connection.

Hence, for Stäckel Hamiltonians (2.24) we can apply either flat or non-flat minimal quantization
related with representations (2.25) and (2.26), respectively. In [10] we analyzed the non-flat case. In
the following paper we consider all admissible flat minimal quantizations and compare them with
the non-flat one.

For a non-flat case (2.25) the related set of quantum operators is

Ĥr = −
1
2
h̄2

∇iAij
∇j + Vr(x), r = 1, . . . , n (3.3)

where ∇i is the covariant derivative with respect to the connection generated by metric g and for the
flat representation (2.26) respectively

ˆ̄Hr = −
1
2
h̄2

∇̄iAij
∇̄j + Vr(x), r = 1, . . . , n, (3.4)
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where ∇̄i is the covariant derivative with respect to the connection generated by a flat metric ḡ .
In order to investigate a separability of (3.3) and (3.4), let us rewrite the operators in separation
coordinates (λ, µ) [12]

Ĥr = −
1
2
h̄2 Gii K (i)r ∂

2
i + (∂iK (i)r )∂i − K (i)r Γi∂i


+ Vr(λ), (3.5a)

ˆ̄Hr = −
1
2
h̄2 Ḡii T (i)r ∂

2
i + (∂iT (i)r )∂i − T (i)r Γ̄i∂i


+ Vr(λ), (3.5b)

where Γi (Γ̄i) is the contracted Christoffel symbol defined by Γi = gilGjkΓ l
jk and in orthogonal coordi-

nates

Γi =
1
2
∂i ln |G| − ∂i lnGii, (3.6)

K (i)r ≡ (Kr)
i
i, T

(i)
r ≡ (Tr)ii, and ∂i =

∂
∂λi

. As all Kr are Killing tensors for the metric G so ∂iK
(i)
r = 0 [12].

Thus, (3.5) can be written in the form

Ĥr = −
1
2
h̄2 Aii

r


∂2i − Γi∂i


+ Vr(λ), (3.7a)

ˆ̄Hr = −
1
2
h̄2 Aii

r


∂2i + (∂i ln T (i)r )∂i − Γ̄i∂i


+ Vr(λ). (3.7b)

A necessary and sufficient condition for separability of operators (3.7a) is a Robertson condition [11]

Γi = Γi(λi) ⇔ ∂jΓi = 0, j ≠ i,

while a necessary and sufficient condition for separability of operators (3.7b) takes the form

∂i ln(T (i)r )− Γ̄i = Ξi(λi) ⇔ ∂jΞi = 0, j ≠ i.

Indeed, if operators (3.7) are of the form

B̂r = −
1
2
h̄2 Aii

r


∂2i + Ξi∂i


+ Vr(λ),

= −
1
2
h̄2 S−1i

r f (λi)

∂2i + Ξi∂i


+

S−1i

r σ(λi), r = 1, . . . , n, (3.8)

where B̂r = Ĥr(
ˆ̄Hr) andΞi = Ξi(λi), then application of Stäckel matrix S to the system of eigenvalue

problems for (3.8)

S

B̂1Ψ
...

B̂nΨ

 = S

E1Ψ
...

EnΨ

 (3.9)

separates (3.9) onto n one-dimensional eigenvalue problems

(E1λ
γ1
i + E2λ

γ2
i + · · · + En)ψi(λi) = −

1
2
h̄2 f (λi)


d2ψi(λi)

dλ2i
+ Ξi(λi)

dψi(λi)

dλi


+ σ(λi)ψi(λi),

whereΨ (λ1, . . . , λn) =
n

i=1 ψi(λi). In the casewhenΞi(λi) = Ξ(λi), i = 1, . . . , n, we have n copies
of one-dimensional eigenvalue problem

(E1λγ1 + E2λγ2 + · · · + En)ψ(λ) = −
1
2
h̄2 f (λ)


d2ψ(λ)

dλ2
+ Ξ(λ)

dψ(λ)
dλ


+ σ(λ)ψ(λ),

where Ψ (λ1, . . . , λn) =
n

i=1 ψ(λi).
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4. Minimal flat quantization of Benenti class

First, let us analyze the case of two quantizations inside the Benenti class, where in (2.22)Wγ = I .
Assume that {H̄r} is a Benenti system with a flat metric generated by f̄flat(λ). Then, any other Benenti
system {Hr} is given by

H = R(F)H̄, R(F) = f (F)f̄ −1
flat (F) (4.1)

and separation curves for {H̄r} and {Hr} are

H̄1λ
n−1

+ H̄2λ
n−2

+ · · · + H̄n =
1
2
f̄flat(λ)µ2

+ σ̄ (λ) R(F)

H1λ
n−1

+ H2λ
n−2

+ · · · + Hn =
1
2
f (λ)µ2

+ σ(λ), (4.2)

σ(λ) = R(λ)σ̄ (λ) = f (λ)σ̄ (λ)/f̄flat(λ). The relation (4.2) follows from the following relations which
hold in separation coordinates:

Ar =


k

R(F)rkĀk = R(Λ)Ār , (4.3)

V = R(F)V̄ = S−1R(Λ)σ̄(λ), σ̄(λ) = (σ̄ (λ1), . . . , σ̄ (λn))
T . (4.4)

Indeed, for rational f (λ) (4.3) follows from the fact that it is fulfilled for R(F) = F − βI and R(F) =

(F − βI)−1. To prove (4.4) observe that V̄ = S−1σ̄(λ) and R(F) = S−1R(Λ)S. Hence V = R(F)S−1

σ̄(λ) = S−1R(Λ)σ̄(λ).
Now, let us go back to operators (3.7). As for metric (2.14) from Benenti class Γi = −

1
2
∂if (λi)
f (λi)

and

as follows from (4.3) T (i)r = R(λi)K̄
(i)
r then, using the relation (2.10), we have

Ĥr = −
1
2
h̄2(S−1)ir


f (λi)∂2i +

1
2
df (λi)
dλi

∂i


+ (S−1)irσ(λi), (4.5a)

ˆ̄Hr = −
1
2
h̄2(S−1)ir


f (λi)∂2i +


df (λi)
dλi

−
1
2

f (λi)
f̄flat(λi)

df̄flat(λi)
dλi


∂i


+ (S−1)irσ(λi), (4.5b)

so Eqs. (4.5) take the form (3.8) with Ξ(λi) =
1
2
df (λi)
dλi

in the case of Eq. (4.5a) and Ξ(λi) =

df (λi)
dλi

−
1
2

f (λi)
f̄flat(λi)

df̄flat(λi)
dλi

in the case of Eq. (4.5b). As a consequence all operators {Ĥr} as well as {
ˆ̄Hr}

have common eigenfunctions:

ĤrΨ = ErΨ , ˆ̄Hr Ψ̄ = Ēr Ψ̄ , r = 1, . . . , n, (4.6)

where Ψ (λ1, . . . , λn) =
n

k=1 ψ(λk), Ψ̄ (λ1, . . . , λn) =
n

k=1 ψ̄(λk), and ψ(λk) and ψ̄(λk) are n
copies of one-dimensional eigenvalue problems

(E1λn−1
+ E2λn−2

+ · · · + En)ψ(λ) = −
1
2
h̄2

f (λ)

d2ψ(λ)

dλ2
+

1
2
df (λ)
dλ

dψ(λ)
dλ


+ σ(λ)ψ(λ), (4.7a)

(Ē1λn−1
+ Ē2λn−2

+ · · · + Ēn)ψ̄(λ)

= −
1
2
h̄2

f (λ)

d2ψ̄(λ)

dλ2
+


df (λ)
dλ

−
1
2

f (λ)
f̄flat(λ)

df̄flat(λ)
dλ


dψ̄(λ)
dλ


+ σ(λ)ψ̄(λ). (4.7b)
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Eqs. (4.7a) and (4.7b) represent the non-flat and flat minimal quantizations of separation curve (4.2).
Moreover,

[Ĥr , Ĥs] = 0, [
ˆ̄Hr ,

ˆ̄Hs] = 0. (4.8)

The first set of commutation relations was proved in [10] and follows from the fulfillment of the pre-
Robertson condition [12]

∂2i Γj − Γi∂iΓj = 0, i ≠ j

for Γi = −
1
2∂i ln f (λi). The second set of commutation relations follows from the analog of the pre-

Robertson condition

∂2i Ξi − Ξj∂iΞj = 0, i ≠ j, (4.9)

where

Ξi = Γ̄i − ∂i ln R(λi) = −
1
2
∂i ln fflat(λi)− ∂i ln R(λi).

The condition (4.9) can be obtain repeating the procedure from [12] (Section 5) under substitution
K (i)r → R(Λ)K (i)r .

Summarizing that part, we proved that for any classical Benenti system, there exists an n-
parameter family (2.20) of minimal flat quantizations, which preserves quantum separability.

5. Minimal flat quantization for arbitrary γ-class

Let us consider the case R = 1. Then,

H = Wγ H̄, (5.1)

where separation curves for H̄r and Hr are

H̄1λ
n−1

+ H̄2λ
n−2

+ · · · + H̄n =
1
2
f̄flat(λ)µ2

+ σ̄ (λ)Wγ

H1λ
γ1 + H2λ

γ2 + · · · + Hn =
1
2
f̄flat(λ)µ2

+ σ̄ (λ),

(5.2)

and Hamiltonian operators for non-flat and flat minimal quantizations ofHi are of the form (3.7). Γi in
(3.7a) is a reduced Christoffel symbol for a metric tensor G, and it was proved in [10] that for arbitrary
γ -class ∂jΓi ≠ 0, j ≠ i and we loose a separability. In operator ˆ̄Hr from (3.7b) Γ̄i = −

1
2
∂i f̄flat(λi)
f̄flat(λi)

, hence

does not depend on λj ≠ λi, so we have to analyze only the term ∂iT
(i)
r /T

(i)
r . A very useful form of T (i)r

was derived in [18]. Consider polynomial P =
n

r=1 Hrλ
γr from separation curve (5.2). Its order is γ1

whichwe denote by γ1 = n+k−1. Notice that for k = 0we are in the Benenti class. There is kmissing
monomialsλn+k−ni in polynomial P , enumerated by (n1, . . . , nk). For example, if P = H1λ

4
+H2λ+H3,

then n = 3, k = 2, n1 = 2, n2 = 3. In [18] was proved that

T (i)r =
1
ϕ
χ (i)r , (5.3)

where χ (i)r is λi independent and

ϕ = det

ρn1−1 · · · ρn1−k
...

. . .
...

ρnk−1 · · · ρnk−k

 (5.4)
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where ρ0 = 1, ρm = 0 for m > n and m < 0, and remaining ρm are given by (2.16). Hence, (3.7b)
takes the form

ˆ̄Hr = −
1
2
h̄2 Aii

r


∂2i −


∂iϕ

ϕ
−

1
2
∂i f̄flat
f̄flat


∂i


+ Vr(λ). (5.5)

It can be proved that for any ϕ, ∂j

∂iϕ
ϕ


≠ 0 for j ≠ i. As a result, all admissible flat minimal quanti-

zations of a non-Benenti γ class destroy a quantum separability.

6. Separable deformations of Stäckel Hamiltonians

In order to make all Hamiltonians ˆ̄Hr separable, we need to get rid of the terms

1
2
h̄2

Aii
r
∂iϕ

ϕ


∂i (6.1)

from (5.5). Terms (6.1) are generated by appropriate linear in momenta terms in Hamiltonians Hr .
Define a vector field ur with components

ui
r = Aii

r
∂iϕ

ϕ
(6.2)

in separation coordinates. Then, consider a deformed Hamiltonians in flat coordinates

Hr(h̄) =
1
2
Aij
r yiyj −

1
2
ih̄ui

r(x)yi + Vr(x)+
1
4
h̄2wr(x), (6.3)

wherewr =


i
∂uir
∂xi

. Appropriate quantum operator in flat minimal quantization takes a form

ˆ̄Hr = −
1
2
h̄2

∇̄iAij
r ∇̄j −

1
4
h̄2(∇̄iui

r + ui
r ∇̄i)+

1
4
h̄2wr(x)+ Vr(x) (6.4)

and in separation coordinates

ˆ̄Hr = −
1
2
h̄2 Aii


∂2i +

1
2
(∂i ln f̄flat(λi))∂i


+ Vr(λ). (6.5)

Hence all ˆ̄Hr separate to a single one-dimensional eigenvalue problem:

(E1λγ1 + E2λγ2 + · · · + En)ψ̄(λ) = −
1
2
h̄2

f̄flat(λ)

d2ψ̄(λ)

dλ2
+

1
2
df̄flat(λ)

dλ
dψ̄(λ)
dλ


+ σ̄ (λ)ψ̄(λ). (6.6)

Nevertheless ˆ̄Hr are not Hermitian anymore, since the extra terms −
1
4 h̄2(∇̄iui

r + ui
r ∇̄i) are anti-

Hermitian operators in a Hilbert space L2(Q, ωg).

7. Examples

As first example let us consider a pseudo-Euclidean space E2,1 with signature (+ + −) and flat
non-orthogonal coordinates (x1, x1, x3) such that

ḡ =

0 0 1
0 1 0
1 0 0


. (7.1)
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Then, consider the following Stäckel geodesic system on T ∗E2,1

h̄1 = Ḡijyiyj = y1y3 +
1
2
y22,

h̄2 = (K̄2Ḡ)ijyiyj =
1
8
x21y

2
1 −

1
4
x1x3y22 +

1
8
x23y

2
3 +


1
4
x1x2 + 1


y1y2

−
1
4


x1x3 + x22


y1y3 −

1
4
x2x3y2y3,

h̄3 = (K̄3Ḡ)ijyiyj =


1
4
x1x2 +

1
2


y21 −

1
4
x1x3y1y2 −

1
4
x2x3y1y3 +

1
4
x23y2y3.

One can check that {h̄i, h̄j} = 0. The transformation to separation coordinates (λ, µ) is generated
by [19]

λ1 + λ2 + λ3 =
1
2
x1x3 +

1
4
x22,

λ1λ2 + λ1λ3 + λ2λ3 = −
1
2
x2x3, (7.2)

λ1λ2λ3 =
1
4
x23

and the related separation curve is

h̄1λ
2
+ h̄2λ+ h̄3 =

1
2
λ3µ2

operator F (2.19) in x-coordinates is

F =


1
2
x1x3 +

1
4
x22 1 0

1
2
x2x3 0 1

1
4
x23 0 0

 ,

so separable potentials V̄ (k)r are given by (2.18). For example, the first nontrivial potential is

V̄(3) = F 3V̄(0) =


1
2
x1x3 +

1
4
x22

1
2
x2x3
1
4
x23


and separation curve for Hamiltonians H̄i = h̄i + V̄ (k)i , i = 1, 2, 3, takes the form

H̄1λ
2
+ H̄2λ+ H̄3 =

1
2
λ3µ2

+ λk.

Now, let us consider the following Stäckel transform

H̄1λ
2
+ H̄2λ+ H̄3 =

1
2
λ3µ2

+ λr−s+3 R(F) = F s−3

H1λ
2
+ H2λ+ H3 =

1
2
λsµ2

+ λr (7.3)
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so, H = F s−3H̄ and in particular, for s = 4 and r = 4, we have for Hi = hi + V (4)i

h1 =
1
8
x21y

2
1 +

1
8
x22y

2
2 +

1
8
x23y

2
3 +


1
4
x1x2 + 1


y1y2 +

1
4
x1x3y1y3 +

1
4
x2x3y2y3,

h2 =


1
4
x1x2 +

1
2


y21 +

1
4
x2x3y22 −

1
4
x1x3y1y2 +

1
4
x2x3y1y3 +

1
4
x23y2y3,

h3 =
1
4
x23y1y3 +

1
8
x23y

2
2

and

V (4)1 =
1
4
x21x

2
3
1
4
x1x22x3 +

1
16

x42 +
1
2
x2x3,

V (4)2 =
1
4
x1x2x23 +

1
8
x32x3 +

1
4
x2x3,

V (4)3 =
1
16

x23

2x1x3 + x22


. (7.4)

Of course, again canonical transformation generated by (7.2) is a transformation to separation
coordinates, with separation curve (7.3) and s = r = 4.

As was considered in previous sections, we have two natural minimal quantizations. One, the flat
minimal quantization expressed by Levi–Civita connection of metric ḡ (7.1) and second, expressed by
Levi–Civita connection of metric tensor g = G−1, where

G =


1
4
x21

1
4
x1x2 + 1

1
4
x1x3

1
4
x1x2 + 1

1
4
x22

1
4
x2x3

1
4
x1x3

1
4
x1x3

1
4
x23


is generated by h1 =

1
2G

ijyiyj. Notice that in the second case the configuration space (R3, g) is not
pseudo-Euclidean any more as g has constant Ricci scalar RS =

3
2 and is not non-degenerated on the

whole R3. Thus, the second admissible minimal quantization is non-flat.
In flat quantization, related to metric tensor ḡ Christoffel symbols vanish and quantum operators

ˆ̄Hr related to classical Hamiltonian functions Hr are

ˆ̄H1 = − h̄2

1
8


x21∂

2
1 + x22∂

2
2 + x23∂

2
3


+


1
4
x1x2 + 1


∂1∂2 +

1
4
x1x3∂1∂3 +

1
4
x2x3∂2∂3

+
1
2
(x1∂1 + x2∂2 + x3∂3)


+ V (r)1 ,

ˆ̄H2 = − h̄2


1
4
x1x2 +

1
2


∂21 +

1
4
x2x3∂22 −

1
4
x1x3∂1∂2 +

1
4
x2x3∂1∂3

+
1
4
x23∂2∂3 +

3
8
x2∂1 +

3
8
x3∂2


+ V (r)2 ,

ˆ̄H3 = − h̄2

1
4
x23∂1∂3 +

1
8
x23∂

2
2 +

1
4
x3∂1


+ V (r)3 . (7.5)

Obviously these operators are Hermitian in L2(Q, ωg). Substituting r = 4 (7.4) one can check directly

the commutativity of operators ˆ̄Hr (7.5).
In (λ, µ) coordinates eigenvalue problems (4.6) reduce to three copies of one-dimensional eigen-

value problem

(Ē1λ2 + Ē2λ+ Ē3)ψ̄(λ) = −
1
2
h̄2

λs

d2ψ̄

dλ2
+


s −

3
2


λs−1 dψ̄

dλ


+ λr ψ̄
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for operators ˆ̄Hr of minimal flat quantization and

(E1λ2 + E2λ+ E3)ψ(λ) = −
1
2
h̄2

λs

d2ψ

dλ2
+

1
2
λs−1 dψ

dλ


+ λrψ,

for operators Ĥr of minimal non-flat quantization with f (λ) = λs.
As our second example let us consider again a pseudo-Euclidean space E2,1 with signature (++−)

and flat, non-orthogonal coordinates (x1, x1, x3) such that

ḡ =

0 1 0
1 0 0
0 0 1


. (7.6)

Then, consider the following Stäckel geodesic system on T ∗E2,1

h̄1 = Ḡijyiyj = y1y2 +
1
2
y23,

h̄2 = (K̄2Ḡ)ijyiyj =
1
2
y21 −

1
2
x2y22 +

1
2
x1y23 +

1
2
x1y1y2 −

1
2
x3y2y3,

h̄3 = (K̄3Ḡ)ijyiyj =
1
8
x23y

2
2 +


1
8
x21 +

1
2
x2


y23 −

1
2
x3y1y3 −

1
4
x1x3y2y3.

One can check that {h̄i, h̄j} = 0. The transformation to separation coordinates (λ, µ) is generated by
[19]

λ1 + λ2 + λ3 = −x1,

λ1λ2 + λ1λ3 + λ2λ3 = x2 +
1
4
x21, (7.7)

λ1λ2λ3 =
1
4
x23.

The related separation curve is

h̄1λ
2
+ h̄2λ+ h̄3 =

1
2
λµ2,

operator F (2.19) in x-coordinates takes the form

F =


−x1 1 0

−x2 −
1
4
x21 0 1

1
4
x23 0 0


so, separable potentials V̄ (k)r are given by (2.18). For example, the V̄ (4) potential and separation curve
for Hamiltonians H̄i = h̄i + V̄ (4)i are

V̄(4) = F 4V̄(0) =


3
4
x21 − x2

1
4
x31 + x1x2 +

1
4
x23

−
1
4
x1x23


H̄1λ

2
+ H̄2λ+ H̄3 =

1
2
λµ2

+ λ4.
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First, let us consider the following Stäckel transform

H̄1λ
2
+ H̄2λ+ H̄3 =

1
2
λµ2

+ λ4Wγ

H1λ
3
+ H2λ+ H3 =

1
2
λµ2

+ λ4, (7.8)

where γ = (3, 1, 0) and from (2.23)

Wγ =


−

1
x1

0 0

−
1
4
x21 + 4x2

x1
1 0

1
4
x23
x1

0 1

 .
Then, according to (5.1)

H1 = −
1
x1

y1y2 −
1
2

1
x1

y23 −
3
4
x1 +

x2
x1
,

H2 =
1
2
y21 −

1
2
x2y22 +

1
8


3x1 − 4

x2
x1


y23 +

1
4


x1 − 4

x2
x1


y1y2 −

1
2
x3y2y3

+
1
16

x31 +
1
2
x1x2 +

1
4
x23 +

x22
x1
,

H3 =
1
8
x23y

2
2 +

1
8


x21 + 4x2 +

x23
x1


y23 +

1
4
x23
x1

y1y2 −
1
2
x3y1y3

−
1
4
x1x3y2y3 −

1
16

x1x23 −
1
4
x2x23
x1
,

where

A1 =


0 −

1
x1

0

−
1
x1

0 0

0 0 −
1
x1

 , A2 =


1

1
4
x1 −

x2
x1

0

1
4
x1 −

x2
x1

−x2 −
1
2
x3

0 −
1
2
x3

3
4
x1 −

x2
x1

 ,

A3 =


0

1
4
x23
x1

−
1
2
x3

1
4
x23
x1

1
4
x23 −

1
4
x1x3

−
1
2
x3 −

1
4
x1x3

1
4
x21 + x2 +

1
4
x23
x1

 .
Of course, again canonical transformation generated by (7.7) is a transformation to separation
coordinates, with separation curve (7.8).

We have two natural minimal quantizations. One, the flat minimal quantization expressed by
Levi–Civita connection of metric ḡ (7.6) and second, expressed by Levi–Civita connection of metric
tensor g = G−1, where G = A1.

In (λ, µ) coordinates Hamiltonian operators for non-flat and flat minimal quantizations are given
respective by (3.7a) and (5.5). As

Γi = −
1
2


1
λi

+
1

λ1 + λ2 + λ3


,

∂iϕ

ϕ
=

1
λ1 + λ2 + λ3

,

hence both quantizations are non-separable.
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The deformation (6.3) of classical Hamiltonians, with respective vector fields

u1 =


0,−

1
x21
, 0

, u2 =


1
x1
,
1
4

−
x2
x21
, 0

, u3 =


0,

1
4
x23
x21
,−

x3
x1


,

leads to commuting (non-Hermitian) operators (6.4) and the following one-dimensional eigenvalue
problem

(E1λ3 + E2λ+ E3)ψ̄(λ) = −
1
2
h̄2

λ
d2ψ̄

dλ2
+

1
2
dψ̄
dλ


+ λ4ψ̄(λ).
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