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a b s t r a c t 

In this study, we consider a dynamic economic lot sizing problem for a single perishable 

item under production capacities. We aim to identify the production, inventory and back- 

logging decisions over the planning horizon, where (i) the parameters of the problem are 

deterministic but changing over time, and (ii) producer has a constant production capacity 

that limits the production amount at each period and is allowed to backorder the unmet 

demand later on. All cost functions are assumed to be concave. A similar problem with- 

out production capacities was studied in the literature and a polynomial time algorithm 

was suggested (Hsu, 2003 [1]). We assume age-dependent holding cost functions and the 

deterioration rates, which are more realistic for perishable items. Backordering cost func- 

tions are period-pair dependent. We prove the NP-hardness of the problem even with zero 

inventory holding and backlogging costs under our assumptions. We show the structural 

properties of the optimal solution and suggest a heuristic that finds a good production and 

distribution plan when the production periods are given. We discuss the performance of 

the heuristic. We also give a Dynamic Programing-based heuristic for the solution of the 

overall problem. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Goyal and Giri [2] summarize the ways to model deterioration in the literature. A product can have a fixed lifetime,

random lifetime, and proportional inventory decrease in terms of its utility or physical quantity (deterioration with age).

We present an inventory model for a producer of a perishable item deteriorating with age over time, such as fresh produce,

dairy goods, and baked goods. To clarify the objective of our paper, let us consider a large sized baking company that ships

to bakery stores in different locations. Stores have their demand forecasts for a specific product and the baking company

plans its production based on aggregate units demanded from all stores. Each store represents a different customer class and

has a different priority. The amount to be shipped at each period is distributed among the stores based on their priorities.

Stores can wait for unmet demand for some time. Moreover, they have different seasonality in demand of this product

because of their locations. At different periods, a different store’s demand can be dominant. Therefore, the backlogging cost

depends on its period. Moreover, it depends on how long unsatisfied stores are going to wait. In another setting, we can

consider a fresh produce producer selling his products to companies using them as raw materials for producing consumer

products with higher added value. 
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Bakker et al. [3] give an up-to-date advances made in the field of inventory control of perishable items since 2001.

Taleizadeh and Nematollahi [4] consider an Economic Order Quantity (EOQ) model for a perishable item over a finite plan-

ning horizon with backlogging and delayed payment. Sanni and Chukwu [5] develop an EOQ model with deterioration

having three-parameter Weibull distribution, ramp-type demand, and backlogging. In [6] , deteriorating inventory is incor-

porated into material requirement planning systems with the assumption of a fixed deterioration rate for each period. In a

recent book on perishable inventories [7] , it is stated that the vast majority of the literature on perishable inventories are

related to stochastic demand. 

We consider a finite horizon problem in a deterministic environment, where the parameters of the problem are deter-

ministic but changing over time, namely Economic Lot Sizing problem (ELS). ELS has been an active area of research since

its introduction by [8] . The objective is to minimize the total cost of production and inventory during a finite planning hori-

zon. Holding cost in a period depends on the current period and the quantity on hand. Wagner and Whitin [8] show that

in the case of fixed-plus-linear production and linear holding cost functions and unlimited production, there is an optimal

solution with a special structure: production may occur only in periods where the initial inventory is zero, called the Zero

Inventory Property (ZIP). Because of this property, Dynamic Programing (DP) formulation is possible. Later on, the versions

of ELS with backlogging [9] , stationary production capacities [10] and more general cost functions appear in the literature.

Zangwill [11] shows that ZIP holds when all cost functions are concave. 

Chan et al. [12] consider ELS with modified all-unit discount ordering and linear holding cost functions. They prove the

NP-hardness of the problem and suggest an approximation algorithm that assumes ZIP, which may not hold in the optimal

solution. 

Florian et al. [13] and Bitran and Yanasse [10] show that with non-stationary production capacities, ELS is NP-hard even

when the production cost functions have fixed-charge structure and holding costs are linear. Florian and Klein [14] give an

O ( n 4 ) time Dynamic Programing algorithm to find an optimal solution ( n is the number of periods) with concave costs and

stationary production capacities. This algorithm is based on the special structure of the independent subparts of the optimal

solution. We can classify the cost functions based on which items are subject to that cost function as (i) Period dependent,

(ii) Period-pair dependent (PPD), (iii) Age-dependent (AD) cost functions. 

Hsu and Lowe [15] consider ELS with backlogging, where the backlogging and holding cost functions are period-pair

dependent. Period-pair dependent cost means at period t (i) cost is only incurred for items that satisfy the demand of

period t , and (ii) this cost is different based on its production period. For the holding cost, it is the total cost of carrying

items from its production period to the demand period. They show that under some assumptions on the cost functions, the

problem is solvable in polynomial time. However, their model does not consider deteriorating inventory. In age-dependent

cost case, the cost function depends on both the current period and the age of the item during the period. It is incurred for

all existing items in that period based on their age. 

According to Friedman and Hoch [16] , ZIP may not hold even in the case of (i) deterioration rates that only depend

on the age of the inventory, (ii) linear age-dependent holding cost functions, and (iii) fixed-plus-linear production cost

functions. Hsu [17] introduces the dynamic uncapacitated economic lot-sizing problem with perishable inventory under age-

dependent holding costs and deterioration rates, where all cost functions are nondecreasing concave. He proves that, under

his assumptions, there is an optimal solution composed of subplans of each including some consecutive demand periods

and a prior subplan is satisfied by a prior production period. This property of the optimal solution is named as Internal

Division Property (IDP). His Dynamic Programing algorithm is based on IDP and runs in O ( n 4 ) time. 

Hsu [1] extends Hsu [17] by allowing backlogging in the model and gives an algorithm that runs in O ( n 4 ) time under

some assumptions on cost functions and demand. These studies show that without these assumptions, IDP may not hold.

Chu et al. [18] introduce a more general version of Chan et al. [12] by considering general economies of scale production cost

functions and perishability. The later study considers period-pair-dependent deterioration rates and holding cost functions.

Moreover, they assume that the marginal cost of holding additional units of inventory is not higher than that for an older

stock. Since the problem is NP-hard, they propose an approximation scheme that gives a solution with an objective value

not more than 1.52 times of the optimal objective value. Bai et al. [19] extends Chu et al. [18] by including backlogging. In

this study, we extend Hsu [1] by considering finite production capacities. 

The rest of the paper is organized as follows. In Section 2 , we present our model and show that it is equivalent to

a minimum cost network flow problem on a specially constructed network with flow loss. In Section 3 , we give some

structural properties of the optimal solution and prove that our problem is NP-hard. In Section 4 , we introduce our solution

approach and in Section 5 , we discuss our experimental results. In Section 6 , we conclude the paper. 

2. Problem formulation 

Consider a planning horizon of n periods. We define 

• x t as the production volume in period t , assumed to be available at the beginning of the period t , where x t ≥ 0 for 1 ≤
t ≤ n . 

• z it as the amount of production in period i used to satisfy demand in period t , where z it ≥ 0 for 1 ≤ i, t ≤ n . When i <

t , it is amount of inventory held, when i > t it is amount of backlogging. Demand satisfaction occurs at the beginning of

the production period just after the production. 
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• y it as the amount of inventory left at the beginning of period t of production at period i after z it is deducted, where y it 
≥ 0 for 1 ≤ i ≤ t ≤ n . 

We also define the parameters of the problem. 

• d t is the demand of the item in period t , where d t ≥ 0 
• C is the fixed production capacity of a period, where C ≥ 0 
• αit is the deterioration rate during period t for y it , in other words the fraction of y it lost during period t , where 1 ≤ i ≤

t ≤ n and 0 ≤ αit ≤ 1 

We define the cost functions below. 

• c t ( x ) is the production cost of producing x units in period t 
• H it ( y ) is the cost function for carrying y units during period t , produced in period i and left at the beginning of t , where

i ≤ t 
• B it ( z ) is the cost of backlogging z units from the demand of period t from production in period i , where i > t 

The production, inventory holding and backlogging functions are nondecreasing concave functions where c t (0) = 0 ,

H it (0) = 0 for 1 ≤ i ≤ t ≤ n and B it (0) = 0 for 1 ≤ t < i ≤ n . The inventory holding cost functions are age dependent,

in other words all items produced at period i and kept through period t are subject to cost function H it . Moreover, the dete-

rioration rates are age dependent. In period-pair-dependent case, we have a positive quantity for H it if some of the demand

of period t is satisfied from period i . On the other hand the backordering cost functions are period-pair dependent, i.e. cost

function depends on both periods when the order is placed and filled. As given in [15] , period-pair dependent backorder-

ing cost is realistic for a product with seasonal demand. In high demand season, customers can be more impatient to wait

than in low demand season. Also, backordering cost increases as the waiting time increases. We assume zero inventory and

backlogging levels at the beginning and the end of the planning horizon. 

Now, we can present our problem ( P ). 

(P ) Minimize 

n ∑ 

t=1 

[ 

c t (x t ) + 

t ∑ 

i =1 

H it (y it ) + 

n ∑ 

i = t+1 

B it (z it ) 

] 

subject to 

x t −
t ∑ 

i =1 

z ti = y tt 1 ≤ t ≤ n, (1) 

(1 − αi,t−1 ) y i,t−1 − z it = y it 1 ≤ i < t ≤ n, (2) 

n ∑ 

i =1 

z it = d t 1 ≤ t ≤ n, (3) 

0 ≤ x t ≤ C 1 ≤ t ≤ n, (4) 

y it ≥ 0 1 ≤ i ≤ t ≤ n, (5) 

z it ≥ 0 1 ≤ i, t ≤ n. (6) 

Constraints (1) calculate the amount left from x t at the beginning of period t after a certain level of demand up to period

t is satisfied. Constraints (2) calculate the amount left from y i,t−1 after deterioration and demand satisfaction in period t .

Constraints (3) assure that demand for each period is satisfied at the end of the horizon. Constraints (4) limit the production

levels by capacity and ensure nonnegativity. Constraints (5) and (6) are nonnegativity constraints. 

Without constraints (4) , this model represents the same problem in [1] . We combine two sets of variables in [1] under

one set, and eliminate one set of constraints that calculate the amount of unsatisfied demand. We switch the age-dependent

backordering cost function into a period-pair-dependent cost function in order to represent our problem as a minimum cost

flow problem with flow loss. Flow loss means the incoming flow to a node is greater than or equal to the outgoing flow.

In Fig. 1 , we give the network flow representation for 4 periods. The only difference between this network and the one in

[17] is the backlogging (backward) arcs. We assume 1 ≤ i ≤ t ≤ n . 

• F is the source node 
• N it for all ( i, t ) pairs are inventory connection nodes 
• S for all i are demand nodes 
i 
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Fig. 1. Network representation of P . 

 

 

• The arcs from F to N tt are production arcs, namely x t 
• The arcs from N it to N i,t+1 are inventory arcs, namely y it 
• The arcs from N it to S t are demand satisfaction arcs via holding or production at the same period, namely z it , i ≤ t 
• The arcs from N ii to S t are demand satisfaction via backlogging arcs, namely z it , i > t 

Let us extend the definition of A 

i 
kt 

in [1] , the amount needed to be kept at the beginning of period k from production at

period i to satisfy one unit demand in period t . When t < i , only A 

i 
it 

is defined and equal to 1. For 1 ≤ i ≤ k < t ≤ n 

A 

i 
kk = 1 and A 

i 
kt = 

1 ∏ t−1 (1 − αil ) 
. (7)
l= k 
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Fig. 2. Reduced network representation of P . 

 

 

 

 

 

 

 

 

Given z it values, we can calculate y it values (derived by using constraints (1) and (2) recursively). 

y it = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

t−1 ∏ 

k = i 
(1 − αik ) 

(
x i −

i ∑ 

k =1 

z ik 

)
−

t−1 ∑ 

k = i +1 

t−1 ∏ 

m = k 
(1 − αim 

) z ik − z it , if i < t 

x i −
i ∑ 

k =1 

z ik , if i = t. 

(8) 

We know that 

x i = 

n ∑ 

k =1 

A 

i 
ik z ik . (9) 

By using the definition (7) and Eqs. (8) and (9) , we obtain: 

y it = 

n ∑ 

k = t+1 

A 

i 
tk z ik . (10) 

Both y it and x t can be written as a linear combination of z it values. While representing the solution, z it values are enough

and all x t and y it values can be driven using Eqs. (9) and (10) in O ( n 2 ) time. Our real decision variable is z it and we can

represent ( P ) in terms of z it . 

(R ) Minimize 

n ∑ 

t=1 

[ 

c t 

( 

n ∑ 

k =1 

A 

t 
tk z tk 

) 

+ 

t ∑ 

i =1 

H it 

( 

n ∑ 

k = t+1 

A 

i 
tk z ik 

) 

+ 

n ∑ 

i = t+1 

B it (z it ) 

] 

, 

subject to 

n ∑ 

i =1 

z it = d t 1 ≤ t ≤ n, (11) 

n ∑ 

k =1 

A 

t 
tk z tk ≤ C 1 ≤ t ≤ n, (12) 

z it ≥ 0 1 ≤ i, t ≤ n. (13) 

Now, we represent the problem on a reduced network where the inventory arcs are eliminated. An example reduced

network is given in Fig. 2 , where only the arcs with positive flow are given. First level nodes are production period nodes,

and the second level nodes are demand period nodes and named by their period numbers. First level arcs are production

arcs, and the second level arcs are demand satisfaction arcs. 

3. Structural properties of the optimal solution 

Problem ( P ) has the objective of minimizing a concave function, and the constraints create a compact polyhedral. Accord-

ing to Bazaraa and Shetty [20] , when the objective is minimizing a concave function and the feasible region is a compact

polyhedral, the optimal solution is an extreme point in the feasible region. For a network flow problem, extreme point

solution means there are no cycles of free arcs, the arcs with positive flow value less than the capacity [11] . 
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Fig. 3. The reduced network representation for the solution of Example 1 . 
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The optimal solution of our problem ( P ) may not satisfy the basic characteristics of the general lot sizing problems.

Namely, how to distribute the production quantity is not trivial. We have to decide, for which periods it is used. Even

though there is inventory it may not be used to satisfy the first period that needs it. We demonstrate this with an example.

Example 1. The demand for the next six periods are 15, 10, 20, 5, 5, and 10. The values of αit = 0 . 1 for all t ≥ i and

 = 24 . We assume all cost functions as linear. Specifically, c t (x t ) = c t x t , B it (z it ) = b it z it , H it (y it ) = h it y it . c 1 = 50 0 0 , c 2 = 50 0 ,

c 3 = 200 , c 4 = 100 , c 5 = 250 , and c 6 = 30 0 0 . 

b = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

− − − − − −
100 − − − − −
200 196 − − − −
400 250 120 − − −
625 500 20 169 − −
700 600 350 256 196 −

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

h = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

5 12 15 80 90 100 

− 25 30 35 45 55 

− − 5 10 15 20 

− − − 15 20 30 

− − − − 26 50 

− − − − − 40 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

In the optimal solution, y 44 = 9, y 45 = 8.1, and y 55 = 3.011. The values of the other decision variables are given below. 

z = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 0 0 0 0 

0 0 0 0 0 0 

15 0 9 0 0 0 

0 10 0 5 0 7 . 29 

0 0 11 0 5 2 . 71 

0 0 0 0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

x = 

(
0 0 24 24 19 . 011 0 

)

The reduced network representation of the solution of Example 1 with only positive flow arcs is given in Fig. 3 . The

demand of period 2 is not met at period 3 even though inventory is available and the demand of period 3 is not satisfied

at period 4 even though inventory is available. This observation corresponds to intersecting demand satisfaction arcs in the

reduced network. 

Theorem 1. There is an optimal solution for problem (P), where for each period t, there is at most one i, where z it > 0 and 0 <

x i < C. 

Proof. Suppose that the demand of a period is satisfied by production at more than one period with free production arcs.

In this case we obtain cycles of free arcs. �

Theorem 2. There is an optimal solution, where each connected part has at most one partial production period with quantity ε,

where 0 < ε < C. 

Proof. If two of the production periods have positive x values less than the capacity, we obtain at least one cycle with

free arcs. Making one of these production values equal to capacity/zero, and decreasing/increasing the other one by some

amount in the cycle, we obtain a better solution because of the concave cost structure. �

Let us define � f (x, δ) = f (x + δ) − f (x ) . We define the following assumptions on our problem parameters to compare

our study with the related literature. 

Assumption 1. For any 1 ≤ i ≤ j ≤ t ≤ n, αjt ≤ αit . 
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Table 1 

Comparison with the related literature in terms of assumptions in the model. 

Hsu [17] Hsu and Lowe [15] Hsu [1] Our study 

Perishability AD – AD AD 

Backlogging – PPD AD PPD 

cost function 

Inventory holding AD PPD AD AD 

cost function 

Assumption 1 � – � � 

Assumption 2 – – – � 

Assumption 3 – – – � 

Assumption 4 – – – � 

Assumption 5 � – � –

Assumption 6 – – � or –

nondecreasing demand 

Production capacities ∞ ∞ ∞ Constant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assumption 2. For any x, y, z ≥ 0 and 1 ≤ i ≤ j ≤ t ≤ n 

� H jt (x, z) ≤ � H it (y, z) 

Assumption 3. For any x, y, z ≥ 0 and 1 ≤ t < j ≤ i ≤ n 

� B jt (x, z) ≤ � B it (y, z) 

Assumption 4. For any x, y, z ≥ 0 and 1 ≤ j ≤ i < t ≤ n 

� B ti (x, z) ≤ � B t j (y, z) 

Assumption 5. For any y ≥ 0 and 1 ≤ i ≤ j ≤ t ≤ n 

H jt (y ) ≤ H it (y ) 

Assumption 6. There is a nondecreasing marginal backlogging cost with respect to age of the inventory. In other words,

extra unfilled units for period i is more expensive than for period j in period t , where 1 ≤ i ≤ j ≤ t ≤ n . 

Assumption 1 is a practical assumption and states that the deterioration rate at a period is more for an older inventory.

Deterioration rate is equal to 1 when the age is greater than the shelf life. Assumption 2 states that there is a nondecreasing

marginal holding cost with respect to the age of inventory. Assumption 3 states that for a given demand period t , there is

a nondecreasing marginal cost of backlogging with respect to the production period. Assumption 4 states that for a given

production period t , there is a nondecreasing marginal cost of satisfying the demand of periods by backlogging with respect

to the satisfied period. 

This paper includes Assumptions 1 –4 . Assumption 2 implies 5 . Table 1 states the assumptions of the most related pa-

pers in the literature. Hsu and Lowe [15] has more restrictions on the period-pair-dependent holding and backlogging cost

functions. 

We first show that our problem under Assumptions 1 –4 is NP-hard. In [21] , it is recently shown that when the item

under consideration has a deterministic expiration date (when αit values are 0 or 1) under two allocation mechanisms: First

Expiration, First Out (FEFO) and Last In, First Out (LIFO), ( P ) is NP-hard. Our model does not assume any mechanism, it finds

the best solution without any defined mechanism. 

Theorem 3. Under Assumption 1 , Problem (P) with zero inventory holding and backlogging costs is NP-hard. 

Proof. We convert a known NP-complete problem into ( P ). We use Knapsack problem as in the proof of nonperishable lot

sizing problem with non-stationary capacity limits [13] . 

Knapsack: Given positive integers b 1 , . . . , b n and B , is there a subset S ⊂ T = { 1 , . . . , n } such that 
∑ 

i ∈ S b i = B ? 

Given any instance of Knapsack, we can obtain the following instance of problem ( P ), I P in polynomial time. We have

n + 1 periods (0, 1, ..., n ). We sort array b in non-decreasing order and obtain a 1 , . . . , a n . We pick a C ≥ a n . 

A 

t 
tn = C/a t t = 1 , . . . , n − 1 . (14) 

A 

t 
tn ≥ A 

t+1 
t+1 ,n 

, since a t ≤ a t+1 . Moreover, in I P , A 

t 
tn ≥ A 

t+1 
t+1 ,n 

. 

A 

t 
tn = 

1 

1 − αt,t 

n −1 ∏ 

l= t+1 

1 

1 − αt,l 

≥
n −1 ∏ 

l= t+1 

1 

1 − αt+1 ,l 

= A 

t+1 
t+1 ,n , 

due to Assumption 1 ( 0 ≤ αt+1 ,l ≤ αt,l ≤ 1 ). We calculate all A 

t 
tn values for t = 1 , . . . , n − 1 , and given these values it takes

O ( n ) time to calculate αit for all 1 ≤ i ≤ t ≤ n − 1 using the following procedure. We start with t = n − 1 and assign αi,n −1 =
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1 − a n −1 
C (from the solution of A 

n −1 
n −1 ,n 

= 

1 
1 −αn −1 ,n −1 

) for all i = 0 , . . . , n − 1 . Then we solve the below equation to find αn −2 ,n −2 . 

A 

n −2 
n −2 ,n = 

1 

(1 − αn −2 ,n −2 ) 

1 

(1 − αn −2 ,n −1 ) 
. 

We assign αi,n −2 = αn −2 ,n −2 for all i = 0 , . . . , n − 2 . We continue in this fashion until we calculate the values of αit for all

0 ≤ i ≤ t ≤ n − 1 . We set A 

0 
00 

to 1 and calculate A 

0 
0 i 

values for i = 1 , . . . , n . 

A 

0 
0 i = 

i −1 ∏ 

l=0 

1 

1 − α0 l 

. 

We create d t values for t = 0 , . . . , n − 1 such that 
∑ n −1 

i =0 A 

0 
0 i 

d i = C and set d n = B . 

h it (x ) = 0 x ≥ 0 ; 1 ≤ i ≤ t ≤ n 

b it (x ) = 0 x ≥ 0 ; 1 ≤ t < i ≤ n 

c 0 (x ) = 0 x ≥ 0 

c t (0) = 0 t = 1 , . . . , n 

c t (x ) = 1 + 

a t − 1 

C 
x 0 < x ≤ C; t = 1 , . . . , n 

This way, we create an instance of ( P ) obeying Assumption 1 . 

We claim that Knapsack has a solution if and only if there is a feasible production plan for I P with total cost equals to

B . Since there is no cost of production for the zeroth period and zero holding cost it uses its all capacity. The production

capacity is enough to satisfy the periods 0 , . . . , n − 1 since 
∑ n −1 

t=0 A 

0 
0 t 

d t = C. We need to satisfy the demand of the last period

using production in periods 1 , . . . , n . 

Therefore, we can restrict our attention to the following set of solutions. 

x 0 = C, 

n ∑ 

t=1 

x t 

A 

t 
tn 

= B, 0 ≤ x t ≤ C (t = 1 , . . . , n ) 

The production cost functions for t = 1 , . . . , n are concave and have the following properties. 

c t (x ) > 

a t 

C 
x 0 < x < C 

c t (x ) = 

a t 

C 
x x ∈ { 0 , C} 

As c 0 (C) = 0 and C = a t A 

t 
tn due to expression (14) , we have 

n ∑ 

t=0 

c t (x t ) ≥ c 0 (C) + 

n ∑ 

t=1 

a t 

C 
x t = 

n ∑ 

t=1 

x t 

A 

t 
tn 

= B. 

Therefore, the total cost is at least equal to B . Total cost can be equal to B if and only if x t ∈ {0, C } for all t = 1 , . . . , n .

Therefore if there is a S ⊂ T = { 1 , . . . , n } that production is at full capacity such that 
∑ 

i ∈ S b i = B then there is a solution for

I P with total cost B . 

We claim that I P has a solution with total cost equals to B if and only if there is a solution for Knapsack . If we have

subset S ⊂ T = { 1 , . . . , n } with 

∑ 

i ∈ S b i = B then if we produce at full capacity at each period i ∈ S and do not produce at

each period i 	∈ S , we obtain a plan with total cost equals to B . Otherwise, positive production quantities less than capacity

gives a cost higher than B . �

We further analyze the structure of the optimal solution in terms of intersecting z arcs. 

Theorem 4. There is an optimal solution of (P), where z i 1 t 2 and z i 2 t 1 are not both positive for the following cases. 

a. t 1 ≤ i 1 < i 2 ≤ t 2 
b. i 1 < t 1 < t 2 < i 2 

Proof. Suppose that we have an optimal solution with positive z i 1 t 2 and z i 2 t 1 values. The current solution is denoted by

z + 
it 
, y + 

it 
, x + t . We also use the notation � f (x, δ) = f (x + δ) − f (x ) for any x . 

a. We define δ = min { A 

i 1 
i 1 t 2 

z + 
i 1 t 2 

, z + 
i 2 t 1 

} . Without changing x i 1 and x i 2 , for any 0 < z ≤ δ, suppose that we do the following

changes: increase z i 1 t 1 by z and z i 2 t 2 by z 

A 
i 1 
i 1 t 2 

; decrease z i 2 t 1 by z and z i 1 t 2 by z 

A 
i 1 
i 1 t 2 

. After these changes, all demand is still

satisfied and we can show that total cost does not increase. Increasing z i 2 t 2 by z 

A 
i 1 
i 1 t 2 

increases the inventory held in period
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k = i 2 , . . . , t 2 − 1 by 
A 

i 2 
kt 2 

A 
i 1 
i 1 t 2 

z. Decreasing z i 1 t 2 by z 

A 
i 1 
i 1 t 2 

units decreases the inventory held in period k = i 1 , . . . , t 2 − 1 by 
A 

i 1 
kt 2 

A 
i 1 
i 1 t 2 

z

units. We calculate the change in cost by the following expression. 

t 2 −1 ∑ 

k = i 1 
�H i 1 k 

( 

y i 1 k , −
A 

i 1 
kt 2 

A 

i 1 
i 1 t 2 

z 

) 

+ 

t 2 −1 ∑ 

k = i 2 
�H i 2 k 

( 

y i 2 k , 
A 

i 2 
kt 2 

A 

i 1 
i 1 t 2 

z 

) 

+ �B i 1 t 1 (z i 1 t 1 , z) + �B i 2 t 1 (z i 2 t 1 , −z) . 

Due to Assumption 3 , an increase in z i 2 t 1 is more costly than the same increase in z i 1 t 1 , therefore 

�B i 1 t 1 (z i 1 t 1 , z) + �B i 2 t 1 (z i 2 t 1 , −z) = �B i 1 t 1 (z i 1 t 1 , z) − �B i 2 t 1 (z i 2 t 1 − z, z) ≤ 0 . (15) 

For any 0 ≤ z 1 ≤ z ≤ z i 2 t 1 

�B i 1 t 1 (z i 1 t 1 , z) + �B i 2 t 1 (z i 2 t 1 , −z) = 

�B i 1 t 1 (z i 1 t 1 , z 1 ) + �B i 2 t 1 (z i 2 t 1 , −z 1 ) + �B i 1 t 1 (z i 1 t 1 + z 1 , z − z 1 ) + �B i 2 t 1 (z i 2 t 1 − z 1 , z 1 − z) , 

and by using Assumption 3 and the same argument in (15) , �B i 1 t 1 (z i 1 t 1 , z) + �B i 2 t 1 (z i 2 t 1 , −z) , �B i 1 t 1 (z i 1 t 1 , z 1 ) +
�B i 2 t 1 (z i 2 t 1 , −z 1 ) , and �B i 1 t 1 (z i 1 t 1 + z 1 , z − z 1 ) + �B i 2 t 1 (z i 2 t 1 − z 1 , z 1 − z) are negative, then we can write 

�B i 1 t 1 (z i 1 t 1 , z) + �B i 2 t 1 (z i 2 t 1 , −z) ≤ �B i 1 t 1 (z i 1 t 1 , z 1 ) + �B i 2 t 1 (z i 2 t 1 , −z 1 ) . (16) 

Therefore, left hand side of the inequality (15) is a decreasing function of z . We can reorganize the remaining change in cost

as: 

i 2 −1 ∑ 

k = i 1 
�H i 1 k 

( 

y i 1 k , −
A 

i 1 
kt 2 

A 

i 1 
i 1 t 2 

z 

) 

+ 

t 2 −1 ∑ 

k = i 2 
�H i 1 k 

( 

y i 1 k , −
A 

i 1 
kt 2 

A 

i 1 
i 1 t 2 

z 

) 

+ 

t 2 −1 ∑ 

k = i 2 
�H i 2 k 

( 

y i 2 k , 
A 

i 2 
kt 2 

A 

i 1 
i 1 t 2 

z 

) 

. 

The first term is negative. Since A 

i 1 
kt 2 

≥ A 

i 2 
kt 2 

for any i 2 ≤ k ≤ t 2 − 1 (due to Assumption 1 ) 

t 2 −1 ∑ 

k = i 2 
�H i 1 k 

( 

y i 1 k , −
A 

i 1 
kt 2 

A 

i 1 
i 1 t 2 

z 

) 

+ 

t 2 −1 ∑ 

k = i 2 
�H i 2 k 

( 

y i 2 k , 
A 

i 2 
kt 2 

A 

i 1 
i 1 t 2 

z 

) 

≤

t 2 −1 ∑ 

k = i 2 
�H i 1 k (y i 1 k , −

A 

i 1 
kt 2 

A 

i 1 
i 1 t 2 

z) + 

t 2 −1 ∑ 

k = i 2 
�H i 2 k (y i 2 k , 

A 

i 1 
kt 2 

A 

i 1 
i 1 t 2 

z) . (17) 

We can show that 

A 

i 1 
kt 2 

A 

i 1 
i 1 t 2 

= 

∏ t 2 −1 
l= i 1 (1 − αi 1 ,l ) ∏ t 2 −1 
l= k (1 − αi 1 ,l ) 

= 

1 

A 

i 1 
i 1 k 

. 

Now, expression (17) can be restated as below and due to Assumption 2 , it is non-positive. 

t 2 −1 ∑ 

k = i 2 
�H i 1 k 

( 

y i 1 k , −
z 

A 

i 1 
i 1 k 

) 

+ 

t 2 −1 ∑ 

k = i 2 
�H i 2 k 

( 

y i 2 k , 
z 

A 

i 1 
i 1 k 

) 

= −
t 2 −1 ∑ 

k = i 2 
�H i 1 k 

( 

y i 1 k −
z 

A 

i 1 
i 1 k 

, 
z 

A 

i 1 
i 1 k 

) 

+ 

t 2 −1 ∑ 

k = i 2 
�H i 2 k 

( 

y i 2 k , 
z 

A 

i 1 
i 1 k 

) 

≤ 0 . 

Since this change decreases as z increases (due to similar discussion in inequality (16) ), we obtain the best solution at

z = δ. At z = δ, at least one of the variables z i 1 t 2 and z i 2 t 1 becomes zero. 

b. We define δ = min { z + 
i 1 t 2 

, z + 
i 2 t 1 

} . We show that for any 0 < z ≤ δ, increasing z i 1 t 1 and z i 2 t 2 values by z ; and decreasing

z i 1 t 2 and z i 2 t 1 by z without changing x i 1 and x i 2 values, does not increase the total cost. Increasing z i 1 t 1 by z increases

the inventory held in period k = i 1 , . . . , t 1 − 1 by A 

i 1 
kt 1 

z. Decreasing z i 1 t 2 by z units decreases the inventory held in period

k = i 1 , . . . , t 2 − 1 by A 

i 1 
kt 2 

z units. We calculate the change in cost by the following expression. 

t 2 −1 ∑ 

k = i 1 
�H i 1 k (y i 1 k , −A 

i 1 
kt 2 

z) + 

t 1 −1 ∑ 

k = i 1 
�H i 1 k (y i 1 k , A 

i 1 
kt 1 

z) + �B i 2 t 2 (z i 2 t 2 , z) + �B i 2 t 1 (z i 2 t 1 , −z) . 

We can reorganize the terms as below. 

t 1 −1 ∑ 

k = i 1 
�H i 1 k (y i 1 k , (A 

i 1 
kt 1 

− A 

i 1 
kt 2 

) z) + 

t 2 −1 ∑ 

k = t 1 
�H i 1 k (y i 1 k , −A 

i 1 
kt 2 

z) + �B i 2 t 2 (z i 2 t 2 , z) + �B i 2 t 1 (z i 2 t 1 , −z) . 
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Fig. 4. Two examples for subplan (1, 5, 1, 5). (a) A disconnected subplan, (b) A connected subplan. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since A 

i 1 
kt 1 

≤ A 

i 1 
kt 2 

for any i 1 ≤ k ≤ t 1 − 1 , 

t 1 −1 ∑ 

k = i 1 
�H i 1 k (y i 1 k , (A 

i 1 
kt 1 

− A 

i 1 
kt 2 

) z) + 

t 2 −1 ∑ 

k = t 1 
�H i 1 k (y i 1 k , −A 

i 1 
kt 2 

z) ≤ 0 , 

and this change decreases as z increases since H i 1 k 
is an increasing function. Moreover, because of Assumption 4 

�B i 2 t 2 (z i 2 t 2 , z) + �B i 2 t 1 (z i 2 t 1 , −z) = �B i 2 t 2 (z i 2 t 2 , z) − �B i 2 t 1 (z i 2 t 1 − z, z) ≤ 0 

and this change decreases as z increases with a similar argument in (16) . Therefore, we obtain the best solution at z = δ. At

z = δ, at least one of the variables z i 1 t 2 and z i 2 t 1 becomes zero. �

4. Solution approach 

We summarize the properties of an optimal solution of an instance with parameters obeying Assumptions 1 –4 as below

as a consequence of Theorems 3.1–3.4. 

Property 1. If a period is satisfied by multiple periods at most one of these periods can have partial production. 

Property 2. Each connected component (composed of positive flow arcs) has at most one partial production period. 

Property 3. If production period j satisfies period k > j then any period t (j < t < k) cannot be satisfied by a period later than

k and cannot satisfy a period t ≤ j. 

Let us define subplan ( s, m, p, r ) as the production periods from s to m, s ≤ m and the demand periods from p to r, p ≤
r , where the demand of periods from p to r are fully satisfied by the production periods from s to m , where m is a positive

production period. This means that, outside the subplan there is no incoming inventory/backlog ( z arcs) from production

periods nor outgoing inventory/backlog ( z arcs) to the demand periods. Moreover, there is no passing through z arc, i.e.

z ij with i 	∈ [ s, m ] and j 	∈ [ p, r ]. The next subplan starts with production period m + 1 and ends with a positive production

period. An optimal solution is composed of at least one subplan. 

There are two types of subplans: connected and disconnected. A connected subplan means all demand nodes are con-

nected via positive flow arcs. In Fig. 4 , we picture the reduced network for two cases of subplan (1, 5, 1, 5) with only positive

flow arcs. In Fig. 4 (b), we consider a connected case for subplan (1, 5, 1, 5). There is a undirected path of positive flow arcs

between all pairs of demand nodes. In Fig. 4 (a), we picture a disconnected subplan with two connected parts. First part is

composed of demand nodes 1, 2, and 5 (satisfied by periods 1 and 5) and the second part is composed of demand periods

3 and 4 (satisfied by only period 3). 

An optimal solution is composed of at least one subplan. This structure enables us to use Dynamic Programing (DP)

approach in our solution procedure. We define 

• V ( m, r ) as the minimum cost of satisfying the demand of periods 1 , . . . , r by the production at periods 1 , . . . , m . 
• P ( s, m, p, r ) as the minimum possible cost for subplan ( s, m, p, r ). 

We write the following backward recursion. Without loss of generality, we consider the subplans ( s, m, p, r ) such that 1

≤ s ≤ m , 1 ≤ p ≤ r . 

V (m, r) = min 

1 ≤s ≤m, 1 ≤p≤r 
{ V (s − 1 , p − 1) + P (s, m, p, r) } 
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Fig. 5. The matrix for subplan (1, 6, 1, 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We are looking for min i V ( i, n ) as the optimal solution value of ( P ). DP algorithm runs in O ( n 4 ) time if we know the

minimum cost of each subplan. Because this Dynamic Programing formulation corresponds to a shortest path problem on

an acyclic network with O ( n 4 ) arcs, it can be solved in O ( n 4 ) time [22] . To apply DP algorithm we need to compute all P ( s,

m, p, r ) values. 

4.1. Calculating the cost of a subplan 

We analyze the production quantities in the optimal solution via theorems. We focus on subplans with at most one

partial production. The number of full production periods β is at least 
 
∑ r 

k = p d k 
C � because of the deteriorating inventory. 

Let us define combination of a subplan ( s, m, p, r ) as the subplan with its full and partial production periods information.

A combination is represented by an array of production indicators ( PI ) for each production period. The possible values are

0, 1, and 2, and means no production, full production, and partial production, respectively. 

For a feasible subplan ( s, m, p, r ) we have 
(

m −s 
β

)
(β + 1) possible combinations. This value takes its maximum value at

β = � (m − s ) / 2  . One period is chosen as the partial production period, period m and other β − 1 periods are chosen as the

full production periods. 

The partial production quantity depends on its period, it is not fixed as in classical ELS. Let r t be the demand of period

t that is satisfied from partial production period. The partial production quantity if produced in period i , ε i , is calculated

based on r t values. 

εi = 

r ∑ 

t= p 
A 

i 
it r t . 

Example 2. Consider a 6-period problem. A possible combination for subplan (1,6,1,6) is [011210]. Periods 2, 3, and 5 are

full production periods. Period 4 is a partial production period and there is no production at other periods. 

There are O ( n 4 ) subplans. For each subplan, we check the feasibility. We first check if 
 
∑ r 

k = p d k 
C � < m − s + 1 . This is a

necessary condition but it is not enough. It is also important to check whether all demand can be met if we have full

production in each period, and consume it on a “first produced first consumed” basis. Since each subplan has exponential

number of combinations to choose from, we find a good solution for the given combination. 

4.2. Calculating the cost of a subplan’s combination 

The following section presents a method to find a good solution for a given subplan and its combination, which is similar

to Northwest corner method is used to find an initial basic feasible solution to the transportation problem. 

We fill out a square matrix of size max { m, r} − min { s, p} (see Fig. 5 ). The element ( i, j ) of this matrix represents z ij , where

i is the production period and j is the demand period. We assign zero demand and production to the periods not initially in

the subplan. For a given combination of a subplan, finding the optimal z values is easier since a good solution has z positive

values close the diagonal to avoid backlogging and holding costs, and we have to distribute all production quantity. 
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We aim to find z values, where the sum of the i th column is equal to d i and sum product of the j th row with A 

j 
ji 

values is

x j . In order to find the best solution for a subplan and its combination, we start with the case in which there is at most one

partial production period and try to improve the solution by disconnecting subplans, thus creating new partial production

periods. 

While filling out the matrix, we try to obey the properties of the optimal solution. 

• A production period first satisfies its own period, it is the least costly demand satisfaction for a production period. This

corresponds to moving through the diagonal when production period changes. The diagonal is shaded with gray in Fig. 5 .
• When we know the production periods, we first distribute from the full production periods and then use the partial

period for the remaining demand. 
• Because of Property 3 , we escape from the moves crossing the diagonal with an angle 0 < α < 90 to the x -axis. 
• While distributing the units from the full production periods 

− when going down satisfy the demand from left to right to finish all on hand 

− when going up satisfy right to left to use all on hand. 

The detailed steps of our heuristic for finding a good solution for a combination of a subplan is given below. In our

heuristic, we start at the top left corner of the matrix and move. While moving in the matrix, x and y represent the current

location on the x -axis and y -axis, respectively. For example in Fig. 5 , x, y = 1 , . . . , 6 . The remaining production at period x

for period y is calculated as below. ( 

Total production at x −
n ∑ 

k =1 

A 

x 
xk z xk 

) 

/A 

x 
xy . 

FIND COST ((s, m, p, r), combination) 

0. Feasibility check. 

(a) If β = 
 
∑ r 

k = p d k 
C � < m − s + 1 , go to (b). 

(b) Assume we have full production at each period and consume it in first produced first consumed manner. If all demand

can be satisfied then go to step 1. 

1. Forward move 

(a) Create the square subplan (min { s, p }, max { m, r }, min { s, p }, max { m, r }). 

(b) x = y = min { s, p} . If P I[ x ] = 2 go to step 2. 

(c) Set z xy to the minimum of the remaining production at period x and unsatisfied demand at y and update these values.

(d) If extra production remains then set y to first unsatisfied period. Go to (c). 

(e) x = x + 1 , y = x . If PI [ x ] 	 = 2 go to (c). 

2. Backward move 

(a) x = y = max { m, r} . If P I[ x ] = 2 go to step 3. 

(b) Set z xy to the minimum of the remaining production at period x and unsatisfied demand at y and update these values.

(c) If there is any unsatisfied demand, x = x − 1 and go to (b). 

(d) If y > x and unused production remains then y = y − 1 . 

(e) Set z xy to the minimum of the remaining production at period x and unsatisfied demand at y and update these values.

Go to (d). 

(f) x = x − 1 , y = x . If PI [ x ] 	 = 2 go to (b). 

3. Distribute the remaining production amount 

(a) x = max { m, r} . 
(b) If the remaining production at period x is positive and P I[ x ] = 1 then find the closest unsatisfied period y and go to

(c), else go to step (d). 

(c) Set z xy to the minimum of the remaining production at x and unsatisfied demand at y and update these values. Go to

(b). 

(d) x = x − 1 . If x ≥ min { m, r } go to (b). 

4. Determine the value of ε using unsatisfied demand of all periods. 

5. Improvement 1: for each diagonal element, we try to find a rectangle represented by its corners, where the diagonal

element is the right top corner. There should be at least two positive elements at opposite corners. If shifting one unit

around this rectangle is cost saving, apply it for the maximum possible value. 

6. Improvement 2: disconnect a connected subplan by removing a middle period if it saves cost. 

(a) If period e , where P I[ e ] = 2 does not satisfy all of its own demand, find a later period (denoted by k ) that satisfies

period e . Otherwise, stop. 

(b) If k satisfies a period (denoted by t ) earlier than e , define ρ = z ke . Increase z ee by ρ , set z ke to 0, increase z kt by ρ ,

decrease z et by min { ρ , z et }, and for any full production period l < e , where z lt > 0 decrease z lt by max { ρ − z et , 0 } . 
Example 3. Now, we consider the case when n = 6 and C = 20 . The demand for the next six periods are 15, 10, 20, 5, 1, and

10. The values of α = 0 . 1 for all t ≥ i . 
it 
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Fig. 6. Algorithm steps and solution before improvement steps. 

Fig. 7. (a) Improvement step 1 (b) Improvement step 2. 

 

 

 

 

 

 

 

 

 

We apply FIND COST heuristic for the subplan (1,6,1,6) and its combination represented by [011210]. In Fig. 6 , we apply

the steps 0 to 4, and assign z values according to the heuristic (given in the center of the cell) and the order of this

assignment on the top right corner of the cell. 

An example for improvement step 1 is shown in Fig. 7 (a). We choose period 3 and find a lower rectangle with two

positive values at opposite corners. If this move decreases the total cost, we decrease z 33 and z 51 by 1.5 units, and increase

z 53 and z 31 by the same amount. 

An example for improvement step 2 is shown in Fig. 7 (b). In spite of being a production period, period 4 does not satisfy

any of its demand. Period 5 satisfies all of its demand, therefore we supply these 5 units from period 4 instead of period

5. We decrease the supply of period 2 by 1.5 units and increase the supply of period 4 by 1.5 units. This move is along a

trapezoid. 

Theorem 5. Dynamic Programing based heuristic runs in O ( n 6 ) time. 

Proof. FIND COST runs for at most two combinations for a given subplan. For each candidate combination, feasibility check

takes O ( n 2 ) time. The matrix has O ( n 2 ) cells to fill in and each of them can be visited at most once. For the improvement
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Table 2 

Experimental results. 

d t n N F % N 0 % N 1 A ( G 1 ) M ( G 1 ) S ( G 1 ) 

Random 5 694 68.87 81.84 0.69 10.26 1.58 

10 7899 46.29 60.69 1.76 52.04 3.23 

20 54,688 18.35 32.82 3.34 23.97 3.67 

Constant 5 795 74.96 85.28 0.50 7.10 1.22 

10 8806 44.17 56.67 2.49 55.70 4.36 

20 122,642 14.96 23.92 4.54 44.90 4.68 

Increasing 5 645 78.90 88.83 0.3 6.81 0.89 

10 9691 56.40 72.60 0.98 52.62 2.14 

20 35,659 47.94 66.76 1.2 62.08 2.58 

 

 

 

 

 

 

 

 

 

 

 

steps, starting from a diagonal element finding a cell (as a corner of rectangle or trapezoid) takes O ( n ) time since it requires

scanning a column as a side of rectangle or trapezoid. Improvement step is applied for all O ( n ) diagonal elements. Therefore,

the heuristic runs in O ( n 6 ) time. �

5. Experimental results 

We test our FIND COST heuristic on different problem sizes. In this section, we discuss our results. We assume fixed-

plus-linear production cost function and linear backlogging and holding cost functions. 

C t (x t ) = F t + c t x t , B it (z it ) = b it z it , H it (y it ) = h it y it 

We have 9 problem sets for different problem sizes ( n = 5 , 10 , 20 ) and three types of demand generation schemes. We

generate 10 random instances based on the following procedure. We represent discrete uniform random variable in interval

[ a, b ] by U [ a, b ]. 

• C is 20 
• c t is U [10, 50] 
• d t is random ( U [5, 20] for each period), constant ( U [5, 15] and used for all periods), or increasing ( d t = U(3 , 7) + (t − 1) ∗

U(0 , 3) ) 
• F t is U [100, 500] 
• For all i , b ii = 0 and b i 0 = b i −1 , 0 + U[5 , 15] 
• For all i > j > 0, b i j = U[ b i −1 , j + 1 , b i, j−1 − 1] 
• For all i , h ii = U[1 , 10] 
• For all i ≥ j > 0, h ji = h j−1 ,i + U[5 , 10] 
• For all i, αii is U [0, 0.1] 
• For all i ≥ j > 0, α ji = α j−1 ,i + U[0 , 0 . 05] 

We measure the performance of FIND COST heuristic on finding subplan combination pair cost by comparing it with the

optimal cost found by CPLEX. We have the following notation. 

• N F is the number of feasible subplan combination pairs considered 

• z h is the cost of the subplan combination pair found by FIND COST heuristic 
• z ∗ is the optimal cost of the subplan combination pair 
• N 0 is the number of times the heuristic finds the optimal solution out of N F 

• % N 0 is the percentage of hitting the optimal solution for subplan combination pair and calculated as 
N 0 
N F 

∗ 100 

• G 1 is the percentage deviation from the optimal solution for a subplan combination pair 

G 1 = 

z h − z ∗

z ∗
∗ 100 

• % N 1 is the percentage of cases when G 1 is less than 1% 

• A ( x ) is the average of the values of x 
• M ( x ) is the maximum value of x 
• S ( x ) is the standard deviation of the values of x 

For each n and d t interval, we create 10 problem instances and we report our results in Table 2 . The heuristic performs

best when the demand is increasing through the time. The percentage of cases where FIND COST heuristic finds the optimal

solution is 78.90% and less than one percent is 88.83% when n = 5 . These values drop to 47.94% and 66.76% when n = 20 .

However, the average deviation is at most 1.2% when we have increasing demand through the time. We observe the worst

performance of the heuristic when the demand values are constant. The average deviation is 4.54% and the maximum

deviation is 55.70%. 
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An example solution. For a problem instance, when n = 10 and d t is random, the optimal solution by CPLEX 12.4 is given

below. The solution is composed of four connected subplans (1, 1, 1, 1), (2, 2, 2, 2), (3, 7, 3, 7) and (8, 10, 8, 10). All subplans

have one partial production period. 

Z ∗ = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

18 0 0 0 0 0 0 0 0 0 

0 19 0 0 0 0 0 0 0 0 

0 0 15 4 . 9 0 0 0 0 0 0 

0 0 0 4 . 1 8 6 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 2 18 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 10 10 0 

0 0 0 0 0 0 0 0 8 9 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

6. Conclusion and future research directions 

In this study, we present a model for ELS problem for a perishable item, where finite production capacities present. We

assume non-decreasing concave cost functions (holding, backlogging, and production). Deterioration rates and holding cost 

functions are age-dependent, and backlogging cost functions are period-pair dependent. 

We show the structural properties of the optimal solution, prove that it is composed of independent subplans, and

therefore we propose a Dynamic Programing based heuristic. We suggest an approximation algorithm (FIND COST) to find

a good solution for each subplan and combination pair. We discuss the performance of FIND COST heuristic. In [1] , a DP

algorithm that finds the optimal solution in O ( n 4 ) time is proposed. We show that a more realistic version of Hsu [1] with

finite production capacities is NP-hard and we offer a good solution when the subplan and its positive production periods

are given. As managerial insights, it is not economical to satisfy the demand in period t from a period k in two cases: when

a period later than k (including k ) is satisfied by a period between t and k (including t ); and when a period between t and

k is satisfied from a period before t . 

As a future research, the cost structures and parameters such that cost calculations for all subplans can be handled in

polynomial time, can be investigated. In that case, we have a polynomial time Dynamic Programing-based algorithm. 
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