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Technological  advances  in nanotechnology  enabled  the  use  of  microelectromechanical  systems  (MEMS)
in various  application  areas.  With  the  integration  of  various  sensor  devices  into  MEMS,  autonomously
calibrating  these  sensors  become  a major  research  problem.  When  performing  calibration  on  real-world
embedded  sensor  network  deployments,  random  errors  due  to  internal  and  external  factors  alter  the
calibration  parameters  and  eventually  effect  the  calibration  quality  in a negative  way.  Therefore,  during
autonomous  calibration,  calibration  paths  which  has low  cost  and  low  error  values  are  preferable.  To
tackle the  calibration  problem  on embedded  wireless  sensor  networks,  we  present  an energy  efficient
and  minimum  error  calibration  model,  and also  prove  that due  to random  errors the  problem  turns  into
euristic algorithms
mbedded sensor networks

an NP-complete  problem.  To the  best  of  our  knowledge  this  is the  first  time  a formal  proof  is presented
on  the  complexity  of an  iterative  calibration  based  problem  when  random  errors  are  present  in  the  mea-
surements.  We  also conducted  heuristic  tests  using  genetic  algorithm  to solve  the  optimization  version
of  the  problem,  on  various  graphs.  The  NP-completeness  result  also  reveals  that  more  research  is needed
to examine  the  complexity  of  calibration  in  a  more  general  framework  in real-world  sensor  network
deployments.
. Introduction

Recent advances in sensor technology enabled low cost, small
ized embedded devices to be integrated into our daily life.
dvanced nanoscale electronics integrated in microelectrome-
hanical systems (MEMS) are getting increasingly common every
ay. The advances in the manufacturing technology also triggered
he use of these devices embedded in smart nodes called sensor
odes, which eventually formed into networks of sensors con-
ected through wireless communication. Today sensor networks
ave a wide application area, from remote temperature monitor-

ng [1] to fault diagnosis [2]. Due to manufacturing defects, or
aused by environmental conditions over time, each sensor needs
o be calibrated [3,4]. Traditionally, calibration is done in controlled
nvironments, such as laboratories equipped with specialized cali-
ration hardware based on well-known standards. The calibration
an be done by physically adjusting the hardware, or in a non-
ntrusive way by adjusting the parameters of the sensor.

Calibration is known to correct only the systematic errors
n measurements. However, systematic errors are not the only

ype of error observed in real-world deployments. The mea-
urement errors are classified as systematic and random errors.
ach measurement has unpredictable random errors due to

∗ Tel: +90 232 488 8287; fax: +90 232 488 8475.
E-mail address: huseyin.akcan@ieu.edu.tr

568-4946/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.asoc.2013.01.013
©  2013  Elsevier  B.V.  All  rights  reserved.

environmental noise, precision of the equipment, or manufactur-
ing defects in the sensors. Therefore, in real-world deployments,
random measurement errors are inevitable. Furthermore, these
random measurement errors interfere with the calibration process
and alter the calibration parameters.

Refs. [5–7] report results of calibration in real-world sensor net-
work deployments. Buonadonna et al. [5] states calibration as one of
the most challenging tasks in real-world sensor deployments. The
challenges can be summarized as difficulty of calibrating a mas-
sive number of sensors and inconveniences at physically accessing
the sensors as they may  be deployed in harsh or even hostile envi-
ronments. Moreover, the sensors are presumed to stay active for
long periods of times after deployment, and therefore expected
to be calibrated periodically due to environmental conditions or
internal defects. For these reasons traditional calibration meth-
ods are not directly applicable to sensor networks. In an attempt
to solve this problem, parametric calibration methods have been
proposed [8–12]. Calibration is also investigated on mobile sen-
sor networks [13,14],  and source localization in acoustic sensing
platforms [15].

In parametric calibration,  a calibration function is defined, that
maps the output value of a target sensor to a reference sensor’s
reported value by adjusting the parameters of the target sensor.

The process of calibrating one sensor against a reference sensor
by using a calibration function is also known as pairwise calibra-
tion [9].  Pairwise calibration is performed among closeby sensor
pairs so that the correlation among their sensor readings when

dx.doi.org/10.1016/j.asoc.2013.01.013
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:huseyin.akcan@ieu.edu.tr
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bserving the same event is exploited to perform the calibration.
n wireless sensor networks the process of using pairwise calibra-
ion iteratively in such a way that sensors already calibrated are
sed to calibrate uncalibrated sensors is known as iterative calibra-
ion [12]. The main advantage of iterative calibration over reference
roadcasting is that iterative calibration does not require all the
ensors in the network to observe the same event at the same
ime.

In Section 2 we discuss the consequences of iterative calibration
n sensor networks, and present a calibration model that mini-
izes the maximum error due to calibration by using the minimum

nergy on a wireless sensor network. In Section 3 we present our
enetic algorithm as a heuristic solution to the given problem, and
n Section 4 we show the results of the various experiments we
onducted with the genetic algorithm. Finally, we present the con-
lusion in Section 5.

. The problem definition

Sensor networks are subject to environmental conditions, and
hey need to be calibrated periodically, therefore the pairwise cal-
bration, which depends on one-to-one wireless communication
mong neighbour sensors, should be done in an energy effi-
ient way. Our main objective in this paper is to perform energy
fficient calibration in sensor networks while minimizing the post-
alibration error of each sensor. To succeed in our objective, we
ave to provide two guarantees during our pairwise calibration: (1)
he calibration path should span all the sensors by using the min-
mum energy, (2) throughout the calibration, the maximum error
ntroduced should be minimized. We  further discuss the reason-
bility of these two assumptions below.

(1) In this paper, we are dealing with calibration in a sensor net-
work setting. One of the main properties of a sensor network is that
it is composed of multiple sensor devices (could go up to massive
amounts), and once deployed they should perform their sensing
task without further human intervention, as accessing the sensors
may  not be possible for all application scenarios. As the sensors
are expected to stay active for long amounts of times, they are also
expected to be calibrated periodically due to external or internal
factors. The calibration process, due to the above mentioned rea-
sons, has to be a self-calibration process, and once the calibration
is performed the process should cover all the sensors and should
be done in an energy efficient way as the sensors in general are low
on battery power. Therefore we claim that the first assumption is
a reasonable one.
(2) In a sensor network setting, we assume multihop communi-
cation between sensors. This is a widely accepted assumption for
sensor networks, as for large networks the radio range of nodes
does not cover all the nodes, or such communication is costly
compared to multihop communication. In a multihop commu-
nication network, the calibration is done in an iterative manner
[12]. In iterative calibration all sensors are calibrated based on
a fixed sensor which might be pre-calibrated or not. Therefore,
calibration follows a path, or a tree structure. On a sensor graph,
there are multiple ways to realize this path, and each path con-
tributes differently to the post-calibration error of each sensor.
The aim of assumption (2) is to minimize the post-calibration
error of each sensor introduced as a result of the calibration
process.
.1. Motivational example

To further clarify the subject we would like to first give an
xample on simple pairwise sensor calibration and then give an
Fig. 1. Motivational example showing the sensor graph (a), and two  alternative
calibration paths (b) and (c).

example on various iteration paths. Formal definitions of some
of the terms used in here will be presented in Section 2.2. First,
assume that we have two sensors x1 and x2 at hand, with abso-
lute maximum measurement errors of �1 and �2, respectively. Also
assume that x1 is already calibrated against a reference sensor, and
we would like to calibrate sensor x2 using the readings from sen-
sor x1. During calibration, the reading we get from x1 will be in a
range [x1 − �1, x1 + �1], and the x2 reading will be again in range
[x2 − �2, x2 + �2]. The calibration function for x2 will map  the read-
ing of x2 to the reading of x1. Therefore, in the worst case if x1
reports the reading as x1 − �1 and x2 reports the reading as x2 + �2,
or similarly x1 reports the reading as x1 + �1 and x2 reports the
reading as x2 − �2, the post-calibration skew of sensor x2 will be
|�1 + �2|, which is the sum of the absolute maximum measurement
errors.

Fig. 1 presents an example on the effects of iteration paths on
the calibration error. In Fig. 1(a) one can see the sensor graph with
five sensor nodes where the edges represent direct communication
links among the sensors. The edges also represent that the vertices
attached to the edges are close enough to calibrate each other. S0 is
assumed to be the pre-calibrated sensor, and the remaining sensors
will be calibrated based on this sensor. Also for each sensor the
absolute maximum measurement error is given as �i values. For
brevity, we can assume that all the edge distances are equal to each
other. The problem now is to find an iteration path or ordering,
such that the post-calibration skew of each sensor and the total
calibration path costs will both be minimized. As the edge distances
are equal to each other, we reduce the problem to only minimizing
the post-calibration skew in this example.

In Fig. 1(b) a possible solution for the iteration path is presented,
where the arrows represent pairwise calibration among sensors.
As a result of the calibration, the post-calibration skew values of
the sensors are the sum of the absolute maximum errors of each
node and can be given as: �1 = |9|, �2 = |14|, �3 = |12|, �4 = |13|, where
the maximum post-calibration skew becomes |14| for the overall
network.

Fig. 1(c) shows another possible iteration path on the same sen-
sor graph. The post-calibration skew of the sensors on this iteration
path then becomes: �1 = |9|, �2 = |1|, �3 = |5|, �4 = |2|, where the max-
imum post-calibration skew this time is |9|. It is obvious from the
example that the iteration path in Fig. 1(c) is a better alternative
compared to the one in Fig. 1(b), and different paths contribute
differently to the post-calibration skew of the sensors. Therefore,
even though we  cannot control the random error in measurements,
we can adjust the path in such a way that the maximum post-
calibration skew introduced in calibration is minimized for the
whole network.

In the above example we  demonstrated to optimize the post-
calibration skew for the network, where the spanning tree costs

of all the calibration paths were equal to each other. However,
the problem that we propose in this paper focuses on minimiz-
ing both the post-calibration skew and the spanning tree cost
at the same time and therefore is an intractable problem. We
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ive formal definition of the problem and the intractability proof
elow.

.2. Formal definition of the problem

Pairwise calibration in sensor networks can be modeled as a
re-order traversal of a spanning tree, where the parent sensor

s calibrated first (assuming the root is pre-calibrated), and the
hildren are calibrated based on the parent. An iteration path for
alibration of a sensor j is defined as the path from the root to sen-
or j on the spanning tree. As calibration is expected to be done
eriodically, an energy efficient spanning tree that can also mini-
ize the maximum post-calibration error is required. We  call the

roblem as Minimum-Cost Bounded-Error Calibration Tree problem.
he formal definition of the problem is stated below.

efinition 2.1 (Calibration function). Given a sensor j with a nomi-
al sensor reading x′

j
, an absolute maximum random measurement

rror of |�j| and a pre-calibrated reference sensor r, the calibration
unction Fj(xj) maps the reading xj, such that x′

j
∈ [xj − �j, xj + �j], to

he output of sensor r.

efinition 2.2 (Post-calibration skew).  The post-calibration skew
�j) of sensor j for a given measurement is the difference between
he calibrated value of sensor j and the actual value x. As such
j = |x − Fj(xj)|. The post-calibration skew of a network with n sen-
ors is then given by max

k=1...n
(�k).

heorem 2.3. Let r be a reference sensor, and P be an iteration path
rom r to sensor j ∈ [1 . . . n]. The post-calibration skew of sensor j is
hen �j ≤

∑
k∈P�k.

roof. The proof is easy to show by induction on the number
f sensors on an iteration path. Assume a path with n + 1 sensors,
here sensors are numbered from 0 to n based on their distance

rom reference sensor 0. For the base case when k = 1 assume that
ensor 0 is the reference sensor with no random error, sensor 1 is
alibrated against the reported value of sensor 0 using calibration
unction F1

1(x1) − �1 ≤ x ≤ F1(x1) + �1,

here x is the ground truth value. The post-calibration skew for
ensor 1 is then,

1 = |x − F1(x1)| ≤ �1. (1)

It is easy to see from Eq. (1) that the base case holds. Let us
ssume by the inductive hypothesis that the theorem holds for

 ≤ k ≤ n so that,

k = |x − Fk(xk)| ≤
k∑

j=1

�j. (2)

We can show that the theorem holds for k + 1 by writing the
alibration function Fk+1 for sensor k + 1 against the reported value
f sensor k as:

k+1(xk+1) − �k+1 ≤ Fk(xk) ≤ Fk+1(xk+1) + �k+1. (3)

If we rewrite Eq. (2) and add −x to the inequality, we  get,
x −
k∑

j=1

�j ≤ −Fk(xk) ≤ −x +
k∑

j=1

�j. (4)
Fig. 2. An instance of MBCT obtained from an instance of Exact 3-Cover. Link costs
are  given, and �v values are equal to � for each sensor.

If we sum Eqs. (3) and (4) and add x − Fk+1(xk+1) to the inequality,
we get,

−
k+1∑
j=1

�j ≤ x − Fk+1(xk+1) ≤
k+1∑
j=1

�j, (5)

so that the post-calibration skew of k + 1 is then,

�k+1 = |x − Fk+1(xk+1)| ≤
k+1∑
j=1

�j,

which completes the proof. �

As a direct outcome of Theorem 2.3 we  can say that the post-
calibration skew is dependent on the iteration path P of calibration,
as the random errors of the sensors on the iteration path P effect
the post-calibration skew. Therefore different paths create different
post-calibration skew values.

Definition 2.4 (Calibration cost). The pairwise calibration cost is
the wireless communication cost of sensor j with sensor i at dis-
tance di,j. The total calibration cost is the sum of all pairwise
calibration costs over the entire network.

The decision version of the Minimum-Cost Bounded-Error Cali-
bration Tree problem can be stated as:

Definition 2.5 (MBCT). Given a wireless sensor network modeled
as an undirected graph G(V, E), and a designated reference node
r ∈ V, where each e ∈ E is assigned distance values de > 0, and each
v ∈ V is associated with a maximum random measurement error
�v, the MBCT problem is defined as finding a spanning tree over G
rooted at r with total edge cost not greater than a constant C > 0,
while the post-calibration skew of each sensor v ∈ V is bounded by
a positive constant k.

We can show that MBCT is NP-complete by a reduction from the
Exact 3-Cover problem which is shown to be NP-complete in [16].
In this proof, we follow a similar reduction as in [17].

Definition 2.6 (Exact 3-Cover). Given a set Y = {y1, . . .,  yq} of 3-
element subsets of a set X = {x1, . . .,  x3p}, and q ≥ p, does there exist
a subset Y′ ⊂ Y of pairwise disjoint sets such that

⋃
y∈Y ′ y = X?

Lemma  2.7. MBCT is in NP.
Proof. Given a solution T(V, E′), E′ ⊆ E, to the MBCT problem, it
is easy to verify in polynomial number of steps that T(V, E′) is a
spanning tree,

∑
e∈E′ de ≤ C, and ∀v ∈ V : �v ≤ k. �
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Given an arbitrary instance of Exact 3-Cover, an instance G(V, E)
f MBCT with r as reference node can be constructed in polynomial
ime as shown in Fig. 2 by following the steps below.

V = r ∪ t ∪ X ∪ Y

E = (r, t) ∪ {(r, yi) : yi ∈ Y}∪
{(t, yi) : yi ∈ Y}∪
{(yi, xj) : xj ∈ yi, and yi ∈ Y, xj ∈ X}

de =
{

3 e ∈ {(r, yi) : yi ∈ Y}
1 otherwise

�v = � ∀v ∈ V

k = 2�
C = 5p + q + 1

We  can now prove the sufficiency and necessity parts as below.

emma  2.8. If Exact 3-Cover has a solution then MBCT has a solution.

roof. For a feasible solution Y′ ⊂ Y of Exact 3-Cover, there are
xactly p yi ∈ Y′ terms each containing 3 disjoint xj terms, such
hat a solution rooted at r in the corresponding instance of MBCT
as xj nodes connected to exactly p non-leaf yi nodes, each also
irectly connected to r, while the remaining leaf yi ∈ Y − Y′ connect
o r through t. Therefore, the total post-calibration skew of each
ode is bounded by 2�, and the total edge cost of the spanning tree

s 3p + |Y′| * 3 + |Y − Y′| * 1 +1 = 5p + q + 1 = C. �

emma  2.9. If MBCT has a solution then Exact 3-Cover has a solution.

roof. For a feasible solution T(V, E′) of MBCT rooted at r, the {xj,
 = 1, . . .,  3p} appear as leaf nodes, and each xj connects to only one
yi, i = 1, . . .,  q}, where these non-leaf yi nodes are also connected
o node r. The remaining leaf yi nodes are connected to r through
. It is clear that the maximum post-calibration skew on T(V, E′) is
qual to 2�. The edge cost of T(V, E′) is not greater than C if and
nly if the number of non-leaf yi nodes are equal to p, such that
he sum of edge costs for all xjs, plus the non-leaf yis, plus the leaf
is and node t are equal to: C = 3p * 1 + p * 3 + (q − p) * 1 +1 = 5p + q + 1.
herefore, for the instance of Exact 3-Cover, the non-leaf yi nodes
orm a feasible solution of 3 element disjoint subsets that cover set
. �

heorem 2.10. The MBCT problem is NP-complete.

roof. Directly follows from Lemmas 2.7 to 2.9.  �

. Heuristic solution

In this section, we present the genetic algorithm [18] applied
o solve the optimization version of the MBCT problem. In the
ptimization version, the objective is to minimize both the post-
alibration skew and the total calibration costs. The genetic
lgorithm is designed in five main stages, chromosome encoding,
reating an initial population, crossover, mutation, and fix chromo-
ome routine. Below we describe the details of each stage.

.1. Chromosome encoding

In our genetic algorithm each chromosome is encoded as a list of
dges of a valid spanning tree for the sensor graph. As spanning tree
as V − 1 edges for V sensors, the size of each chromosome is fixed
nd equal to V − 1. Fig. 3 shows an example graph, its spanning tree

nd the chromosome encoding. As seen in Fig. 3(c), each chromo-
ome is encoded in terms of the edges of the spanning tree. Each
Si, Sj} pair in the chromosome represents an edge between nodes
i and Sj in the graph, and forms a single gene in the chromosome.
ng 13 (2013) 1766–1773 1769

3.2. Creating an initial population

The initial population is created randomly. From the input graph,
various random spanning trees are created, and each spanning tree
is encoded as a chromosome and included in the initial population.
The size of the initial population is controlled as a parameter, which
we cover in the experiments section.

3.3. Crossover

Crossover is the stage where new child chromosomes are cre-
ated from the fittest parents in the population. In the genetic
algorithm, we  use roulette wheel selection [19] to pick the two
chromosomes to crossover. Roulette wheel selection algorithm
selects the chromosomes randomly based on their fitness values,
where the fittest chromosomes have a higher chance to be selected
for crossover. During the crossover stage a boolean vector of size
V − 1 is created, and this vector is filled randomly such that, for each
gene in the chromosomes, there is an associated boolean value in
the vector. For all the true boolean values the gene of the first parent
is selected, and for all the false boolean values in the vector the gene
of the second parent is selected. Even though this algorithm per-
forms a random crossover among the two  parent chromosomes,
it does not ensure a valid spanning tree encoding for the newly
created child chromosome. A process called Fix Chromosome is
applied, as described below in Section 3.5,  to convert the chromo-
some encoding to a valid spanning tree.

3.4. Mutation

Mutation is used in genetic algorithms to avoid local optimal
results. Mutation is applied with a low mutation probability. In
the mutation phase, a randomly selected edge is removed from
the chromosome. Removing an edge from the chromosome dis-
connects the spanning tree, therefore the chromosome has to be
reorganized to represent a valid spanning tree. The reorganization
of the chromosome is done in the Fix Chromosome section below.

3.5. Fix chromosome

The objective of the Fix Chromosome function is to ensure the
chromosome represents a valid spanning tree, therefore the chro-
mosome is altered until the objective is met. In order to do so in
the Fix Chromosome function we  use the existing edges in the
chromosome, remove the edges that create cycles, and add ran-
dom edges to the spanning tree until the spanning tree has V − 1
edges. This process is designed similar to Kruskal minimum span-
ning tree algorithm, but without ordering the edges based on their
weights.

We designed the genetic algorithm to be generic enough so that
it allows the injection of different fitness functions. The results
of using these fitness functions are evaluated in the experiments
section below.

The pseudo-code of the genetic algorithm is presented in Fig. 4.
The input for the genetic algorithm is the sensor graph, and other
optional parameters such as initial population size, number of iter-
ations and mutation probability. Lines 2–4 show the code for new
chromosome creation and random initialization of the population.
Line 5 initializes the best fitness score, which is the outcome of the
algorithm and returned in line 18. Lines 7–17 show the code for the
main iteration of the genetic algorithm. The candidate parent chro-
mosomes are selected using roulette wheel selection in line 8, and

the worst chromosome based on the fitness value is selected in line
9. The crossover is performed in line 10, and with a low probability
the mutation is performed in lines 11 and 12. The FixChromosome
function, as described above in Section 3.5 is called in line 14. If the
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Fig. 3. Example graph (a), spanning tree of the graph

ew chromosome has a lower fitness value than the best chromo-
ome found so far, the best fitness score value is updated in line
5. The new chromosome is added to the population in line 16, and
he worst chromosome is removed from the population in line 17,
eeping the size of the population constant throughout the itera-
ions. Finally in line 18 the best fitness score found in the genetic
lgorithm is reported back.

. Experiments

In this section we present the results of our experimental eval-
ation for the optimization version of the MBCT problem. In the
ptimization version of the MBCT problem, the objective is to find

 spanning tree with respect to a given reference node over a given
raph, such that the total edge cost of the spanning tree and the
ost-calibration skew of each sensor will be minimized at the same
ime. We  first describe the parameters used in the genetic algorithm

nd the parameters of the graphs used in the experimentation in
ection 4.1.  Later, in Section 4.2 we present the results of applying
enetic algorithm to the MBCT problem for various parameters and
tness functions.

GeneticAlgorithm(Graph G)

1: /* Fill th e populatio n wit h rando m ch romosomes */
2: for L= 1 to Pop ulationS ize do
3: C = CreateNewRand omChromosome(G)
4: Popu lation.add (C)
5: BestFitness Score ← ∞
6: /* Run fo r Num berOfIterations */
7: for I=1 to NumberOf Iteratio ns do
8: {C1,C2} = Ro uletteW heel Selectio n(Popu lation)
9: CW orst = Select WorstChromosome(Populatio n)

10: CNew = Crossover( C1,C2)
11: if RandomNumber < Mu tationPro bability th en
12: CNew = Mutatio n(CNew)
13: /* FixChromosome make s su re CNew is a spannin g tre e */

14: CNew = FixChromosome( CNew,G)
15: BestFitness Scor e = mi n(BestFit ness Score,

GetFit ness Score( CNew))
16: Popu lation.add (CNew)
17: Popu lation.rem ove( CW orst)
18: return BestFit ness Score

Fig. 4. The pseudo-code of the genetic algorithm.
nd the chromosome encoding showing the edges (c).

4.1. Experimental setup

We  conducted our experiments on various sized randomly gen-
erated graphs. The details of the graphs are presented in Fig. 5.

On each graph, we run polynomial time algorithms to find the
minimum total calibration cost and the minimum post-calibration
skew values. In order to calculate the minimum total calibra-
tion cost (MIN COST) we  run Kruskal minimum spanning tree
algorithm. MIN COST gives us a lowerbound for the total cali-
bration cost of the graph. Similarly, we calculate the minimum
post-calibration skew (MIN ERROR)  of the graph using a modified
version of the Dijkstra’s shortest path algorithm. MIN  ERROR gives
us a lowerbound for the post-calibration skew of the graph. Simi-
larly, MAX COST and MAX  ERROR are the upperbounds for the total
calibration cost and the post-calibration skew values for any given
graph. These values are used to calculate the fitness functions used
in the genetic algorithm, as shown in Fig. 6.

In order to evaluate the effects of the fitness functions, we tested
our genetic algorithm with four different fitness functions. The
details of the fitness functions are presented in Fig. 6.

4.2. Simulation results

In this section we  present the simulation results of the vari-
ous experiments we  conducted. First, we tested four of the fitness
functions on all the graphs presented in Fig. 5. The results of the
experiments can be seen in Fig. 7. In all the figures, the min-
imum total calibration cost (MIN COST) and its corresponding

post-calibration skew value, and the minimum post-calibration
skew value (MIN  ERROR)  and its corresponding total calibration
values are presented as MST and MET, respectively. The number
of iterations, population size and the mutation probability are

Graph
name

#of nodes
Avg. node
degree

 Std. node
degree

n25 25 5 2
n50 50 5 2
n100 100 5 2

n250 250 5 2
n500 500 5 2
n750 750 5 2

n1000 1000 5 2

Fig. 5. Graph names, number of nodes, average and standard deviation of the node
degrees of the graphs used in the experimentation.
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Parameter
name

Paramete r calculation

MIN COST Mini mum tota l calibratio n cost

MAX COST
Upper boun d fo r th e tota l cal ibratio n cos t of
a spannin g tree

MIN ERROR Mini mum post-calibratio n skew

MAX ERROR Up per boun d fo r th e post-calibratio n skew

norm cost
(cost −MIN COST )∗100

(MAX COST −MIN COST )
norm error

(error −MIN ERR OR)∗100
(MAX ERR OR−MIN ERR OR)

Function name Functions

F 1 0.9 ∗ no rm cost + 0.1 ∗ no rm error

F 2 0.5 ∗ no rm cost + 0.5 ∗ no rm error

F 3 (cost −MIN COST )2
MIN COST

+
(error −MIN ERR OR)2

MIN ERR OR

F 4 0.1 ∗ no rm cost + 0.9 ∗ no rm error

s
t
p
t
A
n

s
h
t
c
t
t
c

Parameter
name

Description
Tested
range

Fitness function
Fitness functio n use d in
the geneti c algorith m (See
Fig. 6)

F2, F 3

Graph name
Name of th e grap h th e test
is conducte d on (Se e Fig . 5)

n250, n500,
n750, n1000

Iteration
The number of iterat ions
for th e geneti c algorithm

5000 - 100000

Populatio n Size
The siz e of th e population
for th e geneti c algorithm

200 - 5000

Mutation Proba-
bility

The mutatio n probabili ty
of th e geneti c algorithm

0.05 - 0.3
Fig. 6. Fitness functions used in the experimentation.

elected as 50,000, 400, and 0.1 respectively. These parameters for
he initial experiments are selected as average values based on our
revious experimentation with the problem. The analytical selec-
ion process of the parameters are described in more detail below.
ll the experiments are conducted 10 times and the minimum fit-
ess results are reported.

As seen in Fig. 7, function F1 minimizes the calibration cost while
acrificing from the post-calibration skew value. In smaller graphs
owever, as in n25 (Fig. 7(a)), the calibration cost of F1 is close
o MST, while the post-calibration skew is lower than MST, which

learly outperforms the MST. Function F4 on the other hand tries
o minimize the post-calibration skew in trade with higher calibra-
ion cost values. However, similar to F1, in smaller graphs F4 also
an achieve post-calibration skew values close to MIN ERROR with
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Fig. 7. Experiments showing the post-calibration skew and the total calib
Fig. 8. Genetic algorithm parameters used in experimentation.

much smaller calibration cost values, which is a valid alternative to
the MET. Functions F2 and F3 achieves a balance between the cal-
ibration cost and the post-calibration skew values. Both functions
try to minimize both the calibration cost and the post-calibration
skew values at the same time, therefore, these two functions are
the main functions we  are particularly be interested in this paper.
As we  can see again from Fig. 7, for smaller graphs, F2 and F3 mini-
mizes both the calibration cost and the skew values and the results
generated are on the lower side of a line drawn between points MST
and MET. However, for larger graphs, due to the intractable nature
of the problem, minimizing both of the objectives at the same time
is harder to do. This result alone hints that there is still room for
research for minimizing both objectives at the same time, especially
on larger graphs.

Based on the observation we make above, we conducted more

tests to see the effects of the simulation parameters on the success
of the genetic algorithms, specifically for fitness functions F2 and
F3. Fig. 8 lists the various parameters and their short description
that we  use in our simulations.
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ration cost of the four different fitness functions on various graphs.
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Fig. 9. Change of the fitness value with number of iterations for functions F2 (a), and F3 (b). The y-dimension for both graphs represent the fitness value for the corresponding
fitness  function.
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In Fig. 9 we observe how the number of iterations in the simu-
ation change the fitness value for fitness functions F2 (in Fig. 9(a))
nd F3 (in Fig. 9(b)). The population size and the mutation proba-
ility for this experiment is selected as 200 and 0.1, respectively. As
e see from the figures, for all graphs, the fitness value decreases

nd we achieve better results as the number of iterations increases.
Similarly, in Fig. 10,  we observe the effects of the population size

n the success of the genetic algorithm, for functions F2 (Fig. 10(a))

nd F3 (Fig. 10(b)), on various graphs. The iteration number and
he mutation probability for this experiment is selected as 50,000
nd 0.1, respectively. Fitness function F2 achieves better results
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tness function.
The y-dimension for both graphs represent the fitness value for the corresponding

with lower population sizes, although the population size effects
the performance slightly when fitness function F3 is used.

Finally, in Fig. 11,  we changed the mutation probability in the
genetic algorithm and observed the effects on the fitness value for
fitness functions F2 (Fig. 11(a)) and F3 (Fig. 11(b)). The population
size and the number of iterations for this experiment is selected
as 200 and 10,000, respectively. Even though for fitness function
F2 the change in the mutation probability alters the fitness value

slightly, overall based on our observation from the simulations we
can conclude that the mutation probability does not have a signif-
icant effect on the solution of the MBCT problem.
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To summarize, in this section we presented the experimental
esults of the genetic algorithm to solve the optimization ver-
ion of the MBCT problem. We  performed our tests for various
raphs and genetic algorithm specific parameters. We  observed
hat on relatively small graphs the algorithms clearly finds close
o optimal results, however, for larger graphs due to the NP-
ard nature of the problem, achieving close to optimal results are
arder.

. Conclusion

In this paper, we present an energy efficient and minimum
rror iterative calibration based model for wireless sensor networks
nd prove that in real-world deployments where random errors
re inevitable, the problem turns into an NP-complete prob-
em, independent from the magnitude of the random error.
o the best of our knowledge this is the first time the com-
lexity of an iterative calibration based model is analyzed for
eal-world sensor deployments. We  also developed a genetic algo-
ithm based heuristic solution to solve the optimization version
f the MBCT problem, and evaluated the algorithm on various
raphs.
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