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a b s t r a c t

In life testing experiment under the setup of progressive Type II censoring we consider
a new flexible scheme, in which the experimenter removes r∗

1 (r∗

1 ≤ r1) units from the
experiment if the first failure occurs before some predefined time t1, and removes r1 units
when the first failure occurs after time t1. If the second failure occurs before the time
t2, r∗

2 surviving items are removed at random, otherwise r2 surviving units are removed,
(r∗

2 ≤ r2), and so on; finally, after the mth failure, all remaining items are removed. Under
this setup of the experiment we study the distributions of failure times, which are entitled
as flexible progressive Type II censored (FPC) order statistics. The simulation algorithm
for generating FPC samples and an illustrative example for a special case of exponential
distribution are also presented. Finally, a Monte Carlo study is also conducted for the
expected termination time under FCP.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

During the last fewyears, in statistical literature, an increasing interest in inference based progressively censored data can
be observed. There appearednumerous research and reviewpapers andonemonographdevoted to this subject following the
early work of Cohen [1], where the first description of themodel wasmade. Themodel of progressive Type II right censoring
is of importance in the field of reliability and life testing. Under this censoring scheme n identical units are placed on a
life test; after the first failure, r1 surviving items are removed at random from further observation; after the next failure r2
surviving items are removed at random, and so on. This experiment terminates at the timewhen themth failure is observed
and the remaining rm = n − r1 − r2 − · · · − rm−1 − m surviving units are all removed. Thus, in this type of sampling, we
observe m failures and r1 + r2 + · · · + rm items are progressively censored, so that n = m + (r1 + r2 + · · · + rm) is the
number of units. XR

1:m:n < XR
2:m:n < · · · < XR

m:m:n describe the progressively censored failure times where R = (r1, . . . , rm)
denotes the censoring scheme. The joint probability density function (p.d.f.) of the progressively censored order statistics,
XR
1:m:n, X

R
2:m:n, . . . , X

R
m:m:n is

fXR
1:m:nX

R
2:m:n···X

R
m:m:n

(x1, x2, . . . , xm) = C
k∏

i=1

f (xi)[1 − F(xi)]ri 0 < x1 < x2 < · · · < xm < ∞, (1)

where C = n(n − r1 − 1)(n − r1 − r2 − 2) · · · (n − r1 − · · · − rm−1 − m + 1) is the normalizing constant. For more details
on the theory of progressive Type II censoring scheme, see [2].

The papers devoted to the progressive Type II censoring mainly are concentrated on point and interval estimation of
the parameters, determination of optimal progressive censoring plans, characterizations of distributions, construction of
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reliability sampling plans. See for example, [3–22]. The recent discussion in [23] provides a comprehensive review of various
developments pertaining to progressive censoring.

In some life testing experiments when n units are placed on a life test, depending on the length of first failure time,
the experimenter may need to apply different censoring scheme. If an experimenter is not satisfied with the first failure
time (for example, it comes much later than he was expecting) and desires to implement more flexible scheme and remove
more units than should be removed after the first failure according to the censoring scheme, then the ordinary progressive
Type II right censoring scheme will be not applicable. Therefore, for the described situation above more general and flexible
censoring schememust be considered. Now, assume that the experimenter removes r∗

1 (r∗

1 ≤ r1) units from the experiment
if the first failure occurs before some predefined time t1, and removes r1 units when the first failure occurs after time t1.
If the second failure occurs before the time t2, r∗

2 surviving items are removed at random, otherwise r2 surviving units are
removed, (r∗

2 ≤ r2), and so on; finally, after themth failure, r∗
m = rm remaining items are removed.

In this short paper we consider a new model of progressive censoring and call it Flexible Type II Progressive Censoring
(FPC) scheme. We consider Rm−1 = (r1, r2, . . . , rm−1), R∗

m−1 = (r∗

1 , r∗

2 , . . . , r∗

m−1) and tm−1 = (t1, t2, . . . , tm−1), such that
r∗

i ≤ ri and 0 ≤ t1 < t2 < · · · < tm−1. We need also conditions n−
∑m−1

i=1 (ri+1) ≥ 1 and n−
∑m−1

i=1 (r∗

i +1) ≥ 1. Under FPC
scheme, n units with life times having cumulative distribution function (c.d.f.) F(x) and probability density function (p.d.f.)
f (x) are placed on a test at time zero andm failures are expected to be observed.

Define random variables Z1, Z2, . . . , Zm−1 as follows: Zi = 0 if the ith failure occurs before time ti and Zi = 1 otherwise.
More precisely, ifm failure times are denoted by (XR⋆

1:m:n, X
R⋆

2:m:n, . . . , X
R⋆

m:m:n), then

Zi =


0 if XR⋆

i:m:n ≤ ti
1 if XR⋆

i:m:n > ti,
i = 1, 2, . . . ,m − 1.

After the first failure r⋆1 = Z1r1 + (1 − Z1)r∗

1 of the surviving units are randomly selected and removed. Then, immediately
following the second observed failure, r⋆2 = Z2r2 + (1− Z2)r∗

2 of the surviving units are randomly selected and removed and
so on; finally, after the mth failure, the r⋆m = n − m −

∑m−1
i=1 [Ziri + (1 − Zi)r∗

i ] = n − m −
∑m−1

i=1 r⋆i remaining items are
withdrawn. If ri = r∗

i for i = 1, 2, . . . ,m − 1, then the FPC reduces to the progressive Type II censoring. The FPC scheme
may be described schematically as follows:

In practical applications, an experimenter may be interested to know whether the test can be completed within a
specified time. This information is important for an experimenter to choose an appropriate sampling plan because the time
required to complete a test is directly related to the cost. Wu et al. [15] proposed the estimated expected test time for
Pareto Distribution for progressive censoring data. In this paper, we also investigate the simulated termination times for
exponential distribution under FPC.
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2. The model

Suppose n independent units are placed on a test with p.d.f. f (x; θ) and c.d.f. F(x; θ). Under the FPC schemewith Rm−1 =

(r1, r2, . . . , rm−1), R∗

m−1 = (r∗

1 , r∗

2 , . . . , r∗

m−1) and tm−1 = (t1, t2, . . . , tm−1), the observable data consist of (XR⋆
, Z,R⋆) or

(XR⋆
, Z), where XR⋆

= (XR⋆

1:m:n, X
R⋆

2:m:n, . . . , X
R⋆

m:m:n) and Z = (Z1, . . . , Zm) with Zi = 1 if XR⋆

i:m:n > ti and Zi = 0 if XR⋆

i:m:n ≤ ti, for
i = 1, 2, . . . ,m − 1 and Zm = 1 and R⋆

= (r⋆1, . . . , r
⋆
m).

Let x0 ≡ 0, x = (x1, x2, . . . , xm), z = (z1, z2, . . . , zm), (0, 0] ≡ ∅, r⋆i = ziri + (1 − zi)r∗

i for i = 1, 2, . . . ,m,
tm ≡ 0, F̄ = 1−F . Then using the definition of FPC order statistics and repeating the proof of Balakrishnan and Aggarwala [2,
Page 8], taking into account that after ith failurewe remove r⋆i units, it is not difficult to observe that the joint p.d.f. of (XR⋆

, Z)
is:

fXR⋆
,Z(x, z) = C

m∏
i=1

f (xi)[F̄(xi)]r
⋆
i {(1 − zi)I(0,ti](xi) + ziI(ti,∞)(xi)}{I(xi−1,∞)(xi)}. (2)

C is a normalizing constant satisfying

1
C

=

−
z∈Qz

∫
A1∩A2

m∏
i=1

f (xi)[F̄(xi)]r
⋆
i dx, (3)

where

A1 = {(x1, x2, . . . , xm) : 0 < x1 < x2 < · · · < xm < ∞},

A2 = {(x1, x2, . . . , xm) : xi ∈ (0, ti] for zi = 0 and xi ∈ (ti, ∞) for zi = 1},
Qz = {(z1, z2, . . . , zm) : zi = 0 or 1 for i = 1, 2, . . . ,m − 1, zm = 1}.

Theorem 1. For a FPC model tm−1 = (t1, 0, . . . , 0) the joint p.d.f of (XR⋆
, Z) is

fXR⋆
,Z1

(x, z1) = Cf (x1)[F̄(x1)]r
⋆
1{(1 − z1)I(0,t1](x1) + ziI(t1,∞)(x1)}{I(0,∞)(x1)}

m∏
i=2

f (xi)[F̄(xi)]ri{I(xi−1,∞)(xi)}, (4)

where

C = {(r∗

1 + r2 + · · · + rm + m)(r1 + r2 + · · · + rm + m)
× (r2 + · · · + rm + m − 1) · · · (rm−1 + rm + 2)(rm + 1)}/{(r1 + r2 + · · · + rm + m)

− (r1 + r2 + · · · + rm + m)F̄ k1(t1) + (r∗

1 + r2 + · · · + rm + m)F̄ k2(t1)} (5)
k1 = (r∗

1 + r2 + · · · + rm + m)(r2 + · · · + rm + m − 1)(r3 + · · · + rm + m − 2) · · · (rm−1 + rm + 2)(rm + 1)

and

k2 = (r1 + r2 + · · · + rm + m)(r2 + · · · + rm + m − 1) × · · · × (rm−1 + rm + 2)(rm + 1).

Proof. From (3), we immediately have

1
C

=

∫
∞

t1

∫
∞

x1
· · ·

∫
∞

xm−1

m∏
i=1

f (xi)[F̄(xi)]ridxm · · · dx2dx1

+

∫ t1

0

∫
∞

x1
· · ·

∫
∞

xm−1

f (x1)[F̄(x1)]r
∗
1

m∏
i=2

f (xi)[F̄(xi)]ridxm · · · dx2dx1.

Upon performing the necessary integrations, we obtain (5).
If we choose t1 = 0 and r1 = r∗

1 , then (4) reduces to the joint p.d.f of ordinary progressive Type II censored order statistics
given in (1). �

3. Simulation algorithm for generating FPC samples

Consider the randomvariableX with p.d.f. f (x; θ) and c.d.f. F(x; θ). Under the FPC schemewithRm−1 = (r1, r2, . . . , rm−1),
R∗

m−1 = (r∗

1 , r∗

2 , . . . , r∗

m−1) and tm−1 = (t1, t2, . . . , tm−1), the FPC data (XR⋆
, Z,R⋆) can be generated as follows:

Step 1. Generate i.i.d. samples, X1, X2, . . . , Xn, from F(x; θ);
Step 2. Determine the order statistics X1:n, X2:n, . . . , Xn:n;
Step 3. Set N = {1, 2, . . . , n} and i = 1;
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Step 4. Let ki = min(N) and define XR⋆

i:m:n = Xki:n;

Step 5. If XR⋆

i:m:n > ti, then Zi = 1, else Zi = 0;
Step 6. Let r⋆i = Ziri + (1 − Zi)r∗

i ;
Step 7. Choose a without-replacement sample R⋆

i ⊆ N \ {ki} with |R⋆
i | = r⋆i at random (from N \ {ki});

Step 8. Set N = N \ [{ki} ∪ R⋆
i ] and i = i + 1;

Step 9. If i ≤ m − 1, then go to Step 4, else the Next;
Step 10. Let km = min(N) and define XR⋆

m:m:n = Xkm:n;

Step 11. Let r⋆m = n − m −
∑m−1

i=1 r⋆i , Zm = 1 and stop.
Evidently, the FPC data is then given by (XR⋆

, Z,R⋆) where

XR⋆
= (XR⋆

1:m:n, X
R⋆

2:m:n, . . . , X
R⋆

m:m:n) = (Xk1:n, Xk2:n, . . . , Xkn:n),

Z = (Z1, Z2, . . . , Zm)

and

R⋆
= (r⋆1, r

⋆
2, . . . , r

⋆
m).

4. Marginal distributions

Let (XR⋆
, Z,R⋆) denote the FPC data from a continuous population with c.d.f. F(x) and p.d.f. f (x). It is clear that

fXR⋆

1:m:n
(x) = nf (x)[1 − F(x)]n−1

and

P(Z1 = z1) =


P(R⋆

1 = r∗

1 ) =

∫ t1

0
fXR⋆

1:m:n
(x)dx, if z1 = 0

P(R⋆
1 = r1) =

∫
∞

t1
fXR⋆

1:m:n
(x)dx, if z1 = 1.

It is not difficult to observe that the joint distribution of FPC order statistics XR⋆

1:m:n, X
R⋆

2:m:n, . . . , X
R⋆

m:m:n, given (Z1 = z1, Z2 =

z2, . . . , Zm−1 = zm−1) is the same with ordinary progressive Type II censored order statistics X r⋆
1:m:n, X

r⋆
2:m:n, . . . , X

r⋆
m:m:n

with censoring scheme r⋆ = (r⋆
1 , r

⋆
2, . . . , r

⋆
m), where r⋆i = ziri + (1 − zi)r∗

i . From the Markovian property of ordinary
progressive Type II censored order statistics it follows that marginal distribution of X r⋆

i:m:n, 2 ≤ i ≤ m, does not depend
on (r⋆i , r

⋆
i+1, . . . , r

⋆
m) [2]. Upon using this fact and Kamps–Cramer representation for marginal distribution of ordinary

progressive Type II censored order statistics (see [24]) we can write the conditional p.d.f. of FPC order statistic XR⋆

i:m:n, for
i = 2, 3, . . . ,m as follows

fXR⋆

i:m:n|Z1,Z2,...,Zi−1
(x) = fXR⋆

i:m:n|Zi−1
(x) = Ci−1f (x)

i−
k=1

ak,i[1 − F(x)]γk−1, (6)

where Zi = (Z1, Z2, . . . , Zi), Ci−1 =
∏i

j=1 γj, ak,i =
∏i

j=1
j≠k

(1/γj−γk), 1 ≤ k ≤ i ≤ m,m ≥ 2, γj = n−
∑j−1

i=1 r
⋆
i −j+1, γ1 = n,

n = m +
∑m

j=1 r
⋆
j and the empty product

∏
∅
is defined to be 1.

Also, we have

P(Zi = zi|Z1 = z1, Z2 = z2, . . . , Zi−1 = zi−1) = P(Zi = zi|Zi−1 = zi−1) =


∫ ti

0
fXR⋆

i:m:n|Zi−1
(x)dx, if zi = 0∫

∞

ti
fXR⋆

i:m:n|Zi−1
(x)dx, if zi = 1.

Therefore, the p.d.f. of FPC order statistic XR⋆

i:m:n for i = 2, 3, . . . ,m is

fXR⋆

i:m:n
(x) =

−
zi−1∈Qzi−1

fXR⋆

i:m:n|Zi−1
(x)P(Zi−1 = zi−1), (7)

where

P(Zi = zi) = P(Z1 = z1, Z2 = z2, . . . , Zi = zi)

=

i∏
j=1

P(Zj = zj|Zj−1 = zj−1),
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with P(Z1 = z1|Z0 = z0) = P(Z1 = z1) and

Qzi = {(z1, z2, . . . , zi) : zj = 0 or 1 for j = 1, 2, . . . , i}, i = 1, 2, . . . ,m − 1; z = (z1, z2, . . . , zm), Qzm = Qz.

Illustrative example. Let X be a random variable with exponential p.d.f. Exp(θ). The p.d.f. of X is

f (x; θ) =

1
θ
e−x/θ x ≥ 0,

0, otherwise.

In this special case using (6) and (7) we can obtain p.d.f.’s and expected values of FPC order statistics. It is clear that

fXR⋆

1:m:n
(x) =

n
θ
e−nx/θ ,

E(XR⋆

1:m:n) =
θ

n
.

It is not difficult to verify that

P(Z1 = z1) =


P(R⋆

1 = r∗

1 ) = 1 − e−nt1/θ , if z1 = 0
P(R⋆

1 = r1) = e−nt1/θ , if z1 = 1

and

E(Z1) = e
−nt1

θ .

For i = 2, 3, . . . ,m, we have

fXR⋆

i:m:n|Zi−1
(x) =

Ci−1

θ

i−
k=1

ak,ie
−γkx

θ ,

also, we have

P(Zi = zi|Zi−1 = zi−1) =


1 − Ci−1

i−
k=1

ak,i
γk

e
−γkti

θ , if zi = 0

Ci−1

i−
k=1

ak,i
γk

e
−γkti

θ , if zi = 1.

Thus the p.d.f. of FPC order statistic XR⋆

i:m:n for i = 2, 3, . . . ,m is

fXR⋆

i:m:n
(x) =

−
zi−1∈Qzi−1

fXR⋆

i:m:n|Zi−1
(x)P(Zi−1 = zi−1),

where

P(Z1 = z1, Z2 = z2, . . . , Zi = zi) = P(Zi = zi)

=

i∏
j=1

P(Zj = zj|Zj−1 = zj−1),

with P(Z1 = z1|Z0 = z0) = P(Z1 = z1).
For the expected value of XR⋆

i:m:n we have

E(XR⋆

i:m:n|Zi−1 = zi−1) = Ci−1

i−
k=1

ak,i
γk

,

E(XR⋆

i:m:n) =

−
zi−1∈Qzi−1

P(Zi−1 = zi−1)Ci−1

i−
k=1

ak,i
γk

.

The conditional expected value of Zi given Zi−1 = zi−1 is obtained as

E(Zi|Zi−1 = zi−1) = Ci−1

i−
k=1

ak,i
γk

e
−γkti

θ

and the expected value of Zi is

E(Zi) =

−
zi−1∈Qzi−1

P(Zi−1 = zi−1)Ci−1

i−
k=1

ak,i
γk

e
−γkti

θ .
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Table 1
FPC sample (m = 10, n = 35).

i 1 2 3 4 5 6 7 8 9 10
zi 1 0 1 1 0 0 0 0 0 1
r⋆i 4 0 0 2 2 1 2 3 1 10
xR

⋆

i:m:n 0.237 0.263 0.826 0.943 1.312 1.392 1.425 1.740 2.073 2.405
xR

∗

i:m:n 0.066 0.283 0.361 0.450 0.685 1.031 1.210 1.530 1.674 1.979
xRi:m:n 0.383 0.526 1.776 1.783 1.814 2.045 2.692 3.201 3.272 4.352

Table 2
FPC sample (m = 8, n = 20).

i 1 2 3 4 5 6 7 8
zi 0 1 1 1 1 1 1 1
r⋆i 2 2 0 1 0 2 1 4
xR

⋆

i:m:n = xR
∗

i:m:n 0.075 0.174 0.413 0.537 0.857 0.975 1.045 1.442
xRi:m:n 0.260 0.384 0.484 1.040 1.132 2.267 2.611 2.832

Table 3
The simulated termination times for some small, moderate and large values of n andm and different combinations of Rm−1;R∗

m−1 and tm−1 when X has an
exponential distribution with parameter θ = 5.

n m Rm−1;R∗

m−1; tm−1
≈

X
R∗

m:m:n

≈

X
R⋆

m:m:n

≈

X
R

m:m:n

20 5 (15, 0, 0, 0); (10, 0, 0, 0); (0.2, 0, 0, 0) 2.966 6.503 10.728
(15, 0, 0, 0); (10, 0, 0, 0); (0.5, 0, 0, 0) 2.963 4.168 10.804
(15, 0, 0, 0); (7, 0, 0, 0); (0.3, 0, 0, 0) 2.193 4.934 10.750
(7, 0, 8, 0); (3, 0, 4, 0); (0.1, 0, 1, 0) 1.940 4.778 8.723
(7, 0, 8, 0); (3, 0, 4, 0); (0.25, 0, 1, 0) 1.986 3.888 8.724
(0, 0, 15, 0); (0, 0, 7, 0); (0, 0, 0.8, 0) 1.830 4.747 8.291
(0, 0, 15, 0); (0, 0, 7, 0); (0, 0, 1.2, 0) 1.862 2.939 8.504
(0, 0, 0, 12); (0, 0, 0, 5); (0, 0, 0, 1.3) 1.496 1.756 2.297
(0, 0, 0, 12); (0, 0, 0, 5); (0, 0, 0, 1.7) 1.517 1.609 2.360

10 (5, 5, 0, . . . , 0); (2, 3, 0, . . . , 0); (0.2, 0.5, 0, . . . , 0) 5.065 8.639 14.243
(5, 5, 0, . . . , 0); (2, 3, 0, . . . , 0); (0.3, 0.8, 0, . . . , 0) 4.971 6.990 14.510
(0, . . . , 0, 2, 3, 5); (0, . . . , 0, 1, 2, 2); (0, . . . , 0.2, 1.5, 3) 3.804 6.344 8.101

15 (5, 0, . . . , 0); (3, 0, . . . , 0); (0.15, 0, . . . , 0) 9.779 13.408 16.625

50 20 (30, 0, . . . , 0); (15, 0, . . . , 0); (0.15, 0, . . . , 0) 4.091 7.461 17.990
(30, 0, . . . , 0); (15, 0, . . . , 0); (0.5, 0, . . . , 0) 4.049 4.155 17.420
(10, 10, 10, 0, . . . , 0); (5, 5, 5, 0, . . . , 0); (0.1, 0.25, 0.3, 0, . . . , 0) 4.001 7.858 17.627

25 (25, 0, . . . , 0); (15, 0, . . . , 0); (0.15, 0, . . . , 0) 6.096 9.003 19.078
(25, 0, . . . , 0); (15, 0, . . . , 0); (0.25, 0, . . . , 0) 6.062 7.093 18.945
(10, 5, 10, 0, . . . , 0); (5, 2, 5, 0, . . . , 0); (0.1, 0.15, 0.25, 0, . . . , 0) 5.155 10.406 18.533

100 30 (70, 0, . . . , 0); (30, 0, . . . , 0); (0.1, 0, . . . , 0) 2.741 5.431 19.708
50 (40, 0, . . . , 0); (15, 0, . . . , 0); (0.1, 0, . . . , 0) 4.389 5.113 8.725
70 (25, 0, . . . , 0); (10, 0, . . . , 0); (0.1, 0, . . . , 0) 7.413 8.305 13.039

Example 1. By using statistical software R the data are generated from Exp(5) distribution. For m = 10, n = 35, providing
a flexible progressive Type II censoring scheme Rm−1 = (4, 1, 0, 2, 5, 3, 2, 4, 2), R∗

m−1 = (1, 0, 0, 0, 2, 1, 2, 3, 1) and
tm−1 = (0.2, 0.5, 0.8, 0.9, 1.5, 2, 2.1, 2.6, 3) by using simulation algorithm given in Section 3, the FPC data are obtained
and presented in Table 1.

The FPC data can be used in the model (2) for construction estimators of a parameter θ of underlying distribution based
on FPC sample and also can be used for other inferential procedures.

Example 2. The data are generated from Exp(2) distribution and for m = 8, n = 20, Rm−1 = (5, 2, 0, 1, 0, 2, 1),
R∗

m−1 = (2, 2, 0, 1, 0, 2, 1) and tm−1 = (0.1, 0, . . . , 0) the FPC data are obtained. The FPC data are presented in Table 2.
The FPC data can be used in the model (4) for construction estimators for a parameter θ of underlying distribution based

on FPC sample and also can be used for other inferential procedures.

5. Expected test time

In practical applications, it is often useful to have an idea of the termination time of the whole test. The information is
important for an experimenter to choose an appropriate sampling; because the time required to complete an experiment has
direct implication on the cost. For progressively Type II censoring and FPC sampling, the terminationpoint for the experiment
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Table 4
The simulated termination times for some small, moderate and large values of n andm and different combinations of Rm−1;R∗

m−1 and tm−1 when X has an
exponential distribution with parameter θ = 10.

n m Rm−1;R∗

m−1; tm−1
≈

X
R∗

m:m:n

≈

X
R⋆

m:m:n

≈

X
R

m:m:n

20 5 (15, 0, 0, 0); (10, 0, 0, 0); (0.9, 0, 0, 0) 5.980 8.627 21.243
(15, 0, 0, 0); (10, 0, 0, 0); (1.1, 0, 0, 0) 6.069 7.613 21.072
(15, 0, 0, 0); (7, 0, 0, 0); (0.3, 0, 0, 0) 4.228 13.815 21.322
(7, 0, 8, 0); (3, 0, 4, 0); (0.8, 0, 2, 0) 3.869 6.394 17.189
(7, 0, 8, 0); (3, 0, 4, 0); (0.9, 0, 2.5, 0) 3.876 5.561 17.391
(0, 0, 15, 0); (0, 0, 7, 0); (0, 0, 1, 0) 3.672 12.870 16.526
(0, 0, 15, 0); (0, 0, 7, 0); (0, 0, 1.3, 0) 3.717 10.571 15.694
(0, 0, 0, 12); (0, 0, 0, 5); (0, 0, 0, 2.5) 3.071 3.534 4.510
(0, 0, 0, 12); (0, 0, 0, 5); (0, 0, 0, 3.8) 3.103 3.209 4.647

10 (5, 5, 0, . . . , 0); (2, 3, 0, . . . , 0); (0.2, 1.5, 0, . . . , 0) 9.922 17.328 28.375
(5, 5, 0, . . . , 0); (2, 3, 0, . . . , 0); (0.9, 1.8, 0, . . . , 0) 10.095 12.640 28.420
(0, . . . , 0, 2, 3, 5); (0, . . . , 0, 1, 2, 2); (0, . . . , 1.8, 3.5, 4) 8.559 15.485 22.739

15 (5, 0, . . . , 0); (3, 0, . . . , 0); (0.7, 0, . . . , 0) 19.540 22.442 33.191

50 20 (30, 0, . . . , 0); (15, 0, . . . , 0); (0.4, 0, . . . , 0) 8.219 11.601 35.804
(30, 0, . . . , 0); (15, 0, . . . , 0); (0.6, 0, . . . , 0) 8.202 9.144 35.638
(10, 10, 10, 0, . . . , 0); (5, 5, 5, 0, . . . , 0); (0.3, 0.6, 1, 0, . . . , 0) 8.108 11.637 35.424

25 (25, 0, . . . , 0); (15, 0, . . . , 0); (0.3, 0, . . . , 0) 12.244 18.612 38.450
(25, 0, . . . , 0); (15, 0, . . . , 0); (0.5, 0, . . . , 0) 12.086 13.593 37.954
(10, 5, 10, 0, . . . , 0); (5, 2, 5, 0, . . . , 0); (0.3, 0.5, 0.8, 0, . . . , 0) 10.508 16.234 38.774

100 30 (70, 0, . . . , 0); (30, 0, . . . , 0); (0.25, 0, . . . , 0) 5.525 8.488 39.718
50 (40, 0, . . . , 0); (15, 0, . . . , 0); (0.15, 0, . . . , 0) 8.768 10.924 17.385
70 (25, 0, . . . , 0); (10, 0, . . . , 0); (0.1, 0, . . . , 0) 14.830 18.952 26.188

is given by the expectation of themth order statistic (E(XR
m:m:n) and E(XR∗

m:m:n) for ordinary progressively Type II censoring and
E(XR⋆

m:m:n) for FPC in this paper). To compare E(XR
m:m:n), E(XR∗

m:m:n) and E(XR⋆

m:m:n), we compute the simulated termination times
for two ordinary progressively Type II censoring schemes (R = (r1, r2, . . . , rm) and R∗

= (r∗

1 , r∗

2 , . . . , r∗
m)) and FPC scheme

(R⋆
= (r⋆

1 , r
⋆
2 , . . . , r

⋆
m)). We use the

≈

X
R

m:m:n,
≈

X
R∗

m:m:n and
≈

X
R⋆

m:m:n notations for the simulated termination times, respectively.
Thus, we simulate 1000 samples from both ordinary progressively Type II censoring and FCP with exponential p.d.f. Exp(θ),
for different combinations of n;m; θ;Rm−1;R∗

m−1 and tm−1 and obtain the simulated termination times. The simulation

results are also shown in Tables 3 and 4. From Tables 3 and 4, it is easy to see that
≈

X
R∗

m:m:n ≤
≈

X
R⋆

m:m:n ≤
≈

X
R

m:m:n; from Table 3,
for example, for X having exponential distribution with parameter θ = 5 and n = 50,m = 25, if we choose the censoring
schemes as Rm−1 = (25, 0, . . . , 0) and R∗

m−1 = (15, 0, . . . , 0), then the simulated termination times will be 6.096 and
19.078, respectively. In the case of the FPC scheme, the simulated termination time will be 9.003. From Table 4, with X
having exponential distribution with parameter θ = 10 and n = 20,m = 10, if the censoring schemes are selected as
Rm−1 = (5, 5, 0, . . . , 0) and R∗

m−1 = (2, 3, 0, . . . , 0), then we observe that the simulated termination times will be 9.922
and 28.375, respectively. In the case of the FPC scheme, the simulated termination time will be 17.328. Thus, FPC scheme,
balances this situation and results in the simulated termination times and these results provide important information to
practitioners planning a life test.
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