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a b s t r a c t

Two different exchangeable samples are considered and these two samples are assumed
to be independent of each other. From these two samples a new sample is combined and
treated as a single set of observations. The distribution of a single order statistic and the
joint distribution of two order statistics for a newmixed sample are derived and expressed
in terms of joint distribution functions. As a special case the distribution of a single order
statistic and the joint distribution of two nonadjacent order statistics from exchangeable
random variables are obtained. The results presented in this paper allows widespread
applications in modelling of various lifetime data, biomedical sciences, reliability and
survival analysis, actuarial sciences etc., where the assumption of independence of data
cannot be accepted and the exchangeability is a more realistic assumption.
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1. Introduction

The theory of order statistics has been extensively studied since the early part of the last century, and recent years have
seen a particularly rapid growth of studies. For the basic theory of order statistics, description of their role in statistics and
applications see [1–4]. Distributions of order statistics for independent and identically distributed (i.i.d.) random variables
arewell studied in both discrete and continuous cases. The distribution of rth order statistic for exchangeable and arbitrarily
dependent random variables can be found, e.g. in [3] (formula (3.4.3) p. 46 and formula (5.3.1) p. 99). If Y1, Y2, . . . , Yn are
exchangeable random variables with P{Yi ≤ y} = F(y), then the distribution function of rth order statistic and its dual are
given by

Fr:n(y) =

n−
j=r

(−1)j−r


j − 1
r − 1


n
j


Fj:j(y)

Fn−r+1:n(y) =

n−
j=r

(−1)j−r


j − 1
r − 1


n
j


F1:j(y),

where Fj:j(y) = P{max(Y1, Y2, . . . , Yj) ≤ y} and F1:j(y) = P{min(Y1, Y2, . . . , Yj) ≤ y}.
Let X1, . . . , Xn1 be exchangeable random variables, with joint cumulative distribution function (c.d.f.) F(x1, x2, . . . , xn1),

univariate marginal c.d.f. F(x) and probability density function (p.d.f) f (x) and Y1, . . . , Yn2 be exchangeable random
variables with continuous joint c.d.f. G(y1, . . . , yn2) having univariate marginals G(x) and p.d.f. g(x). We assume that these
two collections of random variables are independent of each other. Denote by {W1, . . . ,Wn} the n = n1 + n2 random
variables combined from n1Xs and n2Y s and treated as a single set of observations. It is clear thatW1, . . . ,Wn are in general
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not exchangeable. Let W1:n ≤ · · · ≤ Wn:n be the order statistics of W1, . . . ,Wn. If n1 = n and n2 = 0 (n1 = 0 and
n2 = n) then W1, . . . ,Wn are exchangeable random variables with joint c.d.f. F(x1, x2, . . . , xn)(G(y1, y2, . . . , yn2)). Note
that by definition of exchangeability F(x1, x2, . . . , xn) = F(xi1 , . . . , xin) and G(y1, . . . , yn) = G(yi1 , . . . , yin), for every
permutation (i1, i2, . . . , in) of the integers (1, 2, . . . , n).

In this paper we are interested in distributions of order statisticsWi:n, i = 1, 2, . . . , n.
The need for ordering of mixed observation exists for example, in reliability analysis when n components of a technical

system are randomly selected from two independent collections of elements. Each collection consists of dependent but
identical components, this assumes that the life length of the components are exchangeable randomvariables. If components
of the system are subject to the same set of stresses or shocks, then the failure of any component results in an increased load
on the surviving components from the same collection and does not affect the life length of second type components. This
means that the components from each collection work interactively between themselves and all of them are components
of the unit system. The random variables X1, X2, . . . , Xn1 and Y1, Y2, . . . , Yn2 with symmetric joint distribution functions
F(x1, x2, . . . , xn1) and G(y1, y2, . . . , yn2) denote the life lengths of the components from the first and second collection,
respectively. Then, for example, a (n − s + 1)-out-of-n system has life length Ws:n. The mean residual life function of such
a system in the system level is Ψ (t) = E(Ws:n − t | Wr:n > t), r < s. The function Ψ (t) expresses the mean residual life
length of a n − s + 1 out-of-n system given that at least n − r + 1 components are alive at the moment t . (see e.g. [5–9]).

In Section 2 the distribution function H(r)(x) of rth order statistic Wr:n has been derived and expressed in terms
of F(w, w, . . . , w  

i

) and G(w, w, . . . , w  
i

). In Section 3 the joint distribution function of Wr:n and Ws:n has been derived

and expressed in terms of F(w, w, . . . , w  
i

, z, z, . . . , z  
t

) and G(w, w, . . . , w  
i

, z, z, . . . , z  
t

). In special cases one obtains the

distributions of order statistics from independent and exchangeable mixed collections and from exchangeable samples. The
results presented in this paper allows wide spread applications in modelling of various lifetime data, biomedical sciences,
reliability and survival analysis, actuarial sciences etc., where the assumption of independence of data cannot be accepted
and the exchangeability is more realistic assumption.

2. Distribution of order statisticWr:n

Denote the distribution function of order statistic Wr:n by H(r)(w). Then according to the basic theory of order statistics
one can write

H(r)(w) = P(Wr:n ≤ w) = P(at least r ofW1, . . . ,Wn ≤ w)

=

n−
i=r

P(exactly i ofW1, . . . ,Wn ≤ w). (1)

Since X ≡ (X1, X2, . . . , Xn1) and Y ≡ (Y1, Y2, . . . , Yn2) are vectors of exchangeable random variables and X and Y are
independent, then applying the total probability formula one has

P {exactly i ofW1, . . . ,Wn are ≤ w} =

min(i,n1)−
j=max (0,n1+i−n)

P

exactly j of X ′s are ≤ w; (i − j) of Y ′s are ≤ w;

n1 − j of X ′s are > w and n2 − i + j of Y ′s are > w


=

min(i,n1)−
j=max (0,n1+i−n)

P

exactly j of X ′s are ≤ w and n1 − j of X ′s are > w


× P


exactly (i − j) of Y ′s are ≤ w and n2 − i + j of Y ′s are > w


=

min(i,n1)−
j=max (0,n1+i−n)


n1

j


P

X1 ≤ w, . . . , Xj ≤ w, Xj+1 > w, . . . , Xn1 > w


×


n2

i − j


P

Y1 ≤ w, . . . , Yi−j ≤ w, Yi−j+1 > w, . . . , Yn2 > w


. (2)

Formula (2) has been obtained by using the following consideration: using total probability formula for iplaces ofW ≤ w,
one chooses exactly j Xs from total n1 Xs, and for remaining free i − j places of W ≤ w one chooses i − j Y s from total
n2 = n − n1 Y s. It is clear that j must satisfy i − j ≤ n − n1 and if n1 − n + i < 0, then j starts from 0. Obviously, if n1 < i,
then one can choose at most i Xs, therefore j ≤ min(i, n1).

Throughout this paper we will denote wt = (w, . . . , w  
t

). Consider the function Fn1−j,n1(wn1) ≡ P(X1 ≤ w, . . . , Xj ≤

w, Xj+1 > w, . . . , Xn1 > w) and Gn2−i+j,n2(wn2) ≡ P(Y1 ≤ w, . . . , Yi−j ≤ w, Yi−j+1 > w, . . . , Yn2 > w), appear-
ing in the formula (2). In applications, for easy calculations it is important to express H(r)(w) in terms of marginal
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c.d.f.’s of F(w1, w2, . . . , wn1) and G(w1, w2, . . . , wn2). In the following lemma the expression for Fn1−j,n1(wn1) in terms
of F(w, . . . , w  

t

) = P{max(X1, . . . , Xt) ≤ w} has been obtained.

Lemma 1.

Fn1−j,n1(wn1) =

n1−
t=j

(−1)t−j

n1 − j
t − j


F0,t(wt). (3)

where F0,t(wt) = F(w, . . . , w  
t

).

Proof. Denote A = {X1 ≤ w, . . . , Xj ≤ w} and Bl = {Xl ≤ w}, for l = j + 1, . . . , n1, then

P


A −

n1
l=j+1

Bl


= P(X1 ≤ w, . . . , Xj ≤ w, Xj+1 > w, . . . , Xn1 > w)

= Fn1−j,n1(wn1), (4)

where P(A) = F0,j(wj),wj = (w, . . . , w  
j

). Then one has

P


A −

n1
l=j+1

Bl


= P(A) − P


A
 n1

l=j+1

Bl



= P(A) − P


n1

l=j+1

Cl


,

where Cl = A ∩ Bl = {X1 ≤ w, . . . , Xj ≤ w, Xl ≤ w}, l = j + 1, . . . , n1 and Cj = A. Using the inclusion–exclusion principle
for the events Cj+1, . . . , Cn1 , we have

P


n1

l=j+1

Cl


=

n1−
t=j+1

(−1)t−j−1
−

I⊂{j+1,···,n1}
|I|=t

P(CI), (5)

where the last sum runs over all subsets I of the indices j + 1, . . . , n1 which contain exactly t elements, and CI ≡


l∈I Cl
denotes the intersection of all those Cl with index in I .

Since X1, . . . , Xn1 have symmetric c.d.f. G(x1, . . . , xn1), then in this case we have, P(CI1) = P(CI2) for any I1 and I2, where
I1 ⊂ {j + 1, . . . , n2} and I2 ⊂ {j + 1, . . . , n2} and |I1| = |I2| = t for t = j + 1, . . . , n1. Also, the number of distinct
(t − j − 1)-subsets on a set of n1 − j elements is given by the


n1−j
t−j−1


. Since F0,j(wj) = P(Cj) = P(A) then from (4) and (5)

one has

Fn1−j,n1(wn1) = F0,j(wj) −

n1−
t=j+1

(−1)t−j−1
−

I⊂{j+1,···,n1}
|I|=t

P(CI)

= F0,j(wj) −

n1−
t=j+1

(−1)t−j−1


n1 − j
t − j − 1


F0,t(wt)

=

n1−
t=j

(−1)t−j


n1 − j
t − j − 1


F0,t(wt).

where F0,t(wt) = P{X1 ≤ w, . . . , Xt ≤ w}.
Thus the lemma proved. �

From the Lemma 1 using n2 instead of n1,G instead of F , i − j instead of j, one obtains for Gn2−i+j,n2(wn2) = P(Y1 ≤

w, . . . , Yi−j ≤ w, Yi−j+1 > w, . . . , Yn2 > w)

Gn2−i+j,n2(wn2) =

n2−
t=i−j

(−1)t−i+j

n2 − i + j
t − i + j


G0,t(wt). (6)

Using (3), (6) and formula (2) the distribution function of rth order statistic then is given in the following
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Theorem 1.

H(r)(w) = P{Wr:n ≤ w} =

n−
i=r

min(i,n1)−
j=max (0,n1+i−n)


n1

j


n2

i − j

 n1−
t=j

(−1)t−j

n1 − j
t − j


F0,t(wt)



×


n2−

t=i−j

(−1)t−i+j

n2 − i + j
t − i + j


G0,t(wt)


, (7)

where

F0,t(wt) = F(w, . . . , w  
t

) = P{X1 ≤ w, . . . , Xt ≤ w} = P{Xt:t ≤ w}.

G0,t(wt) = G(w, . . . , w  
t

) = P{Y1 ≤ w, . . . , Yt ≤ w} = P{Yt:t ≤ w}.

Case 1. It follows from (7) that if r = n = n1 + n2, then the c.d.f. ofWn:n = max(W1,W2, . . . ,Wn) is

H(n)(w) = P{Wn:n ≤ w} = F(wn1)G(wn2). (8)

For this special case one obtains c.d.f. ofWn:n without knowing (7) as follows:

P{Wn:n ≤ w} = P{W1 ≤ w,W2 ≤ w, . . . ,Wn ≤ w}

= P{X1 ≤ w, . . . , Xn1 ≤ w, Y1 ≤ w, . . . , Yn2 ≤ w}

= F(w, w, . . . , w  
n1

)G(w, w, . . . , w  
n2

).

which agrees with (8).

Remark 1. If X1, X2, . . . , Xn1 and Y1, Y2, . . . , Yn2 are two independent samples with c.d.f. F(x) and G(x), respectively,
then

H(r)(w) =

n−
i=r

min(i,n1)−
j=max (0,n1+i−n)


n1

j


n2

i − j


F(w)j(1 − F(w))n1−jGi−j(w)(1 − G(w))n2−i+j.

Remark 2. If n1 = 0 and n2 = n, then the c.d.f. of rth order statistics of exchangeable sample Y1, Y2, . . . , Yn is

H(r)(w) =

n−
i=r

C i
n

n−
t=i

(−1)t−iC t−i
n−iG0,t(wt).

Corollary 1. If X1, X2, . . . , Xn1 are i.i.d. with c.d.f. F(x) and Y1, Y2, . . . , Yn2 are exchangeable with joint c.d.f. G(y1, y2, . . . , yn2)
then

H(r)(w) =

n−
i=r

min(i,n1)−
j=max (0,n1+i−n)


n1

j


n2

i − j


(F(w))j(1 − F(w))n1−j

n2−
t=i−j

(−1)t−i+jC t−i+j
n2−i+jG0,t(wt).

2.1. Expression of c.d.f. of Wr:n in terms of joint survival functions

In Theorem 1 the c.d.f. of Wr:n is expressed in terms of joint distribution functions F and G given at the diagonal point
(w, w, . . . , w). In many practical applications, especially in reliability theory the joint distribution of random variables is
given in terms of the survival function. The simple modifications of Lemma 1 and Theorem 1 allows us to express the c.d.f of
Wr:n in terms of F̄(w, w, . . . , w) = P{X1 > w, X2 > w, . . . , Xi > w}, 2 ≤ i ≤ n1 and Ḡ(w, w, . . . , w) = P{Y1 > w, Y2 >
w, . . . , Yj > w}, 2 ≤ j ≤ n2.

Lemma 1A.

Fn1−j,n1(wn1) =

j−
t=0

(−1)t

j
t


F̄(w, w, . . . , w  

n1−t

). (9)

Proof. Taking A = {Xj+1 > w, . . . , Xn1 > w} and Bi = {Xi > w} and repeating proof of Lemma 1 the proof easily can be
completed. �
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Theorem 1A.

H(r)(w) = P{Wr:n ≤ w} =

n−
i=r

min(i,n1)−
j=max (0,n1+i−n)


n1

j


n2

i − j

 j−
t=0

(−1)t

j
t


F̄(w, w, . . . , w  

n1−t

)


×

 j−
t=0

(−1)t

j
t


Ḡ(w, w, . . . , w  

n2−t

)

 . (10)

2.2. The p.d.f. of Wr:n

The probability density function h(r)(w) ofWr:n is

h(r)(w) =

n−
i=r

min(i,n1)−
j=max (0,n1+i−n)


n1

j


n2

i − j

 n1−
t=j

(−1)t−j

n1 − j
t − j


d
dw

F0,t(wt)



×


n2−

t=i−j

(−1)t−i+j

n2 − i + j
t − i + j


d
dw

G0,t(wt)


(11)

or

h(r)(w) =

n−
i=r

min(i,n1)−
j=max (0,n1+i−n)


n1

j


n2

i − j

 j−
t=0

(−1)t

j
t


d
dw

F̄(w, w, . . . , w  
n1−t

)


×

 j−
t=0

(−1)t

j
t


d
dw

Ḡ(w, w, . . . , w  
n2−t

)

 . (12)

Example 1. Suppose that X1, . . . , Xn1 , are i.i.d. random variables, with Uniform(0, 1) distribution. Let Y1, . . . , Yn2 be
exchangeable random variables with joint c.d.f.

G(y1, . . . , yn2) =

n2∏
i=1

yi


1 + αn2

−
1≤k<j≤n2

(1 − yk)(1 − yj)


. (13)

This distribution is simple Farlie–Gumbel–Morgenstern multivariate copula. The admissible range for an association
parameter αm allowing (13) to be a multivariate distribution function has been investigated in [10] and it is

−
1 n2
2

 ≤ αn2 ≤
1 n2
2

 ,
where [x] denotes the integer part of the number x.

For this distribution, G0,t(wt) = wt
[1 + αt

 t
2


(1 − w)2]. Then using Corollary 1 the c.d.f. of rth order statistic Wr:n of

the set of mixed observationsW1,W2, . . . ,Wn combined from X1, . . . , Xn1 and Y1, Y2, . . . , Yn2 is

H(r)(w) =

n−
i=r

min(i,n1)−
j=max (0,n1+i−n)


n1

j


n2

i − j


wj(1 − w)n1−j

×

n2−
t=i−j

(−1)t−i+j

n2 − i + j
t − i + j


wt
[
1 + αt


t
2


(1 − w)2

]

=

n−
i=r

min(i,n1)−
j=max (0,n1+i−n)

n2−
t=i−j

(−1)t−i+j

n1

j


n2

i − j


n2 − i + j
t − i + j


wj+t(1 − w)n1−j

+

n−
i=r

min(i,n1)−
j=max (0,n1+i−n)

n2−
t=i−j

(−1)t−i+j

n2 − i + j
t − i + j


n1

j


n2

i − j


αt


t
2


wj(1 − w)n1−j+2



4634 I. Bairamov, S. Parsi / Journal of Computational and Applied Mathematics 235 (2011) 4629–4638

which is a mixture of the Beta distribution. The p.d.f. is

h(r)(w) =

n−
i=r

min(i,n1)−
j=max (0,n1+i−n)

n2−
t=i−j

(−1)t−i+j

n2 − i + j
t − i + j


n1

j


n2

i − j


(j + t)wj+t−1(1 − w)n1−j

+

n−
i=r

min(i,n1)−
j=max (0,n1+i−n)

n2−
t=i−j

(−1)t−i+j

n2 − i + j
t − i + j


n1

j


n2

i − j


(j − n1)w

j+t(1 − w)n1−j−1

+

n−
i=r

min(i,n1)−
j=max (0,n1+i−n)

n2−
t=i−j

(−1)t−i+j

n2 − i + j
t − i + j


n1

j


n2

i − j


αt j

t
2


wj−1(1 − w)n1−j+2

+

n−
i=r

min(i,n1)−
j=max (0,n1+i−n)

n2−
t=i−j

(−1)t−i+j

n2 − i + j
t − i + j


n1

j


n2

i − j


αt(j − n1 − 1)


t
2


wj(1 − w)n1−j+1.

The moments also can be calculated as

E(W κ
r:n) =

n−
i=r

min(i,n1)−
j=max (0,n1+i−n)

n2−
t=i−j

(−1)t−i+j

n2 − i + j
t − i + j


n1

j


n2

i − j


(j + t)B(κ + j + t, n1 − j − 1)

+

n−
i=r

min(i,n1)−
j=max (0,n1+i−n)

n2−
t=i−j

(−1)t−i+j

n2 − i + j
t − i + j


n1

j


n2

i − j


(j − n1)B(κ + j + t − 1, n1 − j)

+

n−
i=r

min(i,n1)−
j=max (0,n1+i−n)

n2−
t=i−j

(−1)t−i+j

n2 − i + j
t − i + j


n1

j


n2

i − j


αt j

t
2


B(κ + j, n1 − j + 1)

+

n−
i=r

min(i,n1)−
j=max (0,n1+i−n)

n2−
t=i−j

(−1)t−i+j

n2 − i + j
t − i + j


n1

j


n2

i − j


αt(j − n1 − 1)


t
2


B(κ + j − 1, n1 − j),

where B(a, b) is the beta function.
The distribution function of the extreme order statisticWn:n, (i.e. for r = n and n1 ≥ 1 and n2 ≥ 2) has simple expression

H(n)(w) = wn1+n2

1 + αn2

n2

2


(1 − w)2


.

3. The joint distribution ofWr:n andWs:n

Let 1 ≤ r < s ≤ n. The joint distribution function of two order statistics Wr:n and Ws:n can be found by using similar
considerations for order statistics. We have

H(r)(s)(w, z) = P(Wr:n ≤ w,Ws:n ≤ z) = P(at least r Wi ≤ w, at least sWi ≤ z)

=

n−
j=s

j−
i=r

P(exactly i Wi ≤ w, exactly j Wi ≤ z). (14)

By using total probability formula one can write

P {exactly i Wi ≤ w, exactly j Wi ≤ z}

=

min(i,n1)−
p=max(0,i−n2)

min(j−i,n1−p)−
q=max (0,j−i−n2)

P{ exactly p of X ′s are ≤ w, q of Xs ∈ (w, z], n1 − p − q of X ′s are > z;

i − p of Y ′s are ≤ w, (j − i − q) of Y ′s ∈ (w, z], n1 − p − q are > z}

=

min(i,n1)−
p=max (0,i−n2)

min(j−i,n1−p)−
q=max (0,j−i−n2)

P{exactly p of X ′s are ≤ w, q of Xs ∈ (w, z], n1 − p − q of X ′s are > z}

P{exactly (i − p) of Y ′s are ≤ w, (j − i − q) of Y ′s ∈ (w, z], (n1 − p − q) of Y ′s are > z}

=

min(i,n1)−
p=max (0,i−n2)

min(j−i,n1−p)−
q=max (0,j−i−n2)


n1

p


n1 − p

q


× P{X1 ≤ w, . . . , Xp ≤ w, Xp+1 ∈ (w, z], . . . , Xp+q ∈ (w, z], Xp+q+1 > z, . . . , Xn1 > z}
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×


n2

i − p


n2 − i + p
j − i − q


P{Y1 ≤ w, . . . , Yi−p ≤ w, w < Yi−p+1 ≤ z, . . . ,

w < Yj−p−q ≤ z, Yj−p−q+1 > z, . . . , Yn2 > z}. (15)

Formula (15) obtained by using the following consideration: by total probability formula, from the mixed sample
W1,W2, . . . ,Wn for i places of ‘‘W ≤ w’’ one chooses pXs from total n1 Xs and q Xs from n1 − p Xs for j − i places of
‘‘w < W ≤ z’’. Remaining n1 − p − q Xs will be used for free n − (j − i) places of ‘‘W > z’’. For remaining i − p free places
of ‘‘W ≤ w’’ we select i − p Y s from total n2 = n − n1 Y s; for remaining j − i − q free places of ‘‘w < W ≤ z’’ one selects
j − i − q Y s from remaining n2 − (i − p) Y s; remaining n2 − (i − p) − (j − i − q) = n2 − j + p + q Y s will be replaced to
n2 − j + p + q free places of ‘‘W > z’’. It is clear that p ≤ min(i, n1) and i − p ≤ n − n1, i.e. p ≥ i − n2. If i − n2 < 0, then p
starts from 0. Analogously, q ≤ min(j − i, n1 − p) and j − i − q ≤ n − n1, i.e q ≥ j − i − n2. If j − i − n2 < 0 then q starts
from 0.

To obtain most appropriate formula for H(r)(s)(w, z) which is suitable for calculations in practical applications, the
probabilities

P{X1 ≤ w, . . . , Xp ≤ w, Xp+1 ∈ (w, z], . . . , Xp+q ∈ (w, z], Xp+q+1 > z, . . . , Xn1 > z}

and

P{Y1 ≤ w, . . . , Yi−p ≤ w, w < Yi−p+1 ≤ z, . . . , w < Yj−p−q ≤ z, Yj−p−q+1 > z, . . . , Yn2 > z}

appearing in formula (15) must be expressed in terms of marginal distributions of F(x1, x2, . . . , xn1) and G(y1, y2, . . . , yn2).
The following two lemmas serve for this purpose.

Lemma 2.

P{X1 ≤ w, . . . , Xp ≤ w, w ≤ Xp+1 ≤ z, . . . , w ≤ Xp+q ≤ z, Xp+q+1 > z, . . . , Xn1 > z}
= P{X1 ≤ w, . . . , Xp ≤ w, Xp+1 ≤ z, . . . , Xp+q ≤ z, Xp+q+1 > z, . . . , Xn1 > z}

+

q−
l=1

(−1)l
q
l


P{X1 ≤ w, . . . , Xp ≤ w, Xp+1 ≤ w, . . . , Xp+l ≤ w,

Xp+l+1 ≤ z, . . . , Xp+q ≤ z, Xp+q+1 > z, . . . , Xn1 > z}. (16)

Proof. The probability that the random point (ξ1, ξ2, . . . , ξn) falls into parallelepiped ai ≤ ξi ≤ bi (i = 1, 2, . . . , n), where
ai and bi are arbitrary constants is

P{a1 ≤ ξ1 ≤ b1, . . . , an ≤ ξn ≤ bn}

= P{ξ1 ≤ b1, . . . , ξn ≤ bn} −

n−
i=1

pi +
−
i<j

pij ± · · · + (−1)nP{ξ1 ≤ a1, . . . , ξn ≤ an}, (17)

where pij···k denotes the probability P{ξ1 ≤ c1, ξ2 ≤ c2, . . . , ξn ≤ cn} for ci = ai, cj = aj, . . . , ck = ak and for the other
indices cs equal to bs. (see, [11], page 135). A modification of (17) for P{M, K , a1 ≤ ξ1 ≤ b1, . . . , an ≤ ξn ≤ bn}, where M
and K are events is

P{M, a1 ≤ ξ1 ≤ b1, . . . , an ≤ ξn ≤ bn, K}

= P{M, ξ1 ≤ b1, . . . , ξn ≤ bn, K} −

n−
i=1

p′

i +
−
i<j

p′

ij ± · · · + (−1)nP{M, K , ξ1 ≤ a1, . . . , ξn ≤ an}, (18)

where p′

ij···k denotes the probability P{M, ξ1 ≤ c1, ξ2 ≤ c2, . . . , ξn ≤ cn, K} for ci = ai, cj = aj, . . . , ck = ak and for the other
indices cs equal to bs.

In formula (18) taking n = q, by using (Xp+1, . . . , Xp+q) instead of (ξ1, . . . , ξn) and ai = w and bi = z,M = {X1 ≤

w, . . . , Xp ≤ w}, K = {Xp+q+1 > z, . . . , Xn1 > z} and recalling that Xi’s are exchangeable, one obtains (16).
The lemma thus proved. �

From the Lemma 1 one easily obtains

P{Y1 ≤ w, . . . , Yi−p ≤ w, w ≤ Yi−p+1 ≤ z, . . . , w ≤ Yj−p−q ≤ z, Yj−p−q+1 > z, . . . , Yn2 > z}
= P{Y1 ≤ w, . . . , Yi−p ≤ w, Yi−p+1 ≤ z, . . . , Yj−p−q ≤ z, Yj−p−q+1 > z, . . . , Yn2 > z}

+

j−i−q−
l=1

(−1)l

j − i − q

l


P{Y1 ≤ w, . . . , Yi−p ≤ w, Yi−p+1 ≤ w, . . . , Yi−p+l ≤ w,

× Yi−p+l+1 ≤ z, . . . , Yj−p−q ≤ z, Yj−p−q+1 > z, . . . , Yn2 > z}. (19)
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Now, the probability
P{X1 ≤ w, . . . , Xp ≤ w, Xp+1 ≤ w, . . . , Xp+l ≤ w, Xp+l+1 ≤ z, . . . , Xp+q ≤ z, Xp+q+1 > z, . . . , Xn1 > z}

appearing in the formula (16) can be expressed in terms of F(w, w, . . . , w  
p

, z, z, . . . , z  
t

) as given in the following lemma.

Lemma 3.
P{X1 ≤ w, . . . , Xp ≤ w, Xp+1 ≤ z, . . . , Xp+q ≤ z, Xp+q+1 > z, . . . , Xn1 > z}

=

n1−p−
t=q

(−1)t−q

n1 − p − q

t − q


F(wp, zt) (20)

and

P{X1 ≤ w, . . . , Xp ≤ w, Xp+1 ≤ w, . . . , Xp+l ≤ w, Xp+l+1 ≤ z, . . . , Xp+q ≤ z, Xp+q+1 > z, . . . , Xn1 > z}

=

n1−p−l−
t=q−l

(−1)t−q−l

n1 − p − q
t − q + l


F(wp+l, zt), (21)

where F(wp, zt) = F(w, w, . . . , w  
p

, z, z, . . . , z  
t

).

Proof. Proof of (20) is similar to the proof of Lemma 1. By considering A = {X1 ≤ w, . . . , Xp ≤ w, Xp+1 ≤ z, . . . , Xp+q ≤ z}
and Bl = {Yl ≤ z}, for l = p + q + 1, . . . , n1 repeating similar considerations as in Lemma 1 the proof is completed.
Analogously, (21) can be proved.

It follows from the Lemma 3 that

P{Y1 ≤ w, . . . , Yi−p ≤ w, Yi−p+1 ≤ z, . . . , Yj−p−q ≤ z, Yj−p−q+1 > z, . . . , Yn2 > z}

=

n2−i+p−
t=j−i−q

(−1)t−j+i+q

n2 − j + p + q
t − j + i + q


G(wi−p, zt) (22)

and

P{Y1 ≤ w, . . . , Yi−p ≤ w, Yi−p+1 ≤ w, . . . , Yi−p+l ≤ wYi−p+l+1 ≤ z, . . . ,
Yj−p−q ≤ z, Yj−p−q+1 > z, . . . , Yn2 > z, Yi−p+ℓ ≤ w, Yi−p+ℓ+1 > z, . . . , Yn2−j+i+q−p+ℓ > z)

=

n2−i+p−l−
t=j−i−l−q

(−1)t−j+i+l+q


n2 − j + p + q
t − j + i + q + l


G(wi−p+l, zt) (23)

where G(wi−p, zt) = G(w, w, . . . , w  
i−p

, z, z, . . . , z  
t

). �

Remark 3. Accuracy of (22) and (23) can be verified by using independent variables. Assuming Y s being independent with
c.d.f. F , in the left hand side of (22) we have

= P{Y1 ≤ w, . . . , Yi−p ≤ w, Yi−p+1 ≤ z, . . . , Yj−p−q ≤ z, Yj−p−q+1 > z, . . . , Yn2 > z}

= F i−p(w)F j−i−q(z)(1 − F(z))n2−j+p+q.

In the right hand side of (18) we have
n2−i+p−
t=j−i−q

(−1)t−j+i+q

n2 − j + p + q
t − j + i + q


G(wi−p, zt)

=

n2−i+p−
t=j−i−q

(−1)t−j+i+q

n2 − j + p + q
t − j + i + q


P{Y1 ≤ w, . . . , Yi−p ≤ w, Yi−p+1 ≤ z, . . . , Yi−p+t ≤ z}

= F i−p(w)

n2−i+p−
t=j−i−q

(−1)t−j+i+q

n2 − j + p + q
t − j + i + q


F k(z)

= F i−p(w)F j−i−q(z)
n2−j+p+q−

k=0

(−1)k

n2 − j + p + q

k


F k(z)

= F i−p(w)F j−i−q(z)(1 − F(z))n2−j+p+q.
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Therefore using Lemmas 2 and 3, taking into account (16), (19)–(23) in (15) the joint distribution of rth and sth order
statisticsWr:n andWs:n can be written as in the following

Theorem 2.

H(r)(s)(w, z) = P(Wr:n ≤ w,Ws:n ≤ z)

=

n−
j=s

j−
i=r

min(i,n1)−
p=max (0,i−n2)

min(j−i,n1−p)−
q=max (0,j−i−n2)


n1

p


n1 − p

q


n2

i − p


n2 − i + p
j − i − q



×


q−

l=0

(−1)l
q
l

 n1−p−l−
t=q−l

(−1)t−q−l

n1 − p − q
t − q + l


F(wp+l, zt)



×


j−i−q−
l=0

(−1)l

j − i − q

l

 n2−i+p−l−
t=j−i−l−q

(−1)t−j+i+l+q


n2 − j + p + q
t − j + i + q + l


G(wi−p+l, zt)


.

Remark 4. If n1 = n, n2 = 0 and X1, X2, . . . , Xn are i.i.d. random variables with c.d.f. F then from Theorem 2 one has

H(r)(s)(w, z) =

n−
j=s

j−
i=r

j−
q=j

i−
p=i


n1

p


n1 − p

q


n2

i − p


n2 − i + p
j − i − q


(F(w))p(F(z) − F(w))q−p(1 − F(z))n−q

=

n−
j=s

j−
i=r

n!
i!(j − i)!(n − j)!

(F(w))i(F(z) − F(w))j−i(1 − F(z))n−j. (24)

Remark 5. If n1 = 0 and n2 = n, then from Theorem 2 one obtains the joint distribution of order statistics Wr:n and Ws:n
from exchangeable random variablesW1,W2, . . . ,Wn having joint distribution function G(w1, w2, . . . , wn)

H(r)(s)(w, z) =

n−
j=s

j−
i=r

n!
i!(j − i)!(n − j)!

×

 j−i−
l=0

(−1)lC l
j−i

n−i−l−
t=j−i−l

(−1)t−j+i+l


n − j
t − j + i


G(w, w, . . . , w  

i+l

, z, z, . . . , z  
t

)

 . (25)

It is easy to verify that if all variablesW1,W2, . . . ,Wn are i.i.d. with c.d.f. F , then (25) reduces to (24).

Corollary 2. If X1, X2, . . . , Xn1 and Y1, Y2, . . . , Yn2 are two independent samples with c.d.f. F(x) and G(x), respectively, then

H(r)(w) = P{Wr:n ≤ w}

=

n−
i=r

min(i,n1)−
j=max (0,n1+i−n)


n1

j


n2

i − j


(F(w))j(1 − F(w))n1−jGj−i(w)(1 − G(w))n2−i+j

and

H(r)(s)(w, z) =

n−
j=s

j−
i=r

min(i,n1)−
p=max (0,i−n2)

min(j−i,n1−p)−
q=max (0,j−i−n2)


n1

p


n1 − p

q


n2

i − p


n2 − i + p
j − i − q


(F(w))p

× (F(z) − F(w))q(1 − F(z))n1−p−qGi−p(w)(G(z) − G(w))j−i−q(1 − G(z))n2−j+p+q.
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