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a b s t r a c t

This paper considers a one-dimensional cutting stock and assortment problem. One of the
main difficulties in formulating and solving these kinds of problems is the use of the set
of cutting patterns as a parameter set in the mathematical model. Since the total number
of cutting patterns to be generated may be very huge, both the generation and the use
of such a set lead to computational difficulties in solution process. The purpose of this
paper is therefore to develop a mathematical model without the use of cutting patterns as
model parameters. We propose a new, two-objective linear integer programmingmodel in
the form of simultaneous minimization of two contradicting objectives related to the total
trim loss amount and the total number of different lengths of stock rolls to be maintained
as inventory, in order to fulfill a given set of cutting orders. The model does not require
pre-specification of cutting patterns. We suggest a special heuristic algorithm for solving
the presented model. The superiority of both the mathematical model and the solution
approach is demonstrated on test problems.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Problems of cutting large standard sizes into smaller order sizes demanded by customers or required for in-plant
processing are found in various industries. They arise, e.g. in the production of paper rolls, steel bars, aluminum or wooden
profiles. A large number of different types of cutting problems can be distinguished.

A typology on cutting and packing problems was investigated in [1,2]. One of themost important characteristics used for
classification of such problems, is their dimensionality. The dimensionality is the minimum number of dimensions of real
numbers necessary to describe the geometry of the patterns.

Especially, the one-dimensional cutting stock problem where smaller lengths (pieces, items) are to be cut from a
(minimum) number of identical or different stock pieces is widely considered in the literature.

Two-dimensional problems appear in situations where a flat material has to be divided into products of smaller
rectangular measures. Two-dimensional problems appear in situations where a flat material has to be divided into products
of smaller rectangular measures.

One-and-a-half-dimensional cutting stock problem is a particular case of the two-dimensional problem in which the
length of a sheet is sufficiently large (infinite for practical purposes). These kinds of problems arise when rectangular pieces
are laid out on a very long roll of material.
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Usually, it is more economical to produce or procure only a few different types of standard sizes at first, to keep these
sizes as inventory, and then to cut the stock sizes into the demanded sizes, than to produce or procure the required order
sizes directly [3]. Therefore, two related problems arise: the cutting stock problem and the assortment problem [4].

The cutting stock problem is to determine how the available stock materials (particularly, paper rolls) should be cut into
the required sizes.

The one-dimensional cutting stock problems with a single and multiple standard sizes have widely been studied in the
literature; see for example, [5–9].

Manymathematical programming approaches for solving the cutting stock problems, assume the existence of the full set
of cutting patterns, and the corresponding mathematical models use them as model parameters. Since the total number of
cutting patterns to be generated may be very huge for such kinds of problems, both the generation and the use of the set of
cutting patterns as a parameter set lead to computational difficulties in solving these problems. Therefore special solution
procedures are required for finding satisfactory solutions.

The assortment problem, also referred to as a stock size selection problem, involves the choice of the best combination
of different types of standard lengths (particularly, paper roll sizes) or briefly stock sizes to be maintained as inventory in
order to minimize appropriate objective function(s). Under these conditions the efficiency of solutions obtained is closely
related to the stock lengths selected.

Holthaus [3] considered the one-dimensional assortment problemand evaluated the possible savings in the totalmaterial
costwhich can be realized by using an assortmentwith two ormore types of stock lengths, compared to an assortmentwith a
single type of stock lengths. By investigating a large number of problem instances of different classes of the one-dimensional
assortment problem, it is shown that there exist problem classes for which it is possible to realize substantial savings in the
total material cost by using an assortment with two, three or four types of standard lengths.

Gasimov et al. [10] studied a 1.5-dimensional cutting stock and assortment problem. They proposed a new two-objective
mixed integer linear programming model for solving this problem.

All the approaches presented in the above-mentioned works, use a set of cutting patterns as a parameter set in the
mathematical model where one of the main characteristics is minimization of a total trim loss. It is well known that to
produce a whole set of cutting patterns for problems with more than one stock material, is very difficult.

On the other hand, the trim loss can be reduced by increasing a number of different widths of roll stocks (see, for example
[3,10]). Therefore, besides the minimization of a total trim loss amount, the minimization of the total number of different
lengths of roll stocks to be maintained as inventory, is also of great importance.

In this paper, the two-objective linear integer programming mathematical model is developed for solving the one-
dimensional cutting and assortment problem. The model has been constructed in the form of simultaneous minimization
of two contradicting objectives, related to the total trim loss amount and the total number of different lengths of roll stocks
to be maintained as inventory, in order to fulfill a given set of cutting orders. The model does not require pre-specification
of cutting patterns.

A special heuristic algorithm for solving the presented model is presented. This algorithm uses special features of the
problem under consideration and therefore is expected to be more efficient and faster than existing metaheuristics. The
performances of both the mathematical model and the solution approach are demonstrated on test problems.

To the best of our knowledge, there are no previously considered models without the use of cutting patterns as a model
parameter set, for solving the one-dimensional cutting stock and assortment problem.

The paper is organized as follows. The next section presents a detailed description of the problem. The heuristic algorithm
for solving the mathematical model is explained in Section 3. The design of computational experiments and solution results
are reported in Section 4. For comparison, an additional single-objective (on trim loss minimization only) mathematical
model with cutting patterns is solved for every test problem. We present a comprehensive explanation on the solution
results obtained. Finally, Section 5 draws some conclusions from this work.

2. Problem formulation

During a planning period, n order pieces are to be fulfilled. The sizes and the number of pieces are given. Given the set of
all possible types or sizes of standard lengths which can be produced or procured from a supplier, the assortment problem
involves the choice of the best combination of different types of standard lengths to be maintained as inventory and to be
used for cutting the order pieces. In this case, the problem is to select the optimal (minimal) number of roll sizes that have
to be stocked and to find the corresponding cutting patterns in order to produce the required order pieces which has to be
cut from the selected rolls by simultaneously minimizing the total trim loss amount.

For formulating the mathematical model of this problem the following notations are introduced.
Sets and parameters

Let

• m be the number of all roll sizes (standard lengths), which are available for the producer,
• n be the number of all order pieces (products) with different widths to be fulfilled during the planning period,
• I = {1, . . . ,m} be a set of roll sizes,
• J = {1, . . . , n} be a set of order pieces,
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• cj be the length of order piece j,
• dj be the demand for order piece j,
• Li be the length of roll i,
• Ki be the maximal number of times the roll of type i can be used in the production process.

Decision variables
Let

• xik be the binary variable indicating whether the roll of type i will be used for kth time:

xik =


1 if roll i is used for kth time,
0 otherwise. (1)

• zi be the binary variable indicating whether the roll of type iwill be used or not:

zi =


1 if roll i is used,
0 otherwise. (2)

• yijk be the number of times the order piece j is involved in the roll of type iwhen this roll is used for kth time.

Objective functions
We have two objective functions:

• The total trim loss amount:

f1(x, y, z) =

m−
i=1

Ki−
k=1


Lixik −

n−
j=1

cjyijk


. (3)

• The total number of roll types used:

f2(x, y, z) =

m−
i=1

zi. (4)

Under these notifications we can formulate a multi-objective IP model (P) for the one-dimensional cutting stock and
assortment problem described above, in the following form:

(P) min[f1(x, y, z), f2(x, y, z)] (5)
subject to

m−
i=1

Ki−
k=1

yijk = dj for all j = 1, . . . , n, (6)

n−
j=1

cjyijk ≤ Lixik for all i = 1, . . . ,m; k = 1, . . . , Ki, (7)

Ki−
k=1

xik ≤ Kizi i = 1, . . . ,m. (8)

xik and zi binary, yijk nonnegative integer for all
i = 1, . . . ,m, j = 1, . . . , n, and k = 1, . . . , Ki.

Constraint set (6) ensures that the demand for any order piece has to be met. Constraint set (7) are called the knapsack
constraints and ensures that the length of the cutting pattern k generated for the roll of type i cannot exceed the lengths Li
of this roll. If any cutting pattern is assigned to a roll of type i, then constraint set (8) forces zi = 1. If no cutting pattern is
assigned to a roll of type i, then the left-hand sides of the inequality in constraint sets (8) are zero, and hence, the constraint
set (8) permits a choice between zi = 0 and zi = 1. zi = 0 must yield a smaller value of f2 than zi = 1. Therefore, because
the objective is to minimize f2, an algorithm yielding an optimal solution would always choose zi = 0 when

∑Ki
k=1 xik = 0.

Finally, the integrality constraints are added to functional constraints.
Note that problem (P) defined by relations (5)–(8) together with the integrality constraints may involve a huge number

of binary and integer decision variables which causes difficulties in the solution process. In the next section the heuristic
solution algorithm is presented for solving this mathematical model.

3. Solution method

The idea of the heuristic solution procedure developed for solving the mathematical model (P) is as follows. First, all the
order pieces are ranked with respect to their lengths beginning from the largest one. Let J = {1, . . . , n} be the ranked set of
all order pieces.
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Then, since the available roll type of shortest length is the cheapest one, all the available roll types are rankedwith respect
to their lengths beginning with one having minimal length. Let I = {1, . . . ,m} be the ranked set of all roll types available.

We define the initial allowable trim loss length t (for example beginning with t = 0) and set COUNT = 0. Choose the
first roll type, set i = 1.

The algorithm begins with generating cutting patterns for implementing on roll type iwith trim loss t as follows. Choose
the first order piece in J and set j = 1. The order piece j is placed on the roll of type i for h1 − COUNT times, where h1 is a
greatest number satisfying the inequalities h1 ≤ dj, and h1 × cj ≤ Li, and cj and Li are the lengths of order piece j and roll
type i, respectively. Similarly, the next order piece (that is order piece j = 2) can be placed on the same roll i, and so be
included in the same cutting pattern, if the remaining part of Li is available (that is if Li − ((h1 − COUNT ) × c1) ≥ c2), and
so on. That is, the cutting pattern of the form (h1 − COUNT ) × c1 + h2 × c2 + h3 × c3 + · · · is generated so that the trim loss
Li − ((h1 − COUNT ) × c1 + h2 × c2 + h3 × c3 + · · ·) ≤ t is satisfied.

We denote this cutting pattern by C . The cutting pattern C is then implemented on the roll i by taking into account
the demand amount for every product involved in that cutting pattern. The number of times that the cutting pattern will be
implemented, is determined such that the total amount for every order piece involved in this cutting pattern does not exceed
the demand amounts of the corresponding order pieces. Once the demand of some order piece is fulfilled, this product is
excluded from the set of all products. After, the algorithm updates the set of order pieces J , and the demand amounts for
all the products involved in J , the procedure is repeated for the new set of products beginning with the same roll type for
which C is generated.

If the demands for all order pieces are fulfilled, then the first feasible solution has been obtained. The order of elements
in the set J is changed so that the element j+ 1 becomes the first one and the whole process is repeated for the updated set
J . This leads to the second feasible solution and so on, the process continues for n times, until the nth element in J becomes
the first one. Then, a feasible solution providing the minimal trim loss amount with a minimal roll type number is selected
among all these n feasible solutions. This becomes a solution of the problem and the algorithm is terminated.

If no cutting pattern satisfying the condition ‘‘trim loss’’≤ t is generated, algorithm consider the next roll type by setting
i = i + 1 and so on.

If the cutting pattern with ‘‘trim loss’’ ≤ t cannot be generated for all roll types, algorithm sets COUNT = COUNT + 1
and repeats the cutting pattern generating process, until COUNT will become equal to h1.

If the cutting pattern with ‘‘trim loss’’ ≤ t cannot be generated for all roll types, and for all available values of the
parameter COUNT , algorithm increases the allowable trim loss length by setting t = t + a and repeats the above steps.
The number a can be chosen by taking into account the lengths of order pieces and roll types, for example one possible
value for a may be a = 1 cm.

The use of parameter COUNT allows us to generate different cutting patterns beginning with the different number of the
same order piece.

To present the essential steps of this solution procedure, we define the following notations.
Let

• I = {1, . . . ,m} be the set of all roll sizes, ranked with respect to their lengths beginning from the shortest one (or from
the largest one, in dependence on desire of decision maker);

• J = {1, . . . , n} be a set of order pieces, ranked with respect to their lengths beginning from the largest one;
• t be the allowable trim loss length;
• COUNT be the parameter that is used to determine the number of the first order piece in a cutting pattern.
• s be the number of feasible solutions.

With these notations, the algorithm for selecting the minimal number of stock sizes and for generating cutting patterns
to minimize the total trim loss amount and satisfying demand constraints works as follows.

Algorithm. Initial Step. Set I = {1, . . . ,m}, J = {1, . . . , n}, i = 1, j = 1, k = 1, s = 1, t = 0 (allowable trim loss length),
COUNT = 0 and choose a suitable value for the parameter a.
Step 1. Generate all cutting patterns for roll size i, beginning with the first order piece s in J , whose trim loss do not exceed
t , by the following way.

The order piece s is placed on the roll of type i for hs − COUNT times, where hs is a greatest number satisfying the
inequalities hs ≤ ds, and hs × cs ≤ Li, and cs and Li are the lengths of the order piece s and the roll type i, respectively.
Similarly, the next order piece (that is the second element of J) can be placed on the same roll i, and so be included in
the same cutting pattern, if the remaining part of Li is available, that is if Li − ((hs − COUNT ) × cs) ≥ c2, and so on.
Thus, the cutting pattern of the form (hs − COUNT ) × cs + h2 × c2 + h3 × c3 + · · · is generated such that, the trim loss
Li − ((hs − COUNT ) × cs + h2 × c2 + h3 × c3 + · · ·) ≤ t is satisfied.

If such a cutting pattern is generated go to Step 2, if no cutting pattern is generated, set i = i + 1 and consider the next
stock size and so on.

If the cutting pattern with ‘‘trim loss’’ ≤ t cannot be generated for all roll types, set COUNT = COUNT + 1 and repeat the
cutting pattern generating process, until COUNT will become equal to h1.

If the cutting pattern satisfying ‘‘trim loss ≤ t ’’ could not be generated for all roll sizes, increase the allowable trim loss
length by setting t = t + a and try again.
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Step 2. Let Ck be the cutting pattern generated in Step 1, and let i be the roll type for which Ck is generated. Implement the
cutting pattern Ck on the roll i for d times, where d is determined such that the total amount for every order piece included
in this cutting pattern, will not exceed its demand amount.
Step 3. Update the demand amounts for the order pieces involved in the cutting pattern Ck. Update the set J of all order
pieces, by excluding the ones whose demands are fulfilled. If J = ∅ (that is the demands for all order pieces are fulfilled),
then sth feasible solution has been calculated: go to Step 4. If J ≠ ∅ then update the set I by putting the stock size i to the
first place, set t = 0, k = k + 1 and go to Step 1.
Step 4. Set s = s + 1. If s ≤ n then update the set J as J = {s, 1, . . . , s − 1, s + 1, . . . , n}, set i = 1 and go to Step 1.

If s > n then choose the feasible solution with a minimal trim loss amount and a minimal roll type number and STOP:
the solution is found.

4. Computational results

In this section, the superiority of both the developedmathematicalmodel and the performance of the proposed algorithm
is demonstrated on nine test problems with different values of the following model parameters:
• the number of available roll size types with their lengths,
• the number of order pieces with their lengths, and
• demand amounts.

Nine test problems have been generated randomly. The Visual Basic code has been written for implementing the proposed
algorithm.

For comparison, an additional single-objective (on trim loss minimization only) mathematical model with cutting
patterns is solved for every test problem. This mathematical model is solved by applying GAMS/CPLEX solver.
Documentation and information about GAMS are available via the World Wide Web at the URL: www.gams.com.
Computations were carried out on Intel Core 2 Duo computer with 2.00 GHz processor, 1.87 GB RAM.

In what follows we explain each test problem separately and present their solutions obtained for both mathematical
models.

First we present the additional mathematical model.
The mathematical model with cutting patterns
Sets and parameters

Let
• m be the number of all roll sizes (standard lengths), which are available for the producer,
• n be the number of all order pieces (products) with different widths to be fulfilled during the planning period,
• p be the number of all cutting patterns,
• I = {1, . . . ,m} be a set of roll sizes,
• J = {1, . . . , n} be a set of order pieces,
• K = {1, . . . , p} be a set of all cutting patterns,
• cj be the length of product j,
• dj be the demand for product j,
• ajk be the total number of order piece j contained in cutting pattern k, j ∈ J , k ∈ K ,
• fik be the trim loss amount from roll i and cutting pattern k, (in cm), i ∈ I , k ∈ K ,
• S be the number of different types of standard lengths to be selected fromm possible roll sizes,
• U be a large positive constant.

Decision variables
Let

• xik be the integer variable indicating the number of times that the roll of type i will be cut using the cutting pattern k,
i ∈ I , k ∈ K .

• zi be the binary variable indicating whether the roll of type iwill be used or not:

zi =


1 if roll i is used,
0 otherwise.

For simplification, we consider the situation when the producer is interested in choosing only a few number of types
among all the possiblem roll sizes. In this case the problem becomes to determine which S roll sizes and howmany of each
size should be stocked in order to minimize the total trim loss and to fulfill the order pieces during the planning period. For
this model the number of different roll sizes to be kept as inventory is treated as a parameter S.

Under these notifications we can formulate the single-objective integer programming model (P1) with cutting patterns,
for the one-dimensional cutting stock and assortment problem as

(P1) min
m−
i=1

p−
k=1

fikxik (9)

http://www.gams.com
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subject to
m−
i=1

p−
k=1

ajkxik = dj for all j = 1, . . . , n, (10)

p−
k=1

xik ≤ Uzi for all i = 1, . . . ,m. (11)

m−
i=1

zi ≤ S, (12)

xik nonnegative integer for all i ∈ I, k ∈ K . (13)

4.1. Experiments

The following notations and parameters are used to summarize the test problems and solution results.
• L = (L1, . . . , Lm) is the vector of different roll sizes, where Li is the length of roll type i.
• c = (c1, . . . , cn) is the vector of different order pieces, where cj is the length of order piece j.
• d = (d1, . . . , dn) is the vector of demand amounts for order pieces, where dj is the demand amount for order piece j.
• K is the available number of rolls of every type which can be used in the production process, that is in all experiments

we have taken Ki = K for all roll types i.
• Iopt denotes the set of roll types selected by a solution method.
• The set Iopt × N = {(i,Ni)}i∈Iopt is used to denote the pairs of solution results, where i indicates the type of the roll size i

selected, and Ni denotes the total amount of roll size i used in the production process to fulfill the demand.

Experiment 1.

m = 2, n = 5, L = (100, 110),
c = (10, 20, 30, 40, 60), d = (6, 11, 4, 20, 15), K = 21.

Experiment 2.

m = 3, n = 10, L = (100, 110, 120),
c = (10, 20, 30, 40, 60, 15, 25, 35, 45, 65), d = (7, 11, 3, 20, 15, 5, 10, 13, 20, 15),
K = 32.

Experiment 3.

m = 4, n = 20, L = (100, 110, 120, 130),
c = (10, 20, 30, 40, 60, 15, 25, 35, 45, 65, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32),
d = (16, 11, 13, 20, 15, 15, 10, 13, 20, 15, 15, 11, 13, 20, 15, 15, 10, 13, 2, 15),
K = 42.

Experiment 4.

m = 4, n = 30, L = (200, 220, 240, 280),
c = (10, 20, 30, 40, 60, 15, 25, 35, 45, 65, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34,

41, 42, 43, 44, 51, 52, 53, 54),
d = (5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15),
K = 34.

Experiment 5.

m = 4, n = 40, L = (100, 110, 120, 130),
c = (10, 20, 30, 40, 60, 15, 25, 35, 45, 65, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44,

51, 52, 53, 54, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71),

d = (5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3,
20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15),

K = 191.
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Experiment 6.

m = 5, n = 40, L = (10000, 9400, 5200, 8900, 6800),
c = (732, 1746, 1210, 290, 1212, 715, 1471, 1405, 1974, 344, 1699, 172, 351, 1227, 1739, 272,

1903, 1121, 1326, 107, 726, 1917, 1116, 501, 1599, 439, 821, 485, 361, 860, 1252, 562, 1131, 271,
1075, 987, 1171, 1979, 228, 1370),

d = (217, 232, 265, 249, 266, 269, 215, 215, 213, 267, 299, 259, 287, 284, 277, 223, 200, 255, 269, 226, 240,
209, 266, 254, 241, 264, 229, 257, 285, 204, 255, 257, 283, 222, 218, 289, 244, 214, 223, 290),

K = 547.

Experiment 7.

m = 5, n = 100, L = (400, 500, 600, 700, 800),
c = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,

30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100),

d = (5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11,
3, 20, 15, 5, 10, 13, 20, 15, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17),

K = 107.

Experiment 8.

m = 10, n = 20, L = (101, 102, 103, 104, 105, 106, 107, 108, 109, 110),
c = (50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 32, 33, 42, 44, 27, 19, 10, 40, 20, 30),
d = (273, 20, 27, 19, 32, 28, 100, 82, 55, 42, 48, 35, 29, 50, 35, 40, 23, 42, 51, 32),
K = 101.

Experiment 9.

m = 10, n = 200, L = (500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400),
c = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129,
130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150,
151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192,
193, 194, 195, 196, 197, 198, 199, 200),

d = (5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11, 3, 20, 15, 5, 10, 13, 20, 15, 5, 11,
3, 20, 15, 5, 10, 13, 20, 15, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19,
19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22),

K = 233.

4.2. Solution results

In this subsection we present solution results obtained for test problems described in the previous subsection. We first
present the solution results for problem (P) obtained by using the heuristic algorithmdeveloped. Tables 1–4 present solution
results for Experiments 1–4, respectively, where the numbers of roll types selected by the algorithm, along with the cutting
patterns generated for implementing on that roll, the total number of every roll type used and the trim loss amount are
depicted.
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Table 1
Solution results for Experiment 1 obtained by the heuristic.

Cutting pattern no. Roll type selected Number of rolls used Cutting patterns generated Trim loss

1 100 15 (1 × 60) + (1 × 40) 0
2 100 2 (2 × 40) + (1 × 20) 0
3 100 1 (1 × 40) + (2 × 30) 0
4 100 1 (2 × 30) + (2 × 20) 0
5 100 1 (5 × 20) 0
6 100 1 (2 × 20) + (6 × 10) 0

Table 2
Solution results for Experiment 2 obtained by the heuristic.

Cutting pattern no. Roll type Number of rolls used Cutting pattern Trim loss

1 100 10 (2 × 40) + (1 × 20) 0
2 100 13 (1 × 65) + (1 × 35) 0
3 110 2 (1 × 65) + (1 × 45) 0
4 120 7 (2 × 60) 0
5 120 1 (1 × 60) + (1 × 45) + (1 × 15) 0
6 120 3 (2 × 45) + (1 × 30) 0
7 100 5 (2 × 45) + (1 × 10) 0
8 100 2 (4 × 25) 0
9 100 1 (1 × 45) + (2 × 25) 5

10 100 1 (1 × 20) + (4 × 15) + (2 × 10) 0

Table 3
Solution results for Experiment 3 obtained by the heuristic.

Cutting pattern no. Roll type Number of rolls used Cutting pattern Trim loss

1 100 10 (2 × 40) + (1 × 20) 0
2 100 13 (1 × 65) + (1 × 35) 0
3 110 2 (1 × 65) + (1 × 45) 0
4 120 7 (2 × 60) 0
5 120 1 (1 × 60) + (1 × 45) + (1 × 15) 0
6 120 8 (2 × 45) + (1 × 30) 0
7 120 1 (1 × 45) + (2 × 32) + (1 × 11) 0
8 120 4 (3 × 32) + (1 × 24) + (1 × 11) 0
9 100 1 (3 × 30) + (1 × 10) 0

10 100 2 (4 × 25) 0
11 110 1 (4 × 24) + (1 × 14) 0
12 110 1 (3 × 24) + (1 × 23) + (1 × 15) 0
13 130 1 (5 × 23) + (1 × 15) 0
14 100 1 (1 × 23) + (3 × 22) + (1 × 11) 0
15 100 2 (4 × 22) + (1 × 12) 0
16 100 1 (1 × 22) + (3 × 21) + (1 × 15) 0
17 120 1 (5 × 21) + (1 × 15) 0
18 120 1 (3 × 21) + (3 × 15) + (1 × 12) 0
19 100 1 (2 × 15) + (5 × 14) 0
20 110 1 (7 × 14) + (1 × 12) 0
21 130 1 (2 × 14) + (7 × 13) + (1 × 11) 0
22 100 1 (1 × 32) + (2 × 31) 6
23 100 1 (2 × 30) + (1 × 25) + (1 × 15) 0
24 100 1 (1 × 25) + (2 × 24) + (1 × 23) 4
25 100 1 (2 × 23) + (2 × 22) + (1 × 10) 0
26 100 1 (1 × 22) + (3 × 21) + (1 × 15) 0
27 100 1 (1 × 21) + (1 × 20) + (3 × 15) + (1 × 14) 0
28 100 1 (4 × 14) + (3 × 13) 5
29 100 1 (3 × 13) + (5 × 12) 1
30 100 1 (2 × 12) + (6 × 11) + (1 × 10) 0
31 100 1 (6 × 11) + (3 × 10) 4
32 100 1 (10 × 10) 0

Table 1 demonstrates that for solving the cutting and assortment problemwhose data is given in Experiment 1, the roll of
size 100 is the only onewhich has been selected by the algorithm, and this roll is used for totally 21 = 15+2+1+1+1+1
times. The heuristic algorithm implemented for solving the mathematical model (P) for this problem, has generated six
cutting patterns. The first cutting pattern which consists of two order pieces – one of size 60 and the other one of size 40,
has been implemented for 15 times. The second cutting pattern consists of tree order pieces – two of size of 40 and one of
size 20, and so on. The total trim loss is zero.
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The solution results obtainedby theheuristic for Experiment 2, are presented in Table 2. The obtained results demonstrate
that the demand constraints for all order pieces are satisfied as equality. For example, the order piece of size 65 is contained
in the cutting patterns presented on second and third rows of Table 2. Each of these cutting patterns contain this order piece
for only one time. The first cutting pattern, that is (1 × 65) + (1 × 35), is implemented on the roll of size 100 for 13 times,
and the second one (1× 65) + (1× 45) is implemented on the roll of size 110 for 2 times. Thus, 13+ 2 = 15 which equals
the demand amount for this order piece (see the description of Experiment 2 presented in the previous section). Table 2
demonstrates that totally 10 cutting patterns have been generated by the heuristic for solving Experiment 2, among which
only ninth cutting pattern has a trim loss of size 5 : 100−[(1×45)+(2×25)] = 5. All the available (tree) roll types have been
used in the production process. The roll of size 100 has been used by 6 cutting patterns totally for 10+13+5+2+1+1 = 32
times. Similarly, the rolls of sizes 110 and 120 are used for 2 and 11 times, respectively (see also Table 6).

The solution results obtained by the heuristic for Experiment 3, are presented in Table 3. Let us explain the steps of
the heuristic algorithm on this table. It seems that a feasible solution beginning with a cutting pattern which uses order
piece of size 40 first, has been selected as the best solution by the heuristic algorithm. The set of products J for this solution
corresponds to the order of products in the formof 40, 65, 60, 45, 35, 32, and so on. The order of order pieces in the first cutting
pattern begins by the product of length 40. This cutting pattern has been generated for implementing on roll of the shortest
length 100. The value of the parameter h1 for this product and roll type pair, equals 2 (because 100−2×40 = 20 < 40). For
the remaining part of this roll (of length 20,) the most suitable product is the order piece of length 20. Thus, the first cutting
pattern (2×40)+ (1×20) is generated for roll of length 100with zero trim loss. This cutting pattern is implemented on the
roll of size 100 for 10 times. Therefore, the demand amount of 20 for the order piece of size 40 has been entirely satisfied.
Therefore, the product of length 40 is excluded from the set of order pieces. On the other hand, since the demand for product
of size 20, equals 11, in the demand amount for this product will be made an adjustment such that, a new demand amount
for this product equals 1 (=11 − 10) after this step.

To generate the next cutting pattern, algorithm tries the second element in the updated set J (that is the product of length
65) and the same roll of size 100. For this selection, themost suitable (with zero trim loss) cutting pattern is (1×65)+(1×35).
The demand amounts for the products of lengths 65 and 35, are 15 and 13, respectively. Therefore, algorithm implements
this cutting pattern for 13 times and excludes the order piece of length 35 from the set J . At the same time, in the demand
amount for product of length 65 is made an adjustment, and it has been put equal to 2 (= 15 − 13).

All trials for the next cutting pattern on the roll of size 100 having the product of size 65 at the first place, leads to trim
loss amount greater than t = 0. Therefore, algorithm considers the next roll, that is the roll of size 110. For this roll, the
first cutting pattern that should be considered, is the pair of products of lengths 65 and 45, because it is not possible to cut
the cutting pattern consisting of pair of products with lengths of 65 and 60 (which is the next to the product of length 65 in
the set J) from the roll of length 110. Hence, the cutting pattern (1 × 65) + (1 × 45) (with zero trim loss) is generated, and
implemented for 2 times, and so on.

Table 4 presents another interesting interpretation for the heuristic algorithm implemented for Experiment 4. Algorithm
has recognized that the feasible solutionwhose cutting patterns list begins with the product of length 51, is the best one and
this cutting pattern has been implemented on the largest roll size. For this solution, the set of product indices J corresponds
to the sequence of products of the form 51, 65, 60, 54, 53, 52, 45, 44, and so on. This situation can obviously be viewed from
the sequence of cutting patterns presented in Table 4.

The total number of best cutting patterns generated by the heuristic and the total number of roll sizes used in the solution
process of problem (P) for all experiments are depicted in Table 5. For comparison, the total number of cutting patterns used
in the parameter set of problem (P1) along with the total number of rolls used in the solution process, are given in the same
table.

The Visual Basic code has beenwritten for generating cutting patterns for solving themathematicalmodel (P1). The set of
cutting patterns were generated in two stages. In the first stage cutting patterns involving single order piece are generated.
In the second stage, cutting patterns with more than one order piece were allowed. Since the number of all possible cutting
patterns can be very huge, only cutting patterns with a trim loss not greater than a 20% of a corresponding roll type were
generated. For solving problem (P1), CPLEX solver of GAMS software is implemented. Solution results have been obtained
for only first, second and third experiments (see Tables 5 and 6).

Table 6 demonstrates superiority of both the proposed mathematical model and the developed heuristic for its solution
over the mathematical model with cutting patterns. A reasonable number of cutting patterns could have been generated as
a parameter set only for first three experiments. The solution results of (P1) obtained for all these experiments are worse
than those obtained by the heuristic for (P). For example, the trim loss amounts obtained for model (P1) by GAMS, are
greater than those obtained for (P) by the heuristic. The solution time for Experiment 3 is 1523.6 s for (P1), while it is only
2 s for (P). This solution time does not include the time for generating cutting patterns. Unfortunately, the program code
for generating only a restricted number of cutting patterns could not be terminated within the reasonable time period and
therefore we could not solve problem (P1) for Experiments 4–9.

The results presented for Experiments 5 and 8 in Table 6 show also that, the heuristic minimizes the number of roll types
used in production process. Although the total numbers of different roll types available for these experiments are 5 and 10,
there has been chosen only 2 and 8 roll types, respectively.

After generating the all n feasible solutions, decision maker can use her/his own priorities in selecting the best solution.
If the number of roll types has a greater priority, then the corresponding solution can be chosen.
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Table 4
Solution results for Experiment 4 obtained by the heuristic.

Cutting pattern no. Roll type Number of rolls used Cutting pattern Trim loss

1 280 2 (5 × 51) + (1 × 25) 0
2 280 3 (4 × 65) + (1 × 20) 0
3 280 1 (3 × 65) + (1 × 60) + (1 × 25) 0
4 280 3 (4 × 60) + (1 × 40) 0
5 280 1 (2 × 60) + (2 × 54) + (1 × 52) 0
6 280 2 (5 × 54) + (1 × 10) 0
7 280 1 (3 × 54) + (2 × 53) + (1 × 12) 0
8 280 3 (5 × 53) + (1 × 15) 0
9 200 1 (2 × 53) + (1 × 52) + (1 × 42) 0

10 200 3 (3 × 52) + (1 × 44) 0
11 200 1 (1 × 52) + (3 × 45) + (1 × 13) 0
12 200 4 (4 × 45) + (1 × 20) 0
13 240 1 (1 × 44) + (4 × 43) + (1 × 24) 0
14 240 2 (5 × 43) + (1 × 25) + (1 × 11) 0
15 240 2 (5 × 42) + (1 × 30) 0
16 200 1 (4 × 42) + (1 × 32) 0
17 200 1 (3 × 42) + (1 × 41) + (1 × 33) 0
18 200 3 (5 × 40) 0
19 200 2 (5 × 35) + (1 × 25) 0
20 280 1 (6 × 34) + (2 × 32) + (1 × 12) 0
21 200 1 (1 × 53) + (1 × 52) + (1 × 45) + (1 × 44) 6
22 200 1 (1 × 43) + (2 × 42) + (1 × 41) + (1 × 32) 0
23 200 1 (1 × 41) + (2 × 40) + (2 × 35) 9
24 200 1 (1 × 35) + (4 × 34) + (1 × 25) 4
25 200 1 (1 × 34) + (4 × 33) + (1 × 32) 2
26 200 1 (6 × 32) 8
27 200 1 (4 × 32) + (2 × 31) + (1 × 10) 0
28 200 3 (6 × 31) + (1 × 14) 0
29 200 1 (1 × 30) + (2 × 25) + (5 × 24) 0
30 200 1 (7 × 24) + (1 × 23) 9
31 200 1 (8 × 23) + (1 × 15) 1
32 200 1 (1 × 23) + (5 × 22) + (3 × 21) 4
33 200 1 (9 × 21) + (1 × 11) 0
34 200 1 (3 × 21) + (4 × 20) + (1 × 15) + (3 × 14) 0
35 200 1 (14 × 14) 4
36 200 1 (2 × 13) + (9 × 12) + (4 × 11) + (2 × 10) 2

Table 5
Number of (optimal) cutting patterns and used rolls for problems (P) and (P1).

Exp. no. Results for (P) Results for (P1)
Number of cutting
patterns generated

Total number of rolls used
in solution process

Number of cutting
patterns used

Total number of rolls used
in solution process

1 6 21 42 21
2 10 45 95 44
3 32 72 424 69
4 36 56 1153 –
5 36 208 399 –
6 125 1371 454 –
7 95 161 17,568 –
8 32 473 118 –
9 231 453 43,174 –

Finally, we have added all the best cutting patterns generated by the heuristic, to the parameter set of problem (P1) and
solved it again for Experiments 1–3 using GAMS. The results are presented in Table 7.

Table 7 demonstrates the strength of the proposed approach. The difference between the results obtained for problem
(P1) depicted in Tables 6 and 7 show the effect of the cutting patterns generated by the heuristic algorithm. After adding
best cutting patterns generated by the heuristic, to the parameter set of problem (P1), the trim loss amounts for all three
experiments have been reduced. These trim loss amounts were 20, 25 and 50 for Experiments 1, 2 and 3, respectively (see
Table 6). After including the cutting patterns calculated by the heuristic algorithm, these amounts have became 0, 0 and
1. The important ingredient here maybe the solution time. For example, Experiment 3 has 4 available roll types and 20
order pieces. Totally 424 cutting patterns have originally been generated by the Visual Basic code for the parameter set for
solving this experiment (see Table 5). The solution time is 1523.6 s and trim loss equals 50 (see Table 6). The same problem,
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Table 6
Results of numerical experiments for all experiments using the heuristic and GAMS software.

Exp. no. m n Results for (P) Results for (P1)
Trim loss Iopt × N Time (s) Trim loss Iopt × N Time (s)

1 2 5 0 (1, 21) <1 20 (1, 19), (2, 2) <1
2 3 10 5 (1, 32), (2, 2)

(3, 11)
<1 25 (1, 17), (2, 18)

(3, 9)
<1

3 4 20 20 (1, 42), (2, 5),
(3, 23), (4, 2)

2 50 (1, 16), (2, 28),
(3, 13), (4, 12)

1523.6

4 4 30 49 (1, 34), (3, 5)
(4, 17)

2 – – –

5 4 40 436 (1, 191), (2, 17) 2 – – –
6 5 40 7870 (1, 139), (2, 238)

(3, 547), (4, 144)
(5, 303)

2 – – –

7 5 100 80 (1, 107), (2, 35)
(3, 2), (4, 16), (5, 1)

2 – – –

8 10 20 223 (1, 64), (2, 7)
(3, 12), (4, 32)
(6, 80), (7, 101) (9,
81), (10, 76)

2 – – –

9 10 200 38 (1, 33), (2, 37)
(3, 233), (4, 97) (5,
8), (6, 1) (7, 33), (8,
4) (9, 23), (10, 4)

2 – – –

Table 7
Solution results obtained for problem (P1) after including best cutting patterns generated by the heuristic to the parameter set of Experiments 1–3.

Exp. no. Trim loss Total number of rolls used Numbers of roll types used Iopt × N Time (s)

1 0 21 1 (1, 21) 1
2 0 45 3 (1, 29), (2, 10) (3, 6) 1
3 1 71 4 (1, 30), (2, 9) (3, 14), (4, 18) 50000.44

after adding the best cutting patterns obtained by the heuristic, has been solved by the same GAMS solver in 50000.44 s (see
Table 7)with a trim loss amount of 1. Note that problem (P) for the same experiment has been solved by the heuristic only in
2 swith trim loss 20. These results show that in some situations the heuristic can be used for obtaining some ‘‘better’’ cutting
patterns first, then these cutting patterns may be embedded into the parameter set of the corresponding mathematical
model. But it should be remembered that it becomes unavailable to solve such a model for a huge data set.

5. Conclusions

In this paper, the two-objective linear integer programming mathematical model is developed for solving the one-
dimensional cutting and assortment problem. The model has been constructed in the form of simultaneous minimization
of two contradicting objectives, related to the total trim loss amount and the total number of different lengths of roll stocks
to be maintained as inventory, in order to fulfill a given set of cutting orders. The model does not require pre-specification
of cutting patterns.

To the best of our knowledge, such a model has not been treated in the literature before.
A special heuristic algorithm for solving the presented model, is presented. The performances of both the mathematical

model and the solution approach are demonstrated on nine test problems.
For comparison, an additional single-objectivemathematicalmodelwith cutting patterns is solved for every test problem.

A comprehensive explanations on the solution results are presented.
These explanations demonstrate the superiority of both the constructed mathematical model and the solution method.
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