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a b s t r a c t

The multivariate normality assumption is used in many multivariate statistical analyses. It
is, therefore, important to assess the validity of this assumption. Themain aim of this study
is to develop a JAVA program for applying the recently developed Zp and Cp test statistics.
The application and results of the program are illustrated on two real data sets.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Both the univariate normality and themultivariate normality assumptions are common and important inmany statistical
models and methodologies for data analysis. There are many varieties of tests for univariate normality in the literature and
many software packages (e.g., SPSS,Minitab, SAS) are available. Unfortunately the application ofmultivariate normality tests
is still limited or even not available in many software packages. One of the software packages that contains a multivariate
normality test is the R software, which includes the p-variate version of the Shapiro–Wilk statisticW .

The problem of utilization of the univariate normality tests to assess multivariate normality has been studied by many
researchers in recent years. Liang et al. [1], for example, developed three simple quantile–quantile (Q–Q) plots for providing
supplementary evidence in detecting a possible departure from themultivariate normality assumption in high-dimensional
data analysis. They illustrate how to employ the plots in practice on the Iris data. Szekely and Rizzo [2] proposed a new test
of multivariate normality when population parameters are estimated from the sample and present Monte Carlo power
comparisons to assess the empirical power performance of the new test. Sürücü [3] gives the results of a simulation study
of the power properties of some of the prominent goodness of fit tests (Shapiro–Wilk statistic W , correlation statistic R,
combined statistic C , Anderson–Darling statistic Â, Kolmogorov–Smirnov statistic D̂, Tiku statistic Z∗). Sürücü [4] examined
the Zp, Cp, Rp,Wp statistics andmeasure of skewness b1,p for testingmultivariate normality and has investigated their power
properties by simulation. In addition he has tested the introduced multivariate normality tests on the Iris Setosa plants’
data. Liang et al. [1] proposed a new way to generalize the Shapiro–Wilk statistic for testing high-dimensional normality
with small sample size (n). They present Monte Carlo studies to investigate the empirical performance of a generalized W
statistic for the cases of small n, and give applications of the generalizedW statistic on two real data sets.

Some contributions of this paper are: (a) Development of a JAVA program for testing a possible departure from
multivariate normality assumption based on the Zp and Cp statistics. (b) Direct calculation of the expected values of the
standardized normal order statistics (µi:n). (c) Direct calculation of the values of the coefficients ai:n in the W statistic.
(d) The developed JAVA program for testing multivariate normality is easy to use and apply. We hope that this program
will be helpful for interested users in applications of multivariate normality tests since similar tests in software packages
are quite limited.
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After presenting the univariate W , R, Z and C statistics in Section 2 the multivariate Zp and Cp statistics are presented
in Section 3. Section 4 presents some of the computations which are necessary for the multivariate Zp and Cp statistics. An
application of the JAVA program for multivariate normality on two real data sets is then given in Section 5.

2. The univariateW ,R, Z and C statistics

Suppose x1, . . . , xn is a random sample from a normal distribution N(µ, σ 2), with unknown parameters µ and σ 2, and
let x1:n ≤ · · · ≤ xn:n denote the order statistics of the observed values of this random sample.

The Shapiro–Wilk [5] statisticW is defined by

W =


n∑

i=1
aixi:n

2

n∑
i=1

(xi − x̄)2
, 0 < W < ∞, (2.1)

where
∑n

i=1 a
2
i = 1, and x̄ =

∑n
i=1 xi/n. The values of the coefficients ai (1 ≤ i ≤ n) are tabulated for n < 50 in [6]. In this

study, however, the ai (for any n > 1) are calculated by the program; details are given in Section 4. Note that
∑n

i=1 aixi:n is
actually the best linear unbiased estimator (BLUE) of σ . Small values of W lead to the rejection of the univariate normality
assumption. We also note that the null distribution of theW statistic is not known.

The correlation statistic R is given by

R = 1 − ρ̂2, 0 < R < 1 (2.2)

where ρ̂ is the estimated value of the productmoment correlation coefficient between xi:n andµi: n [7,8]. xi:n, (1 ≤ i ≤ n) are
the order statistics of a random sample of size n from the normal distribution and zi:n = (xi:n − µ)/σ are the corresponding
standardized normal order statistics. µi: n, (1 ≤ i ≤ n) are the expected values of the standardized normal order statistics,
i.e. E[zi:n]. The correlation coefficient statistics can be used for testing any assumed density of type (1/σ)f ((x − µ)/σ). For
ease of computation, in several studies, the µi:n are obtained by the population quantiles

µi:n = F−1
0 (i/n + 1), (1 ≤ i ≤ n) (2.3)

where F0(z) =
1

√
2π

 z
−∞

e−
z2
2 dz is the cumulative distribution function of the standard normal distribution. The expected

values of the standardizednormal order statistics (µi:n) can be obtained fromHarter [9]. Details onhow theµi:n are calculated
in the program are given in Section 4. Note that the null distribution of R is not known, and therefore, its percentage points
are generally determined empirically by a Monte Carlo simulation. Large values of R lead to the rejection of the normality
assumption.

The [10,11] statistic is defined by

Z =

2
n−1∑
i=1

(n − 1 − i)Gi

(n − 2)
n−1∑
i=1

Gi

, 0 < Z < ∞ (2.4)

where

Gi =
xi+1:n − xi:n
µi+1:n − µi:n

(2.5)

are the generalized sample spacings. Like R, the Z statistic can be used for testing any location–scale distribution. For large
n (≥ 10), the null distribution of Z is normal with common variance V , i.e. N(1, V ). The common variance V depends only
on n. However, V is not well approximated unless n is very large (n > 100). The values of V are, therefore, obtained by
simulation. Some values of

√
V , obtained by simulation for some n (10, 20, 30, 40, 50, 70, and 100) for testing normality are

given by Sürücü [4]. For intermediate values of n, the values
√
V can be obtained by linear interpolation. In this study, values

for V are obtained by simulation for any n(> 1).
The Shapiro–Wilk statistic W is known to be overall the most powerful test against skew and short-tailed symmetric

alternatives whereas the correlation statistic R is known to be overall the most powerful against long-tailed symmetric
alternatives. Sürücü [4,3] proposed a new statistic defined by

C = 1 − {[1 + α1(α2 − 1)W + α1(1 − α2)(1 − R)]}, (2.6)

where α1 > 0, α2 < 1. The coefficients α1 and α2 are calculated from the equations

α1 = exp(−(γ1/0.6)5) and α2 = exp(−(γ2/3.5)5). (2.7)
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√
γ1 and γ2 are the sample skewness and kurtosis, respectively. The coefficients α1 and α2 are determined empirically to

achieve the overall highest power. The combined statistic C is a weighted sum of the Shapiro–Wilk statistic W and the
correlation statistic R, the weights being determined by the sample skewness and kurtosis.

Since distributions of W and R are not known, [3] uses a four moment F approximation to the null distribution of the C
statistic. Large values of C lead to the rejection of univariate normality.

3. Multivariate Zp and Cp statistics

The multivariate statistics Zp, Cp, Rp andWp are p-variate versions of the univariate Z , C , R andW statistics, respectively.
Sürücü [4] has compared the powers of the four statistics (Zp, Cp, Rp,Wp) and also of the measure of skewness b1,p, for p = 2,
p = 4 and n = 10, n = 20, n = 50 at a 10% significance level for different families of alternative distributions. He used
Monte Carlo simulationwith a size of 100 000 and showed that the Cp statistic is overall themost powerful and effective test
against skew, long-tailed as well as short-tailed symmetric alternatives. He also showed that the Zp statistic is particularly
powerful against skew alternatives.

Although there are many kinds of tests for multivariate normality in the literature (e.g., measures of multivariate
skewness and kurtosis, Wp, Rp, Q–Q plots), we developed a JAVA program to apply the recently developed powerful Zp
and Cp statistics.

The Zp statistic is a p-variate version of the univariate statistic Z based on sample spacings [10,11]. The Cp statistic is a
p-variate version of the univariate statistic C introduced by Sürücü [4,3].

The initial step in both of the multivariate statistics Zp and Cp is to transform the X1, . . . , Xp random variables having a
p-variate normal distribution by the following linear combinations

X1

X2 − β2.1X1

X3 − β31.2X1 − β32.1X2

X4 − β41.23X1 − β42.13X2 − β43.12X3

...

Xp − βp1.q1X1 − βp2.q2X2 − · · · − βp(p−1).qp−1Xp−1.

We denote the partial regression coefficients of Xk on Xj with the other (p−2) variables held fixed by βkj.qj , where qj denotes
variables other than those in the primary subscripts. The estimations of the partial regression coefficients can be calculated
from either ordinary least squares or using Eq. (3.1).

β̂kj.qj = −
σk

σj

Ckj

Ckk
. (3.1)

In Eq. (3.1), σk and σj are the standard deviations of Xi and Xj, respectively, and Ckj is the cofactor of the (k, j)th element in
the correlation matrix [6].

For a random sample of size n(x1i, . . . , xpi, 1 ≤ i ≤ n), we consider the random observations which are uncorrelated
with each other as follows

y1i = x1i
y2i = x2i − β̂2.1x1i
y3i = x3i − β̂31.2x1i − β̂32.1x2i
y4i = x4i − β̂41.23x1i − β̂42.13x2i − β̂43.12x3i
...

ypi = xpi − β̂p1.q1x1i − β̂p2.q2x2i − · · · − β̂p(p−1).qp−1x(p−1)i.

The p-variate version of the Zp and Cp are obtained by applying the Zj and Cj(1 ≤ j ≤ p) statistics to the corresponding
variables in the data set.

The Zp statistic is given by

Zp =

p−
j=1


Zj − 1
√
V

2

, 0 < Zp < ∞.

The null distributions of the Zj random variables are asymptotically (n → ∞) normal with N(1, V ). Large values of Zp lead
to the rejection of multivariate normality. The null distribution of Zp is asymptotically chi-square with p degrees of freedom.
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To determine the accuracy of the asymptotic distribution for small n, [4] gives some simulated values, based on 10 000
Monte Carlo runs, of the probability

P(Zp ≥ χ2
0.90;p).

Here χ2
0.90;p denotes the 90th percentile of a chi-square distribution with p degree of freedom (p = 2).

Since goodness of fit tests are usually performed at a 10% significance level, Sürücü does not reproduce values for any
other significance level. In this study we also used the same level of significance; that is α = 0.10.

The Cp statistic is given by

Cp =

p−
j=1

Cj, 0 < Cp < ∞.

Large values of Cp lead to the rejection of multivariate normality. Sürücü [4] used a threemoment chi-square approximation
to the null distribution of Cp as follows:

Letµ′

1 be themeanof a positive randomvariableX , andµ2, µ3(> 0),µ4 be its variance, third and fourth centralmoments,
respectively. If the skewness coefficient

√
Γ1 = µ3/µ

3/2
2 is positive, and together with the kurtosis coefficient Γ2 = µ4/µ

2
2

satisfies the condition |Γ2 − (3 + 1.5Γ1)| ≤ 0.5, then χ2
v =

X+a
b gives a remarkable accurate approximation to the upper

percentage points of X (see [12,13]).
The null distribution of Cp is

χ2
v =

Cp + a
b

, (3.2)

whereχ2
v has a central chi-square distributionwith v degrees of freedom. The values of a, b and v are determined by equating

the first three moments on both sides of (3.2);

v =
8
Γ1

, b =


µ2

2v
and a = bv − µ′

1

Sürücü [4] gives some simulated values, based on 10 000 Monte Carlo runs, of the probability

P(Cp ≥ bχ2
0.90;ν − a). (3.3)

Here χ2
0.90;ν denotes the 90th percentile of a three moment chi-square distribution with v degree of freedom (p = 2).

4. Some computations for the multivariate Zp and Cp statistics

In both of themultivariate tests one has to do various intensive computations and apply some simulation techniques. For
example, in certain steps oneneeds to calculate the expected values of the standardized normal order statistics (µi:n). Though
one can use several approximations or tables we calculated these values by using numerical integration; see for example [9]
for some traditional approaches and [4] for some other approaches to calculate these values. However, by using numerical
integration it is possible to apply the tests for data of any size (n ≥ 10) and any dimension (p ≥ 2). The restriction of n ≥ 10
is used because power studies in [4] show that these tests give accurate results for n ≥ 10. In this section it is shown how
some of the calculations have been implemented in the program. These calculationsmake it possible to apply these recently
developed powerful tests in real applications. In addition, we note that necessary calculations for some needed values of
the standard normal distribution, the chi-square distributions and the first four moments are done by using numerical
integration. These calculations are taking most of the computation time when the tests are applied.

The partial regression coefficients (β̂kj.qj ) can be calculated by the program for any n ≥ 2 and any p ≥ 2 by using the
ordinary least squares formula. Similarly, the common variance (V ) used in the Zp statistic can be calculated by the program
for any n ≥ 2. In addition, simulated values of the probabilities (under normality assumption) in Eq. (3.3), showing the
accuracy of the asymptotic distributions, for any p ≥ 2, can also be obtained if desired by the user.

The formula for the expected values of the standardized normal order statistics, µi:n (1 ≤ i ≤ n), is

µi:n = E[zi:n] = i

n
i

 ∫
∞

−∞

x[F0(x)]i−1
[1−F0(x)]n−if0(x)dx. (4.1)

Since the integrand in formula (4.1) is very close to 0 for |x| > 7.6 (see [9]) the trapezoidal rule for numerical integration
can be applied to evaluate these values. The computational results show that this gives accurate results up to at least four
decimal places. For given n only half of the values need to be calculated because of symmetry of the µi:n. We also note that
the µi:n values are used in the univariateW , R, Z and C tests.
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Fig. 1. Zp test applied to the Iris Setosa data set.

In this study the values of the Shapiro–Wilk coefficients ai (1 ≤ i ≤ n) are calculated for any n greater than 2. For given
n let aT

= (a1, a2, . . . , an) denote the Shapiro–Wilk coefficients. Then these coefficients are given by the following formula

aT
=

mTΣ0
−1

(mTΣ0
−1Σ0

−1m)
1
2

where mT
= (m1, m2, . . . ,mn), mi = µi:n and Σ0 is the variance–covariance matrix of the standardized normal order

statistics Zi:n and Zj:n.
Using the formula (Σ0)ij = E[Zi:nZj:n] − µi:nµj:n the covariances can be calculated by computing the E[Zi:nZj:n] values.

E[Zi:nZj:n] = Cn
ij

∫∫
D
zizj[F0(zi)]i−1

[F0(zj) − F0(zi)]j−i−1
[1−F0(zj)]n−jf0(zi)f0(zj)dzidzj

Cn
ij =

n!
(i − 1)!(j − i − 1)!(n − j)!

D = {(zi, zj) : −∞ < zi < z j < ∞}.

The E[Zi:nZj:n] values, on the other hand, can be calculated by numerical integration of this double integralwith consideration
of the region D. The calculation of the matrix Σ0 is probably the most time consuming part in all of the computations.

5. Applications

To demonstrate the application of the developed program some examples from the literature have been used. The first
data set is a part of the Iris data set – Iris Setosa – which has been used in several studies on multivariate normality tests.
This data set consists of 50 examples with four variables: sepal length, sepal width, petal length, petal width. It is known
that this data set is not normally distributed. An example output for testing the joint multivariate normality assumption
using the program is shown in Fig. 1.

The Cp test leads to the same conclusion as the Zp test. Actually the Cp test value is 0.143 while the critical value of the
test is calculated as 0.135 leading to the rejection of the multivariate normality assumption.

As another example a subset of the data set examined in [14] is considered. This data set has been used as an example
by Liang et al. [15] for testing multivariate normality for small n and high dimensionality (n ≤ p). Since [4] showed that the
assumptions for the null distributions of the tests used in the developed program are quite accurate for n ≥ 10 and since
the data set contains censored data, only a subset has been used. The part of the data set that has been used in the program
is given in Table 1. This part actually consists of the data that is not censored. For details about the full data set onemay refer
to [14].

The output for the Cp test for testing the jointmultivariate normality assumption is shown in Fig. 2. Again the Zp test leads
to the same conclusion as the Cp test. The Zp test value is 5.486 while the critical value of the test is calculated as 10.642
which means that the multivariate normality assumption cannot be rejected.

Liang et al. [15] proposed a generalized Shapiro–WilkW statistic for testing high-dimensional normality. They conclude
that the mice data set can be assumed to be normal for (n, p) = (8, 11) and (n, p) = (5, 12). Note that the results of this
study support this conclusion.
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Table 1
Uncensored part of the data from Tan et al. [14].

Group Mouse Weeks
0 1 2 3 4 5

I

1 2.34 2.48 2.04 1.06 1.26 0.91
2 1.11 1.54 0.81 0.93 1.37 1.00
3 0.96 0.99 0.99 0.53 0.72 0.36
4 0.66 0.60 0.49 0.78 1.40 1.33
5 2.08 2.15 1.97 0.83 0.78 0.26

II

6 1.09 1.04 0.76 0.77 0.72 0.29
7 0.74 0.93 0.83 0.59 0.60 0.41
8 0.94 1.12 1.67 2.69 3.51 2.77
9 1.84 1.99 2.75 4.29 6.41 4.04

10 1.21 1.41 1.97 2.07 2.98 2.30
11 1.24 1.32 1.63 2.43 3.00 2.04

Fig. 2. Cp test applied to the mice data set in [14].

6. Conclusions

Since the Zp and Cp tests are one of the most powerful tests for testing multivariate normality, it is important to have
necessary tools in order to apply these tests. We hope that this study will be of help in developing more advanced tools for
testing multivariate normality which is of great importance in many statistical methods and applications. In such a tool one
should also include testswhich have been shown to be valid also for the case of small sample size and/or high dimensionality
such as in [14,15].

Remark. Since the size of the source code is quite large and would not fit into several pages they are not given in the paper.
Interested readers may obtain the program and source code by e-mail from the corresponding author.
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