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a b s t r a c t

This paper presents some novel trivariate discrete distributions that are obtained
by modifying the bivariate binomial distribution. These distributions are important
probability models for the development of conditional bivariate order statistics. The
distributional properties of bivariate order statistics are studied and derived under the
condition that certain values of the underlying random vectors (X, Y ) are truncated and
fall in the threshold set {(t, s) ∈ R2

: t ≤ u, s ≤ v}, (u, v) ∈ R2.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let (X1, Y1), . . . , (Xn, Yn) be independent copies of the bivariate random vector (X, Y ) with joint distribution function
FX,Y (x, y) = C(FX (x), FY (y)), where C(u, v), (u, v) ∈ [0, 1]2 is the connecting copula. Denote by Xr:n and Ys:n the rth and sth
order statistics of X1, X2, . . . , Xn and Y1, Y2, . . . , Yn, respectively. The joint distribution of bivariate order statistics (Xr:n, Ys:n)
can be easily derived from the bivariate binomial distribution, which was first introduced by Aitken and Gonin [1] in
connectionwith the fourfold sampling scheme. The bivariate binomial distribution can be described as follows: suppose that
our population consists of two independent samples and each sample has two individuals, A, Ac and B, Bc , with probabilities
P(AB) = π11, P(ABc) = π12, P(AcB) = π21 and P(AcBc) = π22, where


ij πij = 1. Under random sampling with

replacement n times, let ξ denotes the number of trials in which A appears and η denotes the number of trials in which
B appears, respectively. The joint probability mass function of (ξ , η) is

P{ξ = i, η = j} =

min(i,j)
k=max(0,i+j−n)

n!
k!(i − k)!(j − k)!(n − i − j + k)!

π k
11π

i−k
12 π

j−k
21 π

n−i−j+k
22 , (1)

where i = 0, 1, . . . , n; j = 0, 1, . . . , n. Formula (1) can be easily explained: if in n trials, A appears together with B k times
and together with Bc i − k times, then B appears together with Ac j − k times and Bc appears together with Ac n − i − j + k
times. The bivariate distribution given in (1) is called the bivariate binomial distribution. For some discussion of the bivariate
and multivariate binomial distributions, see [2–10].

Recently, Bairamov and Gultekin [11] have considered the novel trivariate and quadrivariate distributions constructed
on the basis of the bivariate binomial distribution. Note that the bivariate binomial distribution can be obtained from the
multinomial distribution if one sets AB = C1, ABc

= C2, AcB = C3, AcBc
= C4, P(C1) = p11, P(C2) = p12, P(C3) = p21,

and P(C4) = p22. If we denote by ζi the number of cases in which Ci occurs out of n repetitions, where i = 1, 2, 3, 4, then
(ζ1, ζ2, ζ3, ζ4) is multinomial, ξ1 = ζ1 + ζ2 and ξ2 = ζ1 + ζ3.
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Durante and Jaworski [12] considered the conditional distribution function of random variables (X, Y ) given (X, Y ) ∈ ℜ,
where ℜ is a Borel set in R2 with joint distribution function

Hℜ(x, y) = P{X ≤ x, Y ≤ y | (X, Y ) ∈ ℜ},

and using this conditional distribution, introduced a threshold copula. The threshold copula has interesting and important
applications for studying the dependence among financial markets, especially regarding spatial contagion. For more recent
result concerning threshold copulas and contagion, see [13–16]. For some interesting applications of order statistics and
their concomitants, bivariate distributions and copulas, in insurance, see [17–19].

In this work, we consider the joint distribution of bivariate order statistics (Xr:n, Ys:n) under the condition that h of the
random observations (X1, Y1), . . . , (Xn, Yn) are truncated, i.e., they fall in the set Buv = {(t, s) ∈ R2

: t ≤ u, s ≤ v}, (u, v) ∈

R2, assuming P{(X, Y ) ∈ Buv} > 0. This conditional distribution is derived using novel modifications of the bivariate
binomial distribution introduced in Section 2 of this paper. The results obtained in this paper have applications for studying
the dependence among financial markets in crises or other extreme situations. The conditional bivariate order statistics can
also be used in reliability analyses for studying the mean residual life functions of complex systems.

The statistical theory of reliability considers systems that consist of n components, and the lifetimes of these components
are assumed to be nonnegative random variables. Recently, Bairamov [20] considered complex systems that consist of n
elements, which each contain two or more components, and studied the reliability properties of such systems. Let a system
consists of n elements, and assume that each element has two components, (Ai, Bi), i = 1, 2, . . . , n. Let Xi be the lifetime of
the component Ai and Yi be the lifetime of the component Bi, i = 1, 2, . . . , n. Then, (Xi, Yi) represents the lifetime of the ith
element. Assume that the components of the ith element are dependent, i.e., Xi and Yi are dependent random variables with
joint distribution function F(x, y). As an example, Bairamov [20] considered (r, s)-out-of-n systems, which function if and
only if at least r of the n components A1, A2, . . . , An and s of the n components B1, B2, . . . , Bn function. Then, the reliability
of such a system is

P{T > t} = P{Xn−r+1:n > t, Yn−s+1:n > t},

where T is the lifetime of the system and (Xr:n, Ys:n) is the vector of bivariate rth and sth order statistics constructed from the
sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn). The mean residual life function of an (r, s)-out-of-n system with intact components
at time t is

Φr,s:n(t) = E{T − t | X1:n > t, Y1:n > t}

= E{T (t)
r,s:n},

where T (t)
r,s:n is a conditional random variable defined as T (t)

r,s:n ≡ (Xn−r+1:n − t, Yn−s+1:n − t | { none of the components has
failed at time t}). It is clear that to evaluateΦr,s:n(t), wemust know the survival function of the conditional random variable
T (t)
r,s:n, i.e., the survival function of conditional order statistics, which is the subject of the present paper.
This paper is organised as follows: In Section 2, we consider novel trivariate distributions obtained from bivariate

binomial distributions by introducing newevents in a fourfoldmodel. In Section 3, using themodified trivariate distributions
we introduce, the conditional distributions of bivariate order statistics (Xr:n, Ys:n), 1 ≤ r, s ≤ n constructed from bivariate
observations (Xi, Yi), i = 1, 2, . . . , n are derived, where we assume that a certain number of these observations are
truncated, i.e., fall in the threshold set {(t, s) ∈ R2, t ≤ u, s ≤ v}, where (u, v) ∈ R2.

1.1. The modified binomial distribution

Consider a fourfold sampling scheme, i.e., suppose that the outcome of the random experiment is one of the events A or
Ac and simultaneously one of B or Bc with the probabilities P(AB) = π11, P(ABc) = π12, P(AcB) = π21 and P(AcBc) = π22,
where


ij πij = 1. More precisely, in this scheme, the event A occurs together with B or Bc and the event B occurs together

with A or Ac . Therefore, the possible outcomes of the experiment are AB, ABc, AcB and AcBc . We will refer to this sampling
scheme as the fourfold sampling scheme. We may also refer to this sampling scheme as a fourfold experiment. If we repeat
the fourfold experiment independently n times, then we will use the expression ‘‘in n independent fourfold trials’’ or ‘‘in n
independent trials of the fourfold experiment’’.

In this fourfold experiment setup, for further modifications of the bivariate binomial distribution, we consider the
following four cases:

1. Together with A, B, Ac, Bc , the event C can also occur in the experiment, where C ⊂ AB.
2. The events C and D can also occur, where C ⊂ AB and D ⊂ ABc .
3. We assume that the events C and E can also occur, where C ⊂ AB and E ⊂ AcB.
4. The events D, E and F can also occur, where D ⊂ ABc, E ⊂ AcB and F ⊂ AcBc .

Note that these four cases describe different situations and must be considered separately.
According to these four cases, we consider n independent trials of the fourfold experiment and define the random

variables ξ, η and ζ as follows:
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Definition 1. (a) If C ⊂ AB, then ξ, η and ζ are the number of occurrences of the events A, B, C , respectively.
(b) Let C ⊂ AB and D ⊂ ABc . Denote by ξ, η, ζ the number of occurrences of the events A, B, C ∪ D, respectively.
(c) In the case in which, C ⊂ AB and E ⊂ AcB, we denote by ξ, η and ζ the number of occurrences of the events A, B, C ∪E,

respectively.
(d) For D ⊂ ABc, E ⊂ AcB and F ⊂ AcBc , the random variables ξ, η and ζ denote the number of occurrences of the events

A, B,D ∪ E ∪ F , respectively.
(d1) If D ⊂ ABc, E ⊂ AcB and F ⊂ AcBc , then ξ, η and ζ are the number of occurrences of the events A, B, AB ∪ D ∪ E ∪ F ,

respectively.

Note that, the events C,D, E and F are distinct for each case (a), (b), (c), (d) and (d1) and ξ, η, ζ denote distinct random
variables for each case, i.e., ξ, η and ζ in (a) are distinct from ξ, η and ζ in the other cases. We prefer to use such notation to
avoid introducing a tremendous number of letters. Therefore, each of the cases (a), (b), (c), (d) and (d1) must be considered
separately. The joint distributions of the random variables ξ, η and ζ for each of the cases (a), (b), (c), (d) and (d1) are given
in the following Theorems 1–4.1.

Theorem 1. In the fourfold sampling scheme, let C ⊂ AB and ξ, η, ζ be the number of occurrences of the events A, B, C in n
independent trials, respectively (case (a) in Definition 1). Then, the joint probability mass function of ξ, η and ζ is

P1(i, j, h) ≡ P{ξ = i, η = j, ζ = h}

=

b
k=a

C1(n; h, k, i, j)P(C)h[P(AB) − P(C)]k−hP(ABc)i−kP(AcB)j−kP(AcBc)n−i−j+k, (2)

where

C1(n; h, k, i, j) =
n!

h!(k − h)!(i − k)!(j − k)!(n − i − j + k)!
;

a = max(0, i + j − n); b = min(i, j); i, j = 0, 1, . . . , n;
h = 0, . . . ,min(i, j).

Proof. If ξ = i, we consider all possible cases of the occurrence of the event A and we indicate these cases as k = 0, 1, . . . ,
then A occurs together with B k times and together with Bc i − k times. ζ = h indicates that C occurs h times. Because
C ⊂ AB, h may be at most min(i, j) because ξ = i, η = j. Then, AB \ C = AB ∩ C c occurs k − h times. η = j implies that if
B appears together with Ac j − k times, Bc appears together with Ac n − i − j + k times. Schematically, this situation can be
described as follows:

A \ B B Bc

A C
h times AB

k times
ABc

i − k times

Ac AcB j − k times AcBc
n − i − j + k
times

Therefore, it is clear that if we repeat the experiment n times, then h outcomes of the event C can be observed in
 n
h


ways

and k − h outcomes of the event AB \ C can be realised in


n−h
k−h


ways. Then, i − k outcomes of the event A can be observed

with Bc in


n−h−(k−h)
i−k


=


n−k
i−k


ways and Ac can be realised together with B in


n−k−(i−k)

j−k


=


n−i
j−k


ways.

Thus in n independent trials, the number of possible cases in which A appears i times, B appears j times and C appears h
times isn

h

n − h
k − h


n − k
i − k


n − i
j − k


=

n!
h!(k − h)!(i − k)!(j − k)!(n − i − j + k)!

with probability,

P(C)h[P(AB) − P(C)]k−hP(ABc)i−kP(AcB)j−kP(AcBc)n−i−j+k.

It is clear that max(0, i + j − n) ≤ k ≤ min(i, j) and i, j = 0, 1, . . . , n; h = 0, . . . ,min(i, j). �
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Remark 1. If C = AB, then ξ, η, ζ are the number of occurrences of the events A, B, AB in n independent trials, respectively.
In this case, from (2) we have

P{ξ = i, η = j, ζ = h} =
n!

h!(i − h)!(j − h)!(n − i − j + h)!
P(AB)hP(ABc)i−hP(AcB)j−hP(AcBc)n−i−j+h, (3)

i, j = 0, 1, . . . , n; h = max(0, i + j − n), . . . ,min(i, j),

and (1) is the marginal probability mass function (p.m.f.) of (3).

Theorem 2. Consider the fourfold sampling scheme and assume that C ⊂ AB and D ⊂ ABc . Let ξ, η and ζ be the number of
occurrences of the events A, B, C ∪ D in n independent trials, respectively (case (b) in Definition 1). Then, the joint probability
mass function of ξ, η and ζ is

P2(i, j, h) ≡ P{ξ = i, η = j, ζ = h}

=

b
k=a

h
l=0

C2(n; k, l, h, i, j)P(C)l[P(AB) − P(C)]k−lP(D)h−l

× [P(ABc) − P(D)]i−k−h+lP(AcB)
j−k

P(AcBc)n−i−j+k, (4)

where

C2(n; k, l, h, i, j) =
n!

l!(k − l)!(h − l)!(i − k − h + l)!(j − k)!(n − i − j + k)!
;

a = max(0, i + j − n); b = min(i, j); i, j = 0, 1, . . . , n;
h = 0, 1, . . . , i.

Proof. We know the implications of ξ = i and η = j from the proof of Theorem 1. Unlike in the previous theorem, ζ = h,
i.e., C ∪ D occurs h times. Because C ⊂ AB and D ⊂ ABc, C ∪ D ⊂ AB ∪ ABc

= A. Therefore, h can be at most i because ξ = i.
Then, indicating all possible cases of the occurrence of event C by l = 0, 1, 2 . . . , one observes that D occurs h − l times.
Hence, AB \ C occurs k− l times and ABc

\D occurs i− k− (h− l) times. Then, similar to the proof of Theorem 1, all possible
cases of the occurrence of the event {ξ = i, η = j, ζ = h} can be schematically described as follows:

A \ B B Bc

A C
l times AB

k times

D
h − l times ABc

i − k times

Ac AcB
j − k times

AcBc
n − i − j + k times

Then, in n independent repeated trials, l outcomes of the event C can be observed in
 n

l


ways and k − l outcomes of the

event AB \ C can be realised in


n−l
k−l


ways. Therefore, h− l outcomes of the event D can be realised in


n−l−(k−l)

h−l


=


n−k
h−l


ways and i − k − h + l outcomes of the event ABc

\ D can be realised in


n−k−(h−l)
i−k−h+l


ways. Then, Ac can be realised together

with B in


n−k−h+l−(i−k−h+l)
j−k


=


n−i
j−k


ways.

Thus in n independent trials, the number of possible cases in which A appears i times, B appears j times and C ∪D appears
h times isn

l

n − l
k − l


n − k
h − l


n − k − (h − l)
i − k − h + l


n − i
j − k


=

n!
l!(k − l)!(h − l)!(i − k − h + l)!(j − k)!(n − i − j + k)!

and each case has the same probability,

P(C)l[P(AB) − P(C)]k−lP(D)h−l
[P(ABc) − P(D)]i−k−h+lP(AcB)j−kP(AcBc)n−i−j+k.

It is clear that max(0, i + j − n) ≤ k ≤ min(i, j) and i, j = 0, 1, . . . , n; h = 0, 1, . . . , i. �

Theorem 3. Let C ⊂ AB and E ⊂ AcB in the fourfold sampling scheme. Assume that ξ, η and ζ denote the number of occurrences
of the events A, B, C ∪ E in n independent trials, respectively (case (c) in Definition 1). Then, the joint probability mass function
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of ξ, η and ζ is

P3(i, j, h) ≡ P{ξ = i, η = j, ζ = h}

=

b
k=a

h
l=0

C3(n; k, l, h, i, j)P(C)l[P(AB) − P(C)]k−lP(ABc)i−k

× P(E)h−l
[P(AcB) − P(E)]j−k−h+lP(AcBc)n−i−j+k, (5)

where

C3(n; k, l, h, i, j) =
n!

l!(k − l)!(i − k)!(h − l)!(j − k − h + l)!(n − i − j + k)!
;

a = max(0, i + j − n); b = min(i, j); i, j = 0, 1, . . . , n;
h = 0, 1, . . . , j.

Proof. This theorem can be proved in amanner similar to the proof of Theorem2 using the below schematic representation:

A \ B B Bc

A C
l times AB

k times
ABc

i − k times

Ac
E

h − l times AcB
j − k times

AcBc
n − i − j + k times

�

Theorem 4. In the fourfold sampling scheme, let D ⊂ ABc, E ⊂ AcB, F ⊂ AcBc and ξ, η, ζ be the number of occurrences of the
events A, B,D ∪ E ∪ F in n independent trials, respectively (case (d) in Definition 1). Then, the joint probability mass function of
ξ, η and ζ is

P4(i, j, h) ≡ P{ξ = i, η = j, ζ = h}

=

b
k=a

i−k
p=0

j−k
q=0

C4(n; k, p, q, h, i, j)P(AB)k × P(D)p[P(ABc) − P(D)]i−k−pP(E)q

× [P(AcB) − P(E)]j−k−q
× P(F)h−p−q

[P(AcBc) − P(F)]n−i−j+k−h+p+q, (6)

where

C4(n; k, p, q, h, i, j) =
n!

k!p!(i − k − p)!q!(j − k − q)!(h − p − q)!
×

1
(n − i − j + k − h + p + q)!

;

a = max(0, i + j − n); b = min(i, j); i, j, h = 0, 1, . . . , n.

Proof. The schematic representation for this theorem is as follows:

A \ B B Bc

A k times D

p
times ABc

i − k
times

Ac
E

q
times

AcB

j − k
times

F

h − p − q
times

AcBc

n − i − j + k
times

For clarity of explanation, we denote by µ(M) the number of occurrence of any event M in n independent trials of the
fourfold experiment. Because D ∪ E ∪ F occurs h times, i.e., ζ = h and D ∩ E ∩ F = ∅, h = µ(D) + µ(E) + µ(F), where
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µ(D) = p, µ(E) = q, µ(F) = h − p − q are the number of occurrences of the events D, E and F , respectively. Then, the
number of occurrences of AB is k, of ABc

\ D is i − k − p, of AcB \ E is j − k − q and of AcBc
\ F is n − i − j + k − (h − p − q).

The implications of ξ = i and η = j are also known from the proof of the first theorem.
Therefore, it is clear that if we repeat the experiment n times, then k outcomes of the event AB can be observed in n

k


ways, p outcomes of the event D can be observed in


n−k
p


ways and i − k − p outcomes of the event ABc

\D can be

realised in


n−k−p
i−k−p


ways. Then, q outcomes of the event E can be observed in


n−k−p−(i−k−p)

q


=


n−i
q


ways and j − k − q

outcomes of the event AcB \ E can be realised in


n−i−q
j−q−k


ways. Finally, h− p− q outcomes of the event F can be realised in

n−i−q−(j−k−q)
h−p−q


=


n−i−j+k
h−p−q


ways.

Thus in n independent trials, the number of possible cases in which A appears i times, B appears j times and D ∪ E ∪ F
appears h times isn

k

n − k
p


n − k − p
i − k − p


n − i
q


n − i − q
j − k − q


n − i − j + k
h − p − q


=

n!
k!p!(i − k − p)!q!(j − k − q)!(h − p − q)!

1
(n − i − j + k − h + p + q)!

and each case has equal probability,

P(AB)kP(D)p[P(ABc) − P(D)]i−k−pP(E)q[P(AcB) − P(E)]j−k−qP(F)h−p−q
[P(AcBc) − P(F)]n−i−j+k−h+p+q.

It is clear that

a = max(0, i + j − n); b = min(i, j); i, j, h = 0, 1, . . . , n. �

Theorem 4.1. In the fourfold sampling scheme, let D ⊂ ABc, E ⊂ AcB, F ⊂ AcBc and ξ, η, ζ be the number of occurrences of
the events A, B, AB ∪ D ∪ E ∪ F in n independent trials, respectively (case (d1) in Definition 1). Then, the joint probability mass
function of ξ, η and ζ is

P4.1(i, j, h) ≡ P{ξ = i, η = j, ζ = h}

=

b
k=a

i−k
p=0

j−k
q=0

C4.1(n; k, p, q, h, i, j)P(AB)k × P(D)p[P(ABc) − P(D)]i−k−pP(E)q

× [P(AcB) − P(E)]j−k−q
× P(F)h−p−q−k

[P(AcBc) − P(F)]n−i−j+2k−h+p+q, (7)

where

C4.1(n; k, p, q, h, i, j) =
n!

k!p!(i − k − p)!q!(j − k − q)!(h − p − q − k)!
1

(n − i − j + 2k − h + p + q)!
;

a = max(0, i + j − n); b = min(i, j); i, j, h = 0, 1, . . . , n.

Proof. The proof of this theorem is similar to the proof of Theorem 4. �

2. Conditional distributions of bivariate order statistics

Let X1, X2, . . . , Xn and Y1, Y2, . . . , Yn be i.i.d. random variables with distribution functions FX (x) and FY (y), respectively.
Let (X1, Y1), . . . , (Xn, Yn) be a bivariate sample with joint distribution function F(x, y). Additionally, let X1:n ≤ X2:n ≤ · · · ≤

Xn:n, Y1:n ≤ Y2:n ≤ · · · ≤ Yn:n be the corresponding marginal order statistics with distribution functions

F r:n
X (x) = P{Xr:n ≤ x} =

n
i=r

n
i


F(x)i[1 − F(x)]n−i,

F s:n
Y (y) = P{Ys:n ≤ y} =

n
j=s


n
j


F(y)j[1 − F(y)]n−j.

The joint distribution function of Xr:n and Ys:n can be obtained easily from the bivariate binomial distribution if one considers
the fourfold model with A = {Xi ≤ x} and B = {Yi ≤ y}. Then, P(AB) = P{Xi ≤ x, Yi ≤ y} = π11, P(ABc) = P{Xi ≤ x, Yi >
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y} = π12, P(AcB) = P{Xi > x, Yi ≤ y} = π21, and P(AcBc) = P{Xi > x, Yi > y} = π22. If ξ and η are the number of
occurrences of events A and B in n independent trials of the fourfold experiment, respectively, then it is clear that

P{Xr:n ≤ x, Ys:n ≤ y} =

n
i=r

n
j=s

P{ξ = i, η = j}

=

n
i=r

n
j=s

b
k=a

n!
k!(i − k)!(j − k)!(n − i − j + k)!

π k
11π

i−k
12 π

j−k
21 π

n−i−j+k
22 ,

where

π11 = F(x, y),
π12 = FX (x) − F(x, y),
π21 = FY (y) − F(x, y),
π22 = 1 − FX (x) − FY (y) + F(x, y),

and a = max(0, i + j − n), b = min(i, j) (see [21]).
Now, we are interested in the conditional joint distribution of bivariate order statistics under the condition that h of the

bivariate observations (Xi, Yi), i = 1, 2, . . . , n are truncated and belong to the set

Buv = {(t, s) ∈ R2
: t ≤ u, s ≤ v}, (u, v) ∈ R2.

Lemma 1. Let (X, Y ) be a bivariate random vector with joint distribution function F(x, y) and (X1, Y1), . . . , (Xn, Yn) be
independent copies of (X, Y ). If (Xr:n, Ys:n), r, s = 1, 2, . . . , n is the vector of bivariate order statistics and B is any Borel set
on R2, then

Fr,s:n(x, y | u, v) ≡ P{Xr:n ≤ x, Ys:n ≤ y | h of (X1, Y1), . . . , (Xn, Yn) belong to B}

=
1 n

h


P{(X, Y ) ∈ B}hP{(X, Y ) ∈ Bc}n−h

×

n
i=r

n
j=s

P{exactly i of X ′s ≤ x, exactly j of Y ′s ≤ y, exactly h of (Xi, Yi)
′ s ∈ B}, (8)

where Bc
= R2

\ B is the complement of B.

Proof. From the conditional probability formula, one has

P{Xr:n ≤ x, Ys:n ≤ y | h of (X1, Y1), . . . , (Xn, Yn) belong to B}

=
P{Xr:n ≤ x, Ys:n ≤ y, h of (X1, Y1), . . . , (Xn, Yn) belong to B}

P{h of (X1, Y1), . . . , (Xn, Yn) belong to B}
. (9)

Because the random vectors (Xi, Yi), i = 1, 2, . . . , n are assumed to be independent and identically distributed, then from
the binomial distribution, one has

P{h of (X1, Y1), . . . , (Xn, Yn) belong to B} =

n
h


P{(X, Y ) ∈ B}

hP{(X, Y ) ∈ Bc
}
n−h. (10)

Now, (10) and (9) imply (8). Thus, the lemma is proved. �

For deriving the conditional distribution function of bivariate order statistics Fr,s:n(x, y | u, v), we consider the following
four possible cases:

Case a: u ≤ x, v ≤ y.
Case b: u ≤ x, v > y.
Case c: u > x, v ≤ y.
Case d: u > x, v > y.

Description of Case a. If u ≤ x, v ≤ y, then we denote A = {Xi ≤ x}, B = {Yi ≤ y} and C = {Xi ≤ u, Yi ≤ v}. Let ξ be the
number of observations (Xi, Yi), i = 1, 2, . . . , n, for which Xi ≤ x, η be the number of observations for which Yi ≤ y and ζ be
the number of observations for which Xi ≤ u and Yi ≤ v. It is clear that C ⊂ AB and ξ, η, ζ are the number of observations in n
independent trials of the fourfold experiment of the events A, B and C, respectively, as in case (a) of Definition 1. We have
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P(C) = P{X ≤ u, Y ≤ v} = F(u, v), (11)

P(AB) − P(C) = P{X ≤ x, Y ≤ y} − P{X ≤ u, Y ≤ v}

= F(x, y) − F(u, v), (12)

P(ABc) = P{X ≤ x, Y > y} = FX (x) − F(x, y), (13)

P(AcB) = P{X > x, Y ≤ y} = F Y (y) − F(x, y), (14)

P(AcBc) = P{X > x, Y > y} = F̄(x, y). (15)

Theorem 1a. If u ≤ x, v ≤ y, then

F (1)
r,s:n(x, y | u, v) ≡ P{Xr:n ≤ x, Ys:n ≤ y | h of (X1, Y1), . . . , (Xn, Yn) belong to Buv}

=
1 n

h


F(u, v)h[1 − F(u, v)]n−h

×

n
i=r

n
j=s

b
k=a

C1(n; h, k, i, j)F(u, v)h

× [F(x, y) − F(u, v)]k−h
[FX (x) − F(x, y)]i−k

[FY (y) − F(x, y)]j−kF̄(x, y)
n−i−j+k

, (16)
h = 0, 1, . . . ,min(r, s) and
F (1)
r,s:n(x, y | u, v) = 0 if min(r, s) < h ≤ n,

where

C1(n; h, k, i, j) =
n!

h!(k − h)!(i − k)!(j − k)!(n − i − j + k)!
;

a = max(0, i + j − n); b = min(i, j).

Proof. Because P{(X, Y ) ∈ Buv} = F(u, v) and P{(X, Y ) ∈ Bc
uv} = 1 − F(u, v), from Lemma 1, we have

F (1)
r,s:n(x, y | u, v) ≡ P{Xr:n ≤ x, Ys:n ≤ y | h of (X1, Y1), . . . , (Xn, Yn) belong to Buv}

=
1 n

h


F(u, v)h[1 − F(u, v)]n−h

n
i=r

n
j=s

P{ξ = i, η = j, ζ = h}.

Now, (16) easily follows from Theorem 1, from the Description of Case a and the equalities (11)–(15). For i = r, j = s, and
h = min(r, s), the probability

P{ξ = i, η = j, ζ = h}

does not vanish. For i = r + 1, j = s, r < s, and h = s + 1, this probability vanishes because C ⊂ AB and the number of
occurrences of C cannot exceed the number of occurrences of AB({ξ = i, η = j} implies that the number of occurrences of
AB is min(i, j)). Therefore, for the values of (i, j) = (r, s), (r + 1, s), (r, s + 1), . . . , (n, n), the value of h will vary from 0 to
min(r, s). �

Description of Case b. If u ≤ x, v > y, then we denote A = {Xi ≤ x}, B = {Yi ≤ y}, C = {Xi ≤ u, Yi ≤ y} and
D = {Xi ≤ u, y < Yi ≤ v}. Let ξ be the number of observations (Xi, Yi), i = 1, 2, . . . , n, for which Xi ≤ x, η be the
number of observations for which Yi ≤ y and ζ be the number of observations for which Xi ≤ u and Yi ≤ v. It is clear that
C ⊂ AB,D ⊂ ABc and ξ, η, ζ are the number of observations in n independent trials of the fourfold experiment of the events A, B
and C ∪ D, respectively, as in case (b) of Definition 1. We have

P(C) = P{X ≤ u, Y ≤ y} = F(u, y), (17)

P(AB) − P(C) = P{X ≤ x, Y ≤ y} − P{X ≤ u, Y ≤ y}
= F(x, y) − F(u, y), (18)

P(D) = P{X ≤ u, y < Y ≤ v} = F(u, v) − F(u, y), (19)

P(ABc) − P(D) = P{X ≤ x, Y > y} − P{X ≤ u, y < Y ≤ v}

= FX (x) − F(x, y) − F(u, v) + F(u, y), (20)

P(AcB) = P{X > x, Y ≤ y} = F Y (y) − F(x, y), (21)

P(AcBc) = P{X > x, Y > y} = F̄(x, y). (22)
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Theorem 2a. If u ≤ x, v > y, then

F (2)
r,s:n(x, y | u, v) ≡ P{Xr:n ≤ x, Ys:n ≤ y | h of (X1, Y1), . . . , (Xn, Yn) belong to Buv}

=
1 n

h


F(u, v)h[1 − F(u, v)]n−h

n
i=r

n
j=s

b
k=a

h
l=0

C2(n; k, l, h, i, j)F(u, y)l

× [F(x, y) − F(u, y)]k−l
[F(u, v) − F(u, y)]h−l

× [FX (x) − F(x, y) − F(u, v) + F(u, y)]i−k−h+l
[FY (y) − F(x, y)]j−kF̄(x, y)n−i−j+k, (23)

h = 0, 1, . . . , r and
F (2)
r,s:n(x, y | u, v) = 0 if r < h ≤ n,

where

C2(n; k, l, h, i, j) =
n!

l!(k − l)!(h − l)!(i − k − h + l)!(j − k)!(n − i − j + k)!
;

a = max(0, i + j − n); b = min(i, j).

Proof. Similar to the proof of Theorem1a, the proof of this theoremeasily follows fromLemma1, Theorem2, Definition 1(b),
Description of Case b, and equalities (17)–(22). �

Description of Case c. If u > x, v ≤ y, then we denote A = {Xi ≤ x}, B = {Yi ≤ y}, C = {Xi ≤ x, Yi ≤ v} and
E = {x < Xi ≤ u, Yi ≤ v}. Let ξ be the number of observations (Xi, Yi), i = 1, 2, . . . , n, for which Xi ≤ x, η be the
number of observations for which Yi ≤ y and ζ be the number of observations for which Xi ≤ u and Yi ≤ v. It is clear that
C ⊂ AB, E ⊂ AcB and ξ, η, ζ are the number of observations in n independent trials of the fourfold experiment of the events A, B
and C ∪ E, respectively, as in case (c) of Definition 1. We have

P(C) = P{X ≤ x, Y ≤ v} = F(x, v), (24)

P(AB) − P(C) = P{X ≤ x, Y ≤ y} − P{X ≤ x, Y ≤ v}

= F(x, y) − F(x, v), (25)

P(ABc) = P{X ≤ x, Y > y} = FX (x) − F(x, y), (26)
P(E) = P{x < X ≤ u, Y ≤ v} = F(u, v) − F(x, v), (27)

P(AcB) − P(E) = P{X > x, Y ≤ y} − P{x < X ≤ u, Y ≤ v}

= FY (y) − F(x, y) − F(u, v) + F(x, v), (28)

P(AcBc) = P{X > x, Y > y} = F̄(x, y). (29)

Theorem 3a. If u > x, v ≤ y, then

F (3)
r,s:n(x, y | u, v) ≡ P{Xr:n ≤ x, Ys:n ≤ y | h of (X1, Y1), . . . , (Xn, Yn) belong to Buv}

=
1 n

h


F(u, v)h[1 − F(u, v)]n−h

n
i=r

n
j=s

b
k=a

h
l=0

C3(n; k, l, h, i, j)F(x, v)l

× [F(x, y) − F(x, v)]k−l
[FX (x) − F(x, y)]i−k

[F(u, v) − F(x, v)]h−l

× [FY (y) − F(x, y) − F(u, v) + F(x, v)]j−k−h+lF̄(x, y)n−i−j+k, (30)
h = 0, 1, . . . , s and
F (3)
r,s:n(x, y | u, v) = 0 if s < h ≤ n,

where

C3(n; k, l, h, i, j) =
n!

l!(k − l)!(i − k)!(h − l)!(j − k − h + l)!(n − i − j + k)!
;

a = max(0, i + j − n); b = min(i, j).

Proof. Similar to the proof of Theorem2a, the proof of this theorem easily follows from Lemma1, Theorem3, Definition 1(c),
Description of Case c, and the equalities (24)–(29). �

Description of Case d. If u > x, v > y, then we denote A = {Xi ≤ x}, B = {Yi ≤ y}, D = {Xi ≤ x, y < Yi ≤ v}, E = {x <
Xi ≤ u, Yi ≤ y} and F = {x < Xi ≤ u, y < Yi ≤ v}. Let ξ be the number of observations (Xi, Yi), i = 1, 2, . . . , n, for which
Xi ≤ x, η be the number of observations for which Yi ≤ y and ζ be the number of observations for which Xi ≤ u and Yi ≤ v.
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It is clear that D ⊂ ABc, E ⊂ AcB, F ⊂ AcBc and ξ, η, ζ are the number of observations in n independent trials of the fourfold
experiment of the events A, B and AB ∪ D ∪ E ∪ F , respectively, as in case (d1) of Definition 1. We have

P(AB) = P{X ≤ x, Y ≤ y} = F(x, y), (31)

P(D) = P{X ≤ x, y < Y ≤ v}

= F(x, v) − F(x, y), (32)

P(ABc) − P(D) = P{X ≤ x, Y > y} − P{X ≤ x, y < Y ≤ v}

= FX (x) − F(x, v), (33)

P(E) = P{x < X ≤ u, Y ≤ y} = F(u, y) − F(x, y), (34)

P(AcB) − P(E) = P{X > x, Y ≤ y} − P{x < X ≤ u, Y ≤ y}
= FY (y) − F(u, y), (35)

P(F) = P{x < X ≤ u, y < Y ≤ v}

= F(u, v) − F(x, v) − F(u, y) + F(x, y), (36)

P(AcBc) − P(F) = P{X > x, Y > y} − P{x < X ≤ u, y < Y ≤ v}

= 1 − FX (x) − FY (y) − F(u, v) + F(x, v) + F(u, y). (37)

Theorem 4.1a. If u > x, v > y, then

F (4.1)
r,s:n (x, y | u, v) ≡ P{Xr:n ≤ x, Ys:n ≤ y | h of (X1, Y1), . . . , (Xn, Yn) belong to Buv}

=
1 n

h


F(u, v)h[1 − F(u, v)]n−h

n
i=r

n
j=s

b
k=a

i−k
p=0

j−k
q=0

C4.1(n; k, p, q, h, i, j)F(x, y)k

× [F(x, v) − F(x, y)]p[FX (x) − F(x, v)]i−k−p
[F(u, y) − F(x, y)]q

× [FY (y) − F(u, y)]j−k−q
[F(u, v) − F(x, v) − F(u, y) + F(x, y)]h−p−q−k

× [1 − FX (x) − FY (y) − F(u, v) + F(x, v) + F(u, y)]n−i−j+2k−h+p+q, (38)
h = 0, . . . , n,

where

C4.1(n; k, p, q, h, i, j) =
n!

k!p!(i − k − p)!q!(j − k − q)!(h − p − q − k)!
1

(n − i − j + 2k − h + p + q)!
;

a = max(0, i + j − n); b = min(i, j).

Proof. Using Lemma 1, Definition 1(d1), and Description of Case d, one has

F (4.1)
r,s:n (x, y | u, v) =

1 n
h


F(u, v)h[1 − F(u, v)]n−h

n
i=r

n
j=s

P{ξ = i, η = j, ζ = h}.

Using Theorem 4.1 and equalities (31)–(37), we complete the proof. �

Finally, using the results of Theorems 1a–4.1a, the conditional distribution of bivariate order statistics is presented in the
following theorem:

Theorem 5. Let (X, Y ) be a bivariate random vector with joint distribution function F(x, y) and (X1, Y1), . . . , (Xn, Yn) be
independent copies of (X, Y ). If (Xr:n, Ys:n), r, s = 1, 2, . . . , n, is the vector of bivariate order statistics and Buv = {(t, s) ∈ R2

:

t ≤ u, s ≤ v}, (u, v) ∈ R2, then

Fr,s:n(x, y | u, v) ≡ P{Xr:n ≤ x, Ys:n ≤ y | h of (X1, Y1), . . . , (Xn, Yn) belong to Buv}

=


F (1)
r,s:n(x, y | u, v) if u ≤ x, v ≤ y,
F (2)
r,s:n(x, y | u, v) if u ≤ x, v > y,
F (3)
r,s:n(x, y | u, v) if u > x, v ≤ y,
F (4.1)
r,s:n (x, y | u, v) if u > x, v > y,

h = 0, 1, . . . ,min(r, s).

Remark 2. One can verify the accuracy of the results presented in Theorems1a–4.1a. Here,wepresent a differentmethod for
deriving the conditional distributions of bivariate order statistics using the properties of extreme order statistics (Xn:n, Yn:n)
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as follows: Consider

Fn,n:n(x, y | u, v) = P{Xn:n ≤ x, Yn:n ≤ y | h of (X1, Y1), . . . , (Xn, Yn)belong to Buv}

=
1 n

h


F(u, v)h[1 − F(u, v)]n−h

× P{Xn:n ≤ x, Yn:n ≤ y, h of (X1, Y1), . . . , (Xn, Yn)belong to Buv}. (39)

Because Xn:n ≤ x implies that all X ′s are less than or equal to x, we can write

P{Xn:n ≤ x, Yn:n ≤ y, h of (X1, Y1), . . . , (Xn, Yn) belong to Buv}

=

n
j1,j2,...,jn

P{Xn:n ≤ x, Yn:n ≤ y, (Xj1 , Yj1) ∈ Buv, . . . , (Xjh , Yjh) ∈ Buv,

(Xjh+1 , Yjh+1) ∈ Bc
uv, . . . , (Xjn , Yjn) ∈ Bc

uv}

=

n
j1,j2,...,jn

P{Xn:n ≤ x, Yn:n ≤ y, (X1, Y1) ∈ Buv, . . . , (Xh, Yh) ∈ Buv

(Xh+1, Yh+1) ∈ Bc
uv, . . . , (Xn, Yn) ∈ Bc

uv} =

n
h


P{Xn:n ≤ x, Yn:n ≤ y, (X1, Y1) ∈ Buv, . . . , (Xh, Yh) ∈ Buv,

(Xh+1, Yh+1) ∈ Bc
uv, . . . , (Xn, Yn) ∈ Bc

uv} =

n
h


P{X1 ≤ x, . . . , Xn ≤ x, Y1 ≤ y, . . . , Yn ≤ y,

(X1, Y1) ∈ Buv, . . . , (Xh, Yh) ∈ Buv, (Xh+1, Yh+1) ∈ Bc
uv, . . . , (Xn, Yn) ∈ Bc

uv}

=

n
h


P{X ≤ x, Y ≤ y, (X, Y ) ∈ Buv}

hP{X ≤ x, Y ≤ y, (X, Y ) ∈ Bc
uv}

n−h

=

n
h


P{X ≤ x, Y ≤ y, X ≤ u, Y ≤ v}

h

× P{X ≤ x, Y ≤ y, (X ≤ u, Y > v ∪ X > u, Y ≤ v ∪ X > u, Y > v)}n−h

=

n
h


[P{X ≤ min(x, u), Y ≤ min(y, v)}]h × [P{X ≤ min(x, u), v < Y ≤ y} + P{u < X ≤ x, Y ≤ min(y, v)}

+ P{u < X ≤ x, v < Y ≤ y}]n−h. (40)

Therefore,

Fn,n:n(x, y | u, v) =
1

F(u, v)h[1 − F(u, v)]n−h
[F(min(x, u),min(y, v))]h

× [F(min(x, u), y) − F(min(x, u), v) + F(x,min(y, v)) − F(u,min(y, v))

+ F(u, v) − F(u, y) − F(x, v) + F(x, y)]n−h. (41)

If u ≤ x and v ≤ y, then we obtain

P{Xn:n ≤ x, Yn:n ≤ y, h of (X1, Y1), . . . , (Xn, Yn) belong to Buv}

=

n
h


[P{X ≤ u, Y ≤ v}]h [P{X ≤ u, v < Y ≤ y} + P{u < X ≤ x, Y ≤ v}

+ P{u < X ≤ x, v < Y ≤ y}]n−h
=

n
h


F(u, v)h[F(u, y) − F(u, v) + F(x, v) − F(u, v)

+ F(u, v) − F(u, y) − F(x, v) + F(x, y)]n−h
=

n
h


F(u, v)h[F(x, y) − F(u, v)]n−h. (42)

Thus, taking into account (42) in (39), we obtain

Fn,n:n(x, y | u, v) = P{Xn:n ≤ x, Yn:n ≤ y | h of (X1, Y1), . . . , (Xn, Yn) belong to Buv}

=
[F(x, y) − F(u, v)]n−h

[1 − F(u, v)]n−h
. (43)

Now, let r = s = n in Theorem 1a. Then, it can be easily verified that Fn,n:n(x, y | u, v) in Theorem 1a equals (43).
Examplewith graph. Let F(x, y) = FX (x)FY (y){1+α(1−FX (x))(1−FY (y))} be the Farlie–Gumbel–Morgenstern distribution

and FX (x) = x, FY (y) = y, 0 ≤ x, y ≤ 1. This class of distributions has a simple analytical formand is suitable for calculations.
Below, we provide a graph of the conditional distribution of bivariate order statistics given in Theorem 5. The graph is drawn
using Wolfram Mathematica 7 (see Fig. 1).
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Fig. 1. Graph of Fr,s:n(x, y | u, v), n = 10, u = 0.3, v = 0.6, r = 3, s = 2, h = 2, α = 1.

3. Conclusions

In this paper, we consider novel modifications of bivariate binomial distributions and obtain new trivariate discrete
distributions. These distributions are an important class of distributions that are used to derive conditional distributions
of bivariate order statistics constructed from a bivariate random sample under the condition that a certain number of
observations fall in the given threshold set. The novel trivariate discrete distributions are of interest for distribution theory.
The probability generating functions of these distributions are also derived and presented in the Appendix. The conditional
distributions of bivariate order statistics presented in Section 2 can be applied widely in many fields of probability and
statistics. Note that bivariate order statistics are also important for the construction of new bivariate distributions with high
correlation. For example, Baker’s-type distributions are constructed on the basis of distributions of bivariate order statistics
and attract significant interest in the statistical literature: See, e.g., Bairamov and Bayramoglu [22] and Huang et al. [23].
The findings of Theorem 5 in Section 2 can be used for constructing novel modifications of Baker’s-type distributions with
high correlation. The results presented in the paper can also be applied widely for reliability analysis of complex systems
and studying the dependence among financial markets in crises and other extreme situations.
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Appendix

A.1. Probability generating functions

The probability generating function (p.g.f.) of the bivariate binomial distribution (1) is Φ(t, s) = (π11ts + π12t + π21s +

π22)
n. Below, we provide the p.g.f.’s of the trivariate distributions given in Theorems 1–4.1.

Lemma A.1. Consider the fourfold sampling scheme given in case (a) in Definition 1. Then, the joint probability generating
function of the random vector (ξ , η, ζ ) with probability mass function (p.m.f.) P1(i, j, h) in (2) in Theorem 1 is

Φ1(t, s, z) = (α1tsz + α2ts + α3t + α4s + α5)
n, (44)

where

α1 = P(C), α2 = P(AB) − P(C), α3 = P(ABc), α4 = P(AcB) and α5 = P(AcBc).

Proof. To derive the joint probability generating functions, let us write

γ r
1 =


1 if in the rth trial A appears,
0 otherwise, γ r

2 =


1 if in the rth trial B appears,
0 otherwise,

γ r
3 =


1 if in the rth trial C appears,
0 otherwise, r = 1, 2, . . . , n.
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It is clear that ξ =
n

r=1 γ r
1 , η =

n
r=1 γ r

2 and ζ =
n

r=1 γ r
3 . Because the trials are independent, the p.g.f. of the random

vector (ξ , η, ζ ) is

Φ(t, s, z) =


1

x1,x2,x3=0

tx1sx2zx3qx1,x2,x3

n

, (45)

where

qx1,x2,x3 = P{γ r
1 = x1, γ r

2 = x2, γ r
3 = x3}; x1, x2, x3 = 0, 1.

We have

q1,1,1 = P(ABC) = P(C),

q1,1,0 = P(ABC c) = P(AB) − P(C),

q1,0,1 = P(ABcC) = 0,
q0,1,1 = P(AcBC) = 0,
q0,0,1 = P(AcBcC) = 0,
q0,1,0 = P(AcBC c) = P(AcB),
q1,0,0 = P(ABcC c) = P(ABc),

q0,0,0 = P(AcBcC c) = P(AcBc).

Then, substituting these values in (45) and simplifying, we obtain (44).
The proofs of the following lemmas are similar. �

Lemma A.2. Consider the fourfold sampling scheme given in case (b) in Definition 1. Then, the joint probability generating
function of the random vector (ξ , η, ζ ) with p.m.f. P2(i, j, h) given in (4) in Theorem 2 is

Φ2(t, s, z) = (α1tsz + α2ts + α3tz + α4t + α5s + α6)
n, (46)

where

α1 = P(C), α2 = P(AB) − P(C), α3 = P(D), α4 = P(ABc) − P(D),

α5 = P(AcB) and α6 = P(AcBc).

Lemma A.3. Consider the fourfold sampling scheme given in case (c) in Definition 1. Then, the joint probability generating
function of the random vector (ξ , η, ζ ) with p.m.f. P3(i, j, h) given in (5) in Theorem 3 is

Φ3(t, s, z) = (α1tsz + α2ts + α3sz + α4t + α5s + α6)
n, (47)

where

α1 = P(C), α2 = P(AB) − P(C), α3 = P(E), α4 = P(ABc),

α5 = P(AcB) − P(E) and α6 = P(AcBc).

Lemma A.4. Consider the fourfold sampling scheme given in case (d) in Definition 1. Then, the joint probability generating
function of the random vector (ξ , η, ζ ) with p.m.f. P4(i, j, h) given in (6) in Theorem 4 is

Φ4(t, s, z) = (α1ts + α2tz + α3sz + α4t + α5s + α6z + α7)
n, (48)

where

α1 = P(AB), α2 = P(D), α3 = P(E), α4 = P(ABc) − P(D),

α5 = P(AcB) − P(E), α6 = P(F), α7 = P(AcBc) − P(F).

Lemma A4.1. Consider the fourfold sampling scheme given in case (d1) in Definition 1. Then, the joint probability generating
function of the random vector (ξ , η, ζ ) with p.m.f. P4.1(i, j, h) given in (7) in Theorem 4.1 is

Φ4.1(t, s, z) = (α1tsz + α2tz + α3sz + α4t + α5s + α6z + α7)
n, (49)

where

α1 = P(AB), α2 = P(D), α3 = P(E), α4 = P(ABc) − P(D),

α5 = P(AcB) − P(E), α6 = P(F), α7 = P(AcBc) − P(F).
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