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a b s t r a c t

This paper presents the results of a numerical study on unsteady mixed convection flow
of nanofluids in lid-driven enclosures filled with aluminum oxide and copper–water based
nanofluids. The governing equations are solved by the Dual Reciprocity Boundary Element
Method (DRBEM), and the time derivatives are discretized using the implicit central differ-
ence scheme. All the convective terms and the vorticity boundary conditions are evaluated
in terms of the DRBEM coordinate matrix. Linear boundary elements and quadratic radial
basis functions are used for the discretization of the boundary and approximation of inho-
mogeneity, respectively. Solutions are obtained for several values of volume fraction (ϕ),
the Richardson number (Ri), heat source length (B), and the Reynolds number (Re). It is
disclosed that the average Nusselt number increases with the increase in volume fraction,
and decreases with an increase in both the Richardson number and heat source length.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Nanofluids are the mixture of nano-sized particles suspended in a base fluid. Base fluids, such as water, engine oil and
ethylene glycol have low heat transfer performance. Therefore, various techniques are applied to enhance the heat transfer
of these fluids. One of them is the use of solid particles as an additive suspended into the base fluid. The improved heat
transfer performance of nanofluids is due to the fact that dispersing high thermal conductivity nanoparticles in a base fluid
increases the thermal conductivity of such mixtures, and enhances their overall heat transfer capability. Mixed convection
is an important heat transfer mechanism and has applications in electronic cooling, drying, heat exchangers and insulation
of buildings. It is the combination of forced and natural convection. Thus, the effects of both natural and forced convection
influence the governing equations [1].

There are a number of recent studies on the mixed convection flow of nanofluids in cavities. Tiwari and Das [2] analyzed
the heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids with finite
volume approach using the SIMPLER algorithm. They found that both the Richardson number and the direction of themoving
walls affect the fluid flow and heat transfer in the cavity. In another study, Talebi et al. [3] investigated the laminar mixed
convection flows through a copper–water nanofluid in a square lid-driven cavity. They used the finite volume method for
the numerical solution, and found that at the fixed Reynolds number, the solid concentration affects the flow pattern and
thermal behavior particularly for a higher Rayleigh number. Mahmoodi [4] analyzed the mixed convection fluid flow and
heat transfer in lid-driven enclosures filled with the Al2O3–water nanofluid numerically using the finite volume method
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with SIMPLER algorithm. The results show that at low Richardson numbers, a primary counter-clockwise vortex is formed
inside the enclosure. Numerical simulation of mixed convection flows in a square lid-driven cavity partially heated from
below using nanofluids is studied by Mansour et al. [5]. The finite difference method (FDM) was employed to solve the
dimensionless governing equations of the problem. They observed that increasing solid volume fraction leads to decrease in
both the activity of the fluidmotion and fluid temperature, however, it leads to increase in the corresponding averageNusselt
number. In a recent study, Rahman et al. [6] investigated the behavior of nanofluids in an inclined lid-driven triangular
enclosure by using the Galerkin finite element method (FEM). They observed that solid volume fraction strongly influenced
the fluid flow and heat transfer in the enclosure at the three convective regimes.

In the literature, mixed convection flow of nanofluids in enclosures are simulated using numerical methods which
discretize the whole domain of the problem such as FVM, FDM and FEM. Thus, the resulting system of algebraic equations
is very large in size due to the large number of nodal points in the region which has to be taken to achieve a good accuracy.
On the other hand, the boundary element method discretizes only the boundary of the region reducing the size of the
resulting systems. But, a domain integral results in BEM due to the inhomogeneity when the equation is Poisson’s type.
This causes loss of boundary only nature of BEM. The DRBEM handles this problem by transforming the domain integral to a
boundary integral. The DRBEM has also the flexibility of using fundamental solution of Laplace equation which is the main
differential operator in mixed convection flow. In DRBEM all the convective terms and derivative type boundary conditions
are approximated using coordinate matrix in terms of radial basis functions. These are the main advantages of DRBEM
compared to all other domain discretization numerical methods. The application of DRBEM for solving natural convection
flow of nanofluids is given by Gümgüm and Tezer-Sezgin [7] which uses FDM—in time and DRBEM—in space domains. The
results are provided for Ra values up to 106. DRBEM application is extended to solve also the natural convection flow of
micropolar fluids by the same authors [8].

In this paper, DRBEM formulation is given for solving mixed convection flow of nanofluid equations in terms of stream
function, vorticity and temperature by using the fundamental solution of Laplace equation, and keeping all the other terms
as inhomogeneity [9]. The DRBEM reduces all calculations to the evaluation of the boundary integrals discretizing only
the boundary of the region. The unknown vorticity boundary conditions and all the spatial derivatives are easily obtained
by using coordinate matrix which contains only radial basis functions. DRBEM application of unsteady mixed convection
flow of nanofluids gives rise to systems of initial value problems in time which are approximated by implicit Euler scheme.
Considerably small number of boundary elements are used resulting in small sized systems to be solved compared to all the
other domain discretization methods. All the original unknowns (stream function, vorticity and temperature) are obtained
at all transient levels including steady-state at a cheap expense due to the boundary nature of DRBEM. To the best of author’s
knowledge this is the first application of DRBEM for solving mixed convection flow of nanofluids.

2. Mathematical formulation

The non-dimensional unsteady momentum and energy equations for nanofluids can be written in terms of stream
function (ψ), vorticity (ω) and temperature (T ), as [4]

∇
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where (x, y) ∈ Ω ⊂ R2, t > 0. Ri, Re and Pr are the Richardson, Reynolds and Prandtl numbers, respectively. νf = µf /ρf is
the kinematic viscosity of the fluid.µf and ρf are the dynamic viscosity and the density of the fluid. The velocities are given
in terms of stream function as u = ∂ψ/∂y, v = −∂ψ/∂x and the vorticity is defined by ω = ∂v/∂x − ∂u/∂y.

The density ρnf , the heat capacitance (ρCp)nf and the thermal expansion coefficient (ρβ)nf of the nanofluid are defined
as ρnf = (1−ϕ)ρf +ϕρs, (ρCp)nf = (1−ϕ)(ρCp)f +ϕ(ρCp)s, and (ρβ)nf = (1−ϕ)(ρβ)f +ϕ(ρβ)s, respectively [4,10]. The
effective dynamic viscosity of the nanofluid is taken in the first problem as in [4,11],µeff = µf (1+7.3ϕ+123ϕ2), and in the
second problem as in [5], µeff = µf /(1 − ϕ)2.5. The effective thermal conductivity of the nanofluid is approximated by the

Maxwell–Garnett’s model [12], κeff =


κs+2κf −2ϕ(κf −κs)
κs+2κf +ϕ(κf −κs)


κf . The use of this equation is restricted to spherical nanoparticles

where it does not account for other shapes of nanoparticles. This model is found to be appropriate for studying heat
transfer enhancement using nanofluids [13]. The thermal diffusivity of the nanofluid is given as [4], αnf = κeff /(ρCp)nf .
ϕ is nanoparticle volume fraction. eff , nf , s and f refer to effective, nanofluid, solid and fluid, respectively. (ϕ = 0 refers to
pure base fluid and 0 < ϕ ≤ 0.2 refers to nanofluid.)

The equations in (1) are supplied with the appropriate initial and boundary conditions according to the physics of the
mixed convective flow of nanofluids in lid-driven enclosures. The fluid in the cavity is a water-based nanofluid containing
aluminum oxide (Al2O3) and copper (Cu) nanoparticles. It is assumed that the base fluid and nanoparticles are in thermal
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equilibrium and no slip occurs between them. The thermo-physical properties of the nanofluid are assumed to be constant
except for the density variation, which is approximated by the Boussinesq model.

3. Numerical approach

The DRBEM transforms the differential equations in (1) into boundary integral equations by using the fundamental
solution of Laplace equation, u∗

=
1
2π ln


1
r


. It keeps all the terms other than the diffusion term as inhomogeneity. For this,

equations in (1) are weighted through the domainΩ as in [9], by the fundamental solution u∗. Then, Green’s second identity
is applied and the following integral equations are obtained for each source point i
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where ci = θi/2π with the internal angle θi at the source point i. ψ∗, ωq
∗, and T ∗ denote the same fundamental solution u∗

of Laplace equation.
In order to transform the domain integrals in Eq. (2) into boundary integrals, we expand the inhomogeneities in each

equation by using the radial basis functions fj’s (coordinate radial basis functions), [9]

−ω ≈

M+N
j=1

αjfj(x, y)

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
− Ri

(ρβ)nf

ρnf βf

∂T
∂x

≈

M+N
j=1
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In the above equations, ᾱj and α̃j are unknown time dependent coefficients whereas αj are undetermined constants.
Here, r is the distance between the source and the field points. Since the radial basis functions are related to the Laplace
operator (i.e. ∇2û = f , [9]), one can use the same idea to the right-hand side of the equations in Eq. (2) after substituting
the expansions in Eq. (3).
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∗ûj − ψ∗ûqj)dΓ
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∗ûj − ω∗ûqj)dΓ
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where ûqj = ∂ ûj/∂n, and i varies overM boundary or N selected interior nodes, q denotes the normal derivative.
When linear elements are used for the approximation of ψ , ω, T and their normal derivatives on the boundary, we get

the equations in matrix–vector form as

Hψ − Gψq = (HÛ − GQ̂)α

1
Re

µeff
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(Hω − Gωq) = (HÛ − GQ̂)ᾱ

1
PrRe
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αf
(HT − GTq) = (HÛ − GQ̂)α̃

(5)

where H and G matrices are defined for a source point i and each element j by integrals of the normal derivative and
fundamental solution itself, respectively, [9]. The matrices Û and Q̂ are constructed by taking the corresponding particular
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solutions and normal derivatives of particular solutions, respectively, as columns at theM + N points. The unknownsψ, ω,
T and similarly ψq, ωq, Tq are vectors containing values and normal derivatives at the nodes, respectively.

Evaluation of the right-hand sides of each equation in Eq. (3) at all boundary and selected interior (M + N) points yields

Hψ − Gψq = (HÛ − GQ̂)F−1(−ω)
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where F is the (M +N)× (M +N)matrix containing coordinate functions fj’s as columns evaluated atM +N points. Space
derivatives in Eq. (6) are approximated with F as ∂R

∂x =
∂F
∂xF

−1R, where R denotes ω, ψ and T.
When the convection terms are substituted back into Eq. (6) and the equations are rearranged, we obtain the following

linear system of equation for ψ, and systems of ordinary differential equations for ω and T
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(7)

where b̃ and c̃ are the vectors and G̃, G̃t, H̃ and H̃t are the matrices given as
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In this study, unsteady equations for mixed convection flow of nanofluids are considered for obtaining transient level
as well as steady-state solution. The equations are solved iteratively by advancing in the time direction. Finite difference
schemes are widely used in discretization of the time derivatives in partial differential equations that occur after the
application of the DRBEM to engineering problems [14].

Approximating the derivatives in Eq. (7) with central difference scheme yields A
21t

− H̃
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(8)

In the above iterative process the matrices H̃, H̃t, and the velocity components are calculated using the stream function
equation with the vorticity from the m-th level. Hence, the unknown values are obtained from both previous time levels.
These systems together with stream function equation in (7) are solved using direct methods after the insertion of boundary
and initial conditions.

4. Numerical results and discussion

Two test problems are presented for the solution of unsteadymixed convection flow of nanofluids. The numerical results
are reported for several values of the Richardson number (Ri), nanoparticle volume fraction (ϕ), heat source length (B), and
the Reynolds number (Re) for Al2O3–water and Cu–water based nanofluids. The Prandtl number is 6.8 which suitable for the
physical situation of the problem. The thermo-physical properties of the nanofluids are given in [2,4,5]. For the base fluid;
Cp[J kg−1 K−1

] = 4179, ρ[kg m−3
] = 997.1, κ[Wm−1 K−1

] = 0.613, and β[K−1
] = 21×10−5. For the Al2O3 nanoparticles;

Cp = 765, ρ = 3970, κ = 25, and β = 0.85 × 10−5. For the Cu nanoparticles; Cp = 385, ρ = 8933, κ = 401, and
β = 1.67× 10−5. The other parameters in Eq. (1) are calculated by using these parameter values through relations given in
the second paragraph of Section 2.

The discretization is performed by using linear boundary elements. The radial basis function f is taken as 1+ r + r2. The
computations are carried out until steady-state is reached for all the unknowns ψ , ω and T . The convergence criteria used
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Fig. 1. Layout of Problem 1.

Fig. 2. Layout of Problem 2.

in the time loop to achieve steady-state for vorticity is maxm=1,M+N |ω(m+1)
−ω(m)| ≤ 10−5. The same condition is also used

for the temperature.

4.1. Problem 1: Square cavity with moving bottom wall

In this problemwe consider a square cavity filledwith Al2O3–water based nanofluid. Corresponding boundary conditions
are shown in Fig. 1. The velocity components are zero on the vertical walls and the horizontal top wall resulting with zero
stream function value. The horizontal bottom wall is moving with the constant velocity u = 1 giving ∂ψ/∂y = 1. The wall
at y = 0 is heated and the other walls are cooled. Transient behavior is also shown for one particular case of the physical
parameters Ri = 1 and ϕ = 0.06 in Fig. 3. Gr is taken as 104 which contains Re =

√
Gr/Ri.

The local and average Nusselt numbers for the heated horizontal bottom wall are defined as in [4]

Nu = −
κnf

κf

∂T
∂y
, Nuav =

 1

0
Nu(x)dx. (9)

Solutions are obtained by using 112, 100 and 96 linear boundary elements for Ri = 0.1, 1 and 10with the time increments
1t = 0.8, 0.3, 0.05, respectively which are quite large due to the implicit nature of time integration scheme.
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Fig. 3. Transient level behavior of streamlines, isotherms and vorticity for Ri = 1 and ϕ = 0.06.

In Figs. 4 and 5we present streamlines and isotherms, respectively for Ri = 0.1, 1 and 10 and increasing values of volume
fraction ϕ = 0.0, 0.03, 0.06 and 0.1. The primary vortex in streamlines decreases in magnitude and tends to move close to
the left and bottom walls as Ri increases, meanwhile a secondary vortex enlarges both in magnitude and size in the upper
right corner. This behavior is due to the dominance of natural convection compared to the forced convection generated
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Fig. 4. Streamline contours for Ri = 0.1, Ri = 1, Ri = 10 and several values of volume fraction ϕ.

by the movement of the bottom wall. As the volume fraction increases secondary vortex lessens in size and strength for a
fixed Richardson number. This effect is due to suppression of the natural convection inside the cavity with an increase in
the volume fraction of the nanoparticles and resulting an increase in the effective viscosity of the fluid [4]. These behaviors
are in good agreement with the results presented by Mahmoodi [4]. Isotherms form boundary layers close to the walls of
the cavity when Ri = 0.1 for a fixed volume fraction. The center of the cavity is almost stagnant in terms of isotherms.
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Fig. 5. Isotherm contours for Ri = 0.1, Ri = 1, Ri = 10 and several values of volume fraction ϕ.

As the Richardson number increases isotherms are evenly distributed inside the cavity due to the dominant effect of natural
convection. An increase in volume fraction does not affect the isothermsmuchwhen Ri is small. Around Ri = 1 (when forced
and natural convection are comparable) the core region tends to move close to the bottom heated wall. These behaviors are
also observed in [4].

Fig. 6 shows the average Nusselt number values for the considered values of volume fraction and the Richardson number.
It can be seen that as the volume fraction increases, the average Nusselt number increases. On the other hand, increasing the
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Fig. 6. Average Nusselt number values for Ri = 0.1, 1 and 10 with several values of volume fraction.

Table 1
Variation of the average Nusselt number with respect to volume fraction (ϕ)
and heater length (B).

B (ϕ) = 0.0 (ϕ) = 0.1 (ϕ) = 0.2

0.2 29.37 31.23 32.43
0.8 14.65 15.92 16.92

Richardson number decreases the average Nusselt number, which was also observed in [4]. It is obvious that, the presence
of nanoparticles with increasing volume fraction values increases the heat transfer rate significantly.

4.2. Problem 2: Lid-driven cavity with a discrete heater

In the second problem, the cavity is filled with Cu–water based nanofluid and in addition a heater is placed at the bottom
wall, [5]. Fig. 2 shows the corresponding boundary conditions. The velocity components are zero on the vertical walls and
the horizontal bottomwall. The horizontal top wall is moving with the constant velocity u = 1. One part of the bottomwall
is heated with a discrete heater while the rest is isolated. The other walls are cooled.

The local and average Nusselt numbers along the heat source surface are defined as in [5]

Nu(x) =
1

T (x)
, Nuav =

1
B

 D+0.5B

D−0.5B
Nu(x)dx. (10)

Computations are carried out for a range of Reynolds number 10 ≤ Re ≤ 100, solid volume fraction 0 ≤ φ ≤ 0.2, heat
source length 0.2 ≤ B ≤ 0.8 and position 0.2 ≤ D ≤ 0.8. 88 linear boundary elements are used for Re = 10, B = 0.2 and
D = 0.2, and 104 linear boundary elements are used for Re = 100, B = 0.8 and D = 0.8 with a time step1t = 0.8.

Fig. 7 (a1 − a2) show the effect of the Reynolds number on the streamlines and isotherms for Ra = 103, ϕ = 0.1,
B = 0.4 and D = 0.5. It is observed that for Re = 10, the lid-driven effect is not significant and the intensity of the flow are
concentrated beside the heat source position. Lid-driven effect becomes significant when the Reynolds number increases.
For Re = 100, the fluid motion takes place at the top of the cavity and isotherms get close to the left wall of the cavity
due to the motion of the upper lid. In Fig. 7 (b1 − b2), streamlines and isotherms are simulated for different values of heat
source length with Ra = 104, Re = 10, ϕ = 0.1 and D = 0.5. One can see that the activity of the fluid motion (in terms
of magnitude of stream function) and temperature increase with the increase in heat source length. These behaviors are in
good agreement with the ones in [5].

Table 1 presents the average Nusselt number values for the considered values of volume fraction and heat source length.
It is observed that as the volume fraction increases, the average Nusselt number increases, whereas increasing heat source
length decreases the average Nusselt number. The results are in good agreement with the ones given in [5]. The advantage
of dispersing nano-sized particles in a base fluid becomes evident in terms of increasing heat transfer rate.

5. Conclusion

The unsteady mixed convection flow of Al2O3–water and Cu–water based nanofluids in lid-driven enclosures is studied
numerically using the DRBEM. Time derivatives in the equations are discretized by the central difference scheme which is
used implicitly. Results are reported for several values of the Richardson number (Ri), nanoparticle volume fraction (ϕ), heat
source length (B), and the Reynolds number (Re) on themomentum and heat transfer. It is observed that the average Nusselt
number decreases with an increase in the Richardson number and the heat source length, and increases with the increase
in the volume fraction. It is also disclosed that the magnitude of the velocity components increase with an increase in the
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Fig. 7. Streamlines (left) and isotherms (right) for Problem 2. (a1 − a2): Re = 10 and Re = 100, respectively at Ra = 103 , ϕ = 0.1, B = 0.4, D = 0.5.
(b1 − b2): B = 0.2 and B = 0.8, respectively at Ra = 104 , Re = 10, ϕ = 0.1, D = 0.5.
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volume fraction when Ri is kept fixed. Since central difference scheme is used implicitly, time increment does not need to
be small. Vorticity boundary conditions and convective terms are evaluated by using the DRBEM coordinate matrix which
is an advantage of the method. The DRBEM gives very accurate results with considerably small number of discretized points
only on the boundary.

References

[1] F.P. Incropera, D.P. De Witt, Fundamentals of Heat and Mass Transfer, sixth ed., Wiley, 2007.
[2] R.K. Tiwari, M.K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, Int. J. Heat Mass

Transfer 50 (2007) 2002–2018.
[3] F. Talebi, A.H. Mahmoodi, M. Shahi, Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid, Int. Commun. Heat

Mass Transfer 37 (1) (2010) 79–90.
[4] M. Mahmoodi, Mixed convection inside nanofluid filled rectangular enclosures with moving bottom wall, Therm. Sci. 15 (3) (2011) 889–903.
[5] M.A. Mansour, R.A. Mohamed, M.M. Abd-Elaziz, S.E. Ahmed, Numerical simulation of mixed convection flows in a square lid-driven cavity partially

heated from below using nanofluid, Int. Commun. Heat Mass Transfer 37 (2010) 1504–1512.
[6] M.M. Rahman,M.M. Billah, A.T.M.M. Rahman,M.A. Kalam, A. Ahsan, Numerical investigation of heat transfer enhancement of nanofluids in an inclined

lid-driven triangular enclosure, Int. Commun. Heat Mass Transfer 38 (10) (2011) 1360–1367.
[7] S. Gümgüm,M. Tezer-Sezgin, DRBEM solution of natural convection flow of nanofluids with a heat source, Eng. Anal. Bound. Elem. 34 (2010) 727–737.
[8] S. Gümgüm, M. Tezer-Sezgin, DRBEM solution of natural convective flow of micropolar fluids, Numer. Heat Transfer, A 57 (2010) 777–798.
[9] P.W. Partridge, C.A. Brebbia, L.C. Wrobel, The Dual Reciprocity Boundary Element Method, in: Comp. Mech. Pub., Southampton and Elsevier Sci.,

London, 1992.
[10] S.M. Aminossadati, B. Ghasemi, Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure, European J.

Mechanics B/Fluids 28 (5) (2009) 630–640.
[11] S.E.B. Maïga, C.T. Nguyen, N. Galanis, G. Roy, Heat transfer behaviours of nanofluids in a uniformly heated tube, Superlattices Microstruct. 35 (3–6)

(2004) 543–557.
[12] J.C. Maxwell, Treatise on Electricity and Magnetism, Oxford University Press, London, 1904.
[13] A. Akbarinia, A. Behzadmehr, Numerical study of laminar mixed convection of a nanofluid in horizontally curved tubes, Appl. Therm. Eng. 27 (8–9)

(2007) 1327–1337.
[14] L.C. Wrobel, C.A. Brebbia, D. Nardini, The dual reciprocity boundary element method formulation for transient heat conduction, in: Finite Elements in

Water Resources VI, in: Comp. Mech. Pub., Southampton and Springer-Verlag, Berlin and New York, 1986.

http://refhub.elsevier.com/S0377-0427(13)00262-8/sbref1
http://refhub.elsevier.com/S0377-0427(13)00262-8/sbref2
http://refhub.elsevier.com/S0377-0427(13)00262-8/sbref3
http://refhub.elsevier.com/S0377-0427(13)00262-8/sbref4
http://refhub.elsevier.com/S0377-0427(13)00262-8/sbref5
http://refhub.elsevier.com/S0377-0427(13)00262-8/sbref6
http://refhub.elsevier.com/S0377-0427(13)00262-8/sbref7
http://refhub.elsevier.com/S0377-0427(13)00262-8/sbref8
http://refhub.elsevier.com/S0377-0427(13)00262-8/sbref9
http://refhub.elsevier.com/S0377-0427(13)00262-8/sbref10
http://refhub.elsevier.com/S0377-0427(13)00262-8/sbref11
http://refhub.elsevier.com/S0377-0427(13)00262-8/sbref12
http://refhub.elsevier.com/S0377-0427(13)00262-8/sbref13
http://refhub.elsevier.com/S0377-0427(13)00262-8/sbref14

	DRBEM solution of mixed convection flow of nanofluids in enclosures with moving walls
	Introduction
	Mathematical formulation
	Numerical approach
	Numerical results and discussion
	Problem 1: Square cavity with moving bottom wall
	Problem 2: Lid-driven cavity with a discrete heater

	Conclusion
	References


