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a b s t r a c t

A new characterization for the power function distribution is obtained which is based on
products of order statistics. This result may be considered as a generalization of some
recent results for contractions. The result is obtained by applying a new variant of the
Choquet–Deny theorem. We note that in this new result the product consists of order
statistics from independent samples. This characterization result may also be interpreted
in terms of some special scheme of ranked set sampling.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years one can find many different and interesting characterization results in the literature. For some particular
examples, one may refer to [1–6], among others.

The power distribution has applications in finance and economics and is used to model reliability growth of complex
systems or reliability of repairable systems (see, for example, [7,8]). In this paper, a new characterization of the power
distribution, based on independent order statistics, is obtained. An interesting point of this new characterization result is
that it is based on order statistics from independent sampled sets. In this respect, the obtained result may be considered as
one of the first characterization results obtained by using order statistics from independent samples. We also note that the
proof is given by using a new variant of the Choquet–Deny theorem (see, for example, [9]).

The paper is organized as follows. In Section 2, we introduce some basic notation and related results from the literature.
In Section 3, ranked set samples are briefly introduced in order to express the characterization result with an appropriate
notation. Then in the next section the main result is presented.

2. Basic notation and preliminaries

Consider three independent random variables X , Y , and U , where U has some known distribution. There are several
recent characterization results, which may be considered as special cases of relation (1):

X d
= YU . (1)

In its most basic form U can be assumed to have a uniform distribution concentrated on (0, 1). In this case, relation (1)
is an example of a contraction. These type of relations have some applications like in economic modeling and reliability, for
example. Some of the first results of this type were obtained, among others, by [10–12].

We will write X ∼ Pow(α) if FX (x) = xα, α > 0, x ∈ (0, 1), and Y ∼ Par(α), if FY (y) = 1 − y−α, α > 0, y ∈ (1, ∞).
Let X1:n, X2:n, . . . , Xn:n denote the order statistics for random variables X1, X2, . . . , Xn.
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There are many interesting distributional relations and characterization results based on the relation given by (1).
Wesołowski and Ahsanullah [3], for example, showed that Xi:n

d
= VXi−1:n is a characteristic relation for the power

distribution. Oncel et al. [13] investigated characterizations of the form Xi:n−1
d
= VXi:n, where V is a Pareto distribution.

Navarro [14] obtained characterizations of Xi:n
d
= VXj:n, 1 ≤ i < j ≤ n, where V is a power distribution. Martinez

et al. [15] approached the same problem in amore general setting and used integral equations directly to solve the functional
equations. In this way they also obtained some new characterization results.

We note that in all of the above characterizations one of the random variables is assumed to be known. In this paper,
we will consider a new characterization involving products of order statistics, which may be considered to be similar to the
relation (1). The main difference of this characterization from the previous results given in the literature is that there is no
term with a known distribution. In this respect it may be considered as one of the first characterization results of the form

X d
= YZ (2)

where all three random variables X , Y , and Z are independent random variables with unknown distribution functions.

3. Ranked set samples and independent order statistics

Before stating the main result, it will be convenient to introduce ranked set samples (RSS). Ranked set sampling is an
alternative sampling design to simple random sampling when actual measurement is either difficult or expensive, but
ranking a few units in a small set is relatively easy and inexpensive. This sampling design was first introduced by [16,17].

An RSS can be described as follows. Let X1, X2, . . . , Xn, . . . be independent and identically distributed random variables
with cdf F . Consider r independent sets of samples of sizes n1, n2, . . . , nr , from this distribution where r ≤ nr . From
these sets of independent samples we select r random variables as follows. From the first set of n1 independent variables
we select the smallest (X (1)

1:n1
), while from the second set we select the second smallest (X (2)

2:n2
). In this way we continue

to select independent random variables until we have selected r representative random variables denoted here by
X[1,n1], X[2,n2], . . . , X[nr ,nr ]. The notation X[i,nj], 1 ≤ j ≤ r is used to express the fact that each ordered random variable
is selected from independent sets as described. In this way a set of independent order statistics is obtained. We note here
also that the basic idea in RSS is to rank the observations in each set without actual measurement. This process has been
summarized as follows:

X (1)
1:n1

X (1)
2:n1

... X (1)
n1:n1 → X[1,n1] ∼ F1:n1(x)

X (2)
1:n2

X (2)
2:n2

... X (2)
n2:n2 → X[2,n2] ∼ F2:n2(x)

... ... ... ... → ...

X (r)
1:nr X (r)

2:nr ... X (r)
nr :nr → X[nr ,nr ] ∼ Fnr :nr (x).

If the number of elements in each set is the same, i.e. ni = n for 1 ≤ i ≤ r , and r ≤ nr , the obtained sample is called a
balanced RSS. The joint pdf of X[1,n1], X[2,n2], . . . , X[nr ,nr ] is given by

f[1,2,...,r]

x[1], x[2], . . . , x[r]


=

r
i=1

fi:ni(x[i]),

where fi:ni(x) is the pdf of the i-th order statistic for a simple random sample of size ni. The extra information provided by
the structure of the ranking process and the independence of the obtained order statistics enables RSS to improve some of
the classical approaches based on simple random sampling. For more information on RSS and its applications one may refer
to [18,17,19], among others.

In the followingwe actually will use an unbalanced RSS. In particular, wewill use the following three sets of independent
random variables

X (1)
1:n · · · X (1)

k:n · · · X (1)
n−1:n X (1)

n:n → X[k,n] ∼ Fk:n(x)
X (2)
1:n−1 · · · X (2)

k:n−1 · · · X (2)
n−1:n−1 → X[k,n−1] ∼ Fk:n−1(x)

X (3)
1:n · · · X (3)

k:n · · · X (3)
n−1:n X (3)

n:n → X[n,n] ∼ Fn:n(x)

to obtain the three independent order statistics X[k,n], X[k,n−1], and X[n,n].

4. Results

To prove themain result, the following lemmawill be used.We note that this lemma can be considered as another special
variant of the Choquet–Deny Theorem. For other variants and some applications of this theorem one may refer to [9,4,5],
among others. This lemma can be proved by using the same idea as in the proof of Theorem 1 in [9].



G. Arslan / Journal of Computational and Applied Mathematics 260 (2014) 99–102 101

Lemma 1. Let H be a nonnegative function that is not identically equal to zero on A = (0, 1). Also, let {µx : x ∈ A} be a family
of finite measures such that for each x ∈ A, µ(Bx) > 0, where Bx = (x, 1). Then a continuous real-valued function H on A such
that H(x) has a limit as x tends to 1, satisfies 1

x


H(x) − H

 x
u


µx(du) = 0, x ∈ (0, 1), (3)

if and only if it is identically equal to a constant.

Using this lemma the following result can be proved.

Theorem 2. Let X(1)
=


X (1)
1:n , . . . , X

(1)
n:n


, X(2)

=


X (1)
1:n−1, . . . , X

(1)
n−1:n−1


, and X(3)

=


X (3)
1:n , . . . , X

(3)
n:n


be independent sets of

random variables with absolutely continuous distribution function F such that f is supported in [0, 1] and lim supx→1 f (x) > 0.
In addition, assume that f is continuous on (0, 1). Let X[k,n] and X[k,n−1] denote the k-th order statistics from the sets X(1) and
X(2), respectively, and let X[n,n] be the maximal order statistics from set X(3). If for a fixed 1 ≤ k ≤ n − 1,

X[k,n]
d
= X[k,n−1]X[n,n], (4)

then Xi ∼ Pow(α), for some α > 0.

Proof. X[k,n]
d
= X[k,n−1]X[n,n] implies that

Fk:n(x) = Fk:n−1(x) +

 1

x
Fn:n

 x
u


fk:n−1(u)du. (5)

Since n [Fk:n(x) − Fk:n−1(x)] f (x) = F(x)fk:n(x) (see, for example, [3]), we have

F(x)fk:n(x) = nf (x)
 1

x
Fn:n

 x
u


fk:n−1(u)du. (6)

By differentiating (5) with respect to x, it follows that

fk:n(x) =

 1

x
fn:n

 x
u

 1
u
fk:n−1(u)du (7)

From (6) and (7), we obtain

nf (x)
 1

x
Fn:n

 x
u


fk:n−1(u)du = F(x)

 1

x
fn:n

 x
u

 1
u
fk:n−1(u)du

or  1

x


nf (x)Fn:n

 x
u


− F(x)fn:n

 x
u

 1
u


fk:n−1(u)du = 0, x ∈ (0, 1).

This last equation can be written as 1

x
F n

 x
u

 
xf (x)
F(x)

−

x
u f

 x
u


F

 x
u

 
fk:n−1(u)du = 0, x ∈ (0, 1), (8)

or, defining H(x) =
xf (x)
F(x) , 1

x
F n

 x
u

 
H(x) − H

 x
u


fk:n−1(u)du = 0, x ∈ (0, 1). (9)

Now, using Lemma 1 with µx(B) =

B∩Bx

F n
 x
u


fk:n−1(u)du, Bx = (x, 1), it follows that H is constant on (0, 1);

H(x) =
xf (x)
F(x)

= α, x ∈ (0, 1), (10)

for some α ∈ R. The solution of this separable differential equation with boundary conditions F(0) = 0 and F(1) = 1
implies that F(x) = xα, x ∈ (0, 1). �
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Remark 3. It should be noted that the equation

H(x) =
xf (x)
F(x)

= α, x ∈ (0, 1),

obtained in the proof actually represents a constant generalized reversed hazard rate (gRHR). A constant gRHR means that
the underlying distribution is a scale-free distribution. It is known that the power distribution is the only distribution with
this property among absolutely continuous distribution functions [20]. Hence, relation (4) given in the theorem can also be
used to test whether the data provides evidence for a constant gRHR.

As an immediate consequence of this theorem, any order statistic Xk:n from a power distribution can be expressed in
terms of maximum order statistics from independent sets of random variables:

Corollary 4. Let X = {X1, . . . , Xn} and Xi =


X (i)
1 , . . . , X (i)

i


be independent sets of samples of size i for k ≤ i ≤ n, where

1 ≤ k ≤ n − 1, from a distribution with absolutely continuous cdf F and continuous pdf f . Then F(x) = xα , x ∈ (0, 1), that is
F ∼ Pow(α), α > 0, if and only if for some fixed 1 ≤ k ≤ n − 1,

Xk:n
d
= X[k,k]X[k+1,k+1] · · · X[n,n].

Remark 5. Note that for k = 1 and α = 1, we obtain the well known representation for the uniform distribution

U1:n
d
= U[1,1]U[2,2] · · ·U[n,n].
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