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a b s t r a c t

In this paper, we generalize geometric and binomial distributions of order k to q-geometric
and q-binomial distributions of order k using Bernoulli trials with a geometrically varying
success probability. In particular, we derive expressions for the probability mass functions
of these distributions. For q = 1, these distributions reduce to geometric and binomial
distributions of order kwhich have been extensively studied in the literature.
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1. Introduction

The distribution of the number of trials until the first k consecutive successes in Bernoulli trials with success probability
p is known to be a geometric distribution of order k. This definition is due to Philippou, Georghiou and Philippou [1]. Clearly,
for k = 1 the geometric distribution of order k reduces to the usual geometric distribution. This distribution has been
extensively studied and used in various applications including reliability and statistical process control. The distribution of
the corresponding waiting time random variable has been derived also replacing the classical Bernoulli trials by different
kinds of binary trials such as Markovian and exchangeable [2–5].

Much attention has been paid to the distribution of the number of runs of fixed length in a sequence of binary trials.
There are various enumeration schemes for counting the number of runs. According to the nonoverlapping enumeration
scheme, the distribution of the number of success runs of length k in n trials follows a Type I binomial distribution of order
k which reduces to the well-known binomial distribution when k = 1. Type I binomial distribution of order k has been
studied in [6–13].

Charalambides [14] studied discrete q-distributions on Bernoulli trials with a geometrically varying success probability.
Let us consider a sequence X1, . . . , Xn of zero (failure)–one (success) Bernoulli trials such that the trials of the subsequence
after the (i − 1)st zero until the ith zero are independent with failure probability

qi = 1 − θqi−1, i = 1, 2, . . . , 0 < θ < 1, 0 < q ≤ 1. (1)

The probability mass function of the number Zn of successes in n trials X1, . . . , Xn is given by

P {Zn = r} =


n
r


q
θ r

n−r
i=1

(1 − θqi−1), (2)
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for r = 0, 1, . . . , n, 0 < q < 1, where
n
r


q
=

[n]r,q
[r]q!

,

and [x]k,q = [x]q [x − 1]q . . . [x − k + 1]q , [x]q = (1 − qx)/(1 − q), [x]q! = [1]q[2]q . . . [x]q [14,15]. The distribution given
by (2) is called a q-binomial distribution. For q → 1, because

n
r


q
→

n
r


q-binomial distribution converges to the usual binomial distribution as q → 1.

Discrete distributions of order k appear as the distributions of runs based on different enumeration schemes in binary
sequences. They are widely used in various applications including statistical process control, statistical hypothesis testing
and reliability. For example, a production processmight be declared to be out of control when k consecutive points (charting
statistics) fall outside the control limits. The number of samples or subgroups that needs to be collected before the first out of
control signal is a randomvariable having geometric distribution of order k. Thus discrete distributions of order k are suitable
models when we are interested in the number of runs of length k or the waiting time for the first run of length k. The exact
probability functions of these distributions have been extensively studied in the literature under various assumptions on
binary sequences including both independence and dependence. In the present paper, we study the distributions of the
waiting time for the first k consecutive successes and the number of nonoverlapping success runs of length k in a sequence
of independent binary trials with a geometrically varying success probability which is mentioned above. According to this
model, the sequence consists of independent trials such that the subsequences after the (i − 1)st zero until the ith zero are
independent with failure probability given by (1). If the zeros (failures) represent extreme events, then the probability of
getting one (success) changes after the occurrence of each extremal event. Such a stochastic model has been studied as a
reliability growthmodel by Dubman and Sherman [16]. Investigation of discrete distributions of order k under this model is
not only a mathematical generalization but also meaningful when we have binary outcomes following the abovementioned
nonidentical model.

The paper is organized as follows. In Sections 2 and 3, we derive expressions for the probability mass functions of the
number of trials until the first k consecutive successes, and the number of nonoverlapping success runs of length k in n
trials. The resulting distributions are called as q-geometric and q-binomial distributions of order k. In Section 4, we discuss
the estimation of the parameters involved in these distributions.

2. q-geometric distribution of order k

We first note the following lemma which will be useful in the sequel.

Lemma 1. For 0 < q ≤ 1, define

Cq(r, s) =


. . .


x1+···+xr=s

0≤x1<k,...,0≤xr<k

qx2+2x3+···+(r−1)xr ,

where xi s are integers. Then Cq(r, s) obeys the following recurrence relation

Cq (r, s) =


k−1
t=0

qt(r−1)Cq (r − 1, s − t) , if r > 1 and 0 ≤ s ≤ (k − 1) r

1, if r = 1 and 0 ≤ s < k
0, otherwise.

Proof. Considering the values that xr can take, we have

Cq (r, s) =


. . .


x1+···+xr=s

0≤x1<k,...,0≤xr<k

qx2+2x3+···+(r−1)xr

=


. . .


x1+···+xr−1=s

0≤x1<k,...,0≤xr−1<k

qx2+2x3+···+(r−2)xr−1 + qr−1


. . .


x1+···+xr−1=s−1
0≤x1<k,...,0≤xr−1<k

qx2+2x3+···+(r−2)xr−1

+ q2(r−1)


. . .


x1+···+xr−1=s−2
0≤x1<k,...,0≤xr−1<k

qx2+2x3+···+(r−2)xr−1
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+ · · · + q(k−1)(r−1)


. . .


x1+···+xr−1=s−k+1
0≤x1<k,...,0≤xr−1<k

qx2+2x3+···+(r−2)xr−1

= Cq (r − 1, s) + qr−1Cq (r − 1, s − 1) + q2(r−1)Cq (r − 1, s − 2)

+ · · · + q(k−1)(r−1)Cq (r − 1, s − k + 1) ,

for r > 1 and 0 ≤ s ≤ (k − 1) r . The other parts of the recurrence are obvious. �

Theorem 1. For 0 < q ≤ 1, the probability mass function of the number of trials until the first k consecutive successes is given by

P {Tk = x} =


x−k
i=1

qikθ x−i
i

j=1

(1 − θqj−1)Cq (i, x − i − k) , if x ≥ k + 1

θ k, if x = k
0, otherwise.

Proof. Let Sx denote the total number of zeros (failures) in x binary trials. Then

P {Tk = x} =


i

P {Tk = x, Sx = i} .

The joint event {Tk = x, Sx = i} can be described with the following binary sequence which consists of i zeros.

1 . . . 1  
0≤x1<k

0 1 . . . 1  
0≤x2<k

0 . . . 0 1 . . . 1  
0≤xi<k

0 1 . . . 1  
k

,

where x1 + · · · + xi = x − k − i. Thus for x ≥ k + 1,

P {Tk = x} =


i


. . .


x1+···+xi=x−k−i
0≤x1<k,...,0≤xi<k

(θq0)x1(1 − θq0)

× (θq)x2(1 − θq)(θq2)x3(1 − θq2) . . . (θqi−1)xi(1 − θqi−1)(θqi)k

=

x−k
i=1

qikθ x−i
i

j=1

(1 − θqj−1)


. . .


x1+···+xi=x−k−i
0≤x1<k,...,0≤xi<k

qx2+2x3+···+(i−1)xi

=

x−k
i=1

qikθ x−i
i

j=1

(1 − θqj−1)Cq (i, x − i − k) .

The proof for x = k is obvious and hence omitted. �

Remark 1. For q = 1 in Theorem 1, the quantity C1 (i, x − i − k) corresponds to the number of integer solutions to the
equation x1 + · · · + xi = x − k − i such that 0 ≤ x1 < k, . . . , 0 ≤ xi < k, and it is known to be

C1 (i, x − i − k) =

x−i−k
j=0

(−1)j

x − k − i

j

 
x − k(j + 1) − 1
x − k − i − 1


[17]. Therefore from Theorem 1, the probability mass function of the number of trials until the first k consecutive successes
in Bernoulli trials with the success probability θ is obtained as

P {Tk = x} =


x−k
i=1

θ x−i(1 − θ)iC1 (i, x − i − k) , if x ≥ k + 1

θ k, if x = k
0, otherwise

(see, e.g. [7]).

In Table 1, we compute the probabilitymass function of T2 for some values of θ and q. Table 2 contains the expected value
of Tk when k = 2, 3, 5.
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Table 1
P {T2 = x} , x = 2, 3, . . . , 10.

x θ = 0.5, q = 0.5 θ = 0.5, q = 0.8 θ = 0.9, q = 0.5

2 0.25000 0.25000 0.81000
3 0.03125 0.08000 0.02025
4 0.02148 0.07072 0.02101
5 0.00568 0.04102 0.00430
6 0.00215 0.02882 0.00210
7 0.00063 0.01916 0.00061
8 0.00019 0.01313 0.00021
9 0.00005 0.00894 0.00006

10 0.00001 0.00609 0.00001

Table 2
Expected value of Tk .

k θ = 0.5, q = 0.5 θ = 0.5, q = 0.8 θ = 0.9, q = 0.5

2 2.3244 3.7201 2.0820
3 3.1478 4.2125 3.0909
5 5.1026 6.0220 5.0265

3. q-Binomial distribution of order k

Lemma 2. For 0 < q ≤ 1, define

Aq (r, s, t) =


. . .


y1+···+yr=s y1
k


+···+[ yr

k ]=t

y1≥0,...,yr≥0

qy2+2y3+···+(r−1)yr ,

where [x] denotes the integer part of x and yis are integers. Then Aq(r, s, t) obeys the following recurrence relation

Aq (r, s, t) =



s
j=0

q(r−1)jAq


r − 1, s − j, t −


j
k


if r > 1, s ≥ 0, t ≥ 0

1 if r = 1, s ≥ 0,
 s
k


= t

0 otherwise.

Proof. Considering the values that yr can take, we have

Aq (r, s, t) =


. . .


y1+···+yr−1=s y1
k


+···+

 yr−1
k


=t

y1≥0,...,yr−1≥0

qy2+2y3+···+(r−2)yr−1 + qr−1


. . .


y1+···+yr−1=s−1 y1
k


+···+

 yr−1
k


=t−


1
k


y1≥0,...,yr−1≥0

qy2+2y3+···+(r−2)yr−1

+ q2(r−1)


. . .


y1+···+yr−1=s−2 y1
k


+···+

 yr−1
k


=t−


2
k


y1≥0,...,yr−1≥0

qy2+2y3+···+(r−2)yr−1 + · · · + qs(r−1)


. . .


y1+···+yr−1=0 y1
k


+···+

 yr−1
k


=t−[ s

k ]
y1≥0,...,yr−1≥0

qy2+2y3+···+(r−2)yr−1

= Aq (r − 1, s, t) + qr−1Aq


r − 1, s − 1, t −


1
k


+ q2(r−1)Aq


r − 1, s − 2, t −


2
k


+ · · · + qs(r−1)Aq


r − 1, 0, t −

 s
k


,

for r > 1. The other parts of the recurrence are obvious. �

Note that if
 y1

k


+ · · · +

 yr
k


= 0, then 0 ≤ y1 < k, . . . , 0 ≤ yr < k so that Aq(r, s, 0) = Cq(r, s).

Let Nn,k denote the total number of nonoverlapping success runs of length k in n trials. In the following we obtain the
probability mass function of Nn,k.
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Theorem 2. For 0 < q ≤ 1, the probability mass function of the number of nonoverlapping success runs of length k in n trials is
given by

P

Nn,k = x


=

n−kx
i=0

θn−i
i

j=1

(1 − θqj−1)Aq(i + 1, n − i, x),

x = 0, 1, . . . ,
 n
k


.

Proof. Let Sn denote the total number of zeros (failures) in n binary trials. Then

P

Nn,k = x


=


i

P

Nn,k = x, Sn = i


.

The joint event

Nn,k = x, Sn = i


can be described with the following binary sequence which consists of i zeros.

1 . . . 1  
y1

0 1 . . . 1  
y2

0 . . . 0 1 . . . 1  
yi

0 1 . . . 1  
yi+1

,

where

y1 + · · · + yi+1 = n − i
s.ty1
k


+ · · · +

yi+1

k


= x (3)

yj ≥ 0, j = 1, . . . , i + 1.

Under the model (1),

P

Nn,k = x


=


i


. . .


y1+···+yi+1=n−i y1
k


+···+

 yi+1
k


=x

(θq0)y1(1 − θq0)(θq)y2(1 − θq) . . . (θqi−1)yi(1 − θqi−1)(θqi)yi+1

=

n−kx
i=0

θn−i
i

j=1

(1 − θqj−1)


. . .


y1+···+yi+1=n−i y1
k


+···+

 yi+1
k


=x

qy2+2y3+···+(i−1)yi+iyi+1 .

Thus the proof is completed. �

Corollary 1. Let Ln be the length of the longest success run in n binary trials. Then

P {Ln < k} = P

Nn,k = 0


=

n
i=0

θn−i
i

j=1

(1 − θqj−1)Aq(i + 1, n − i, 0).

Remark 2. For q = 1 in Theorem 2, the quantity A1 (i + 1, n − i, x) corresponds to the number of integer solutions to the
system (3) and it is known to be

A1 (i + 1, n − i, x) =


x + i
x

 min

i+1,


n−i−kx

k


j=0

(−1)j

i + 1
j

 
n − kx − jk

i


.

Therefore from Theorem 2, the probability mass function of binomial distribution of order k is obtained as

P

Nn,k = x


=

n−kx
i=0

θn−i(1 − θ)iA1(i + 1, n − i, x),

for x = 0, 1, . . . ,
 n
k


[7].

Table 3 displays the distribution ofN10,2 for selected values of the parameters θ and q. In Table 4,we compute the expected
value of Nn,k for different choices of k, n and the parameters θ and q. E(Nn,k) is increasing in both θ and q.
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Table 3
Probability mass function of N10,2 .

x θ = 0.5, q = 0.5 θ = 0.5, q = 0.8 θ = 0.9, q = 0.5

0 0.68854 0.48212 0.14144
1 0.22953 0.33201 0.15284
2 0.06126 0.13519 0.13273
3 0.01566 0.04077 0.11327
4 0.00403 0.00894 0.11104
5 0.00098 0.00097 0.34868

Table 4
Expected value of Nn,k .

n k θ = 0.5, q = 0.5 θ = 0.5, q = 0.8 θ = 0.9, q = 0.5

10 2 0.4200 0.7653 2.9457
3 0.1605 0.2668 1.7036

20 2 0.4211 0.8262 4.0150
3 0.1610 0.2798 2.3796
5 0.0333 0.0476 1.2820

4. Estimation

In this section we discuss how to calculate the point estimator of the parameter θ in the distribution of Tk using the
method proposed by Balakrishnan and Koutras [18, p. 34]. Let Tk,1, Tk,2, . . . , Tk,N be a random sample of size N from the
q-geometric distribution of order k with a known q value. Assume that the entire sequences of binary trials leading to the
realizations of Tk,1, Tk,2, . . . , Tk,N are available. That is, the individual sequences of binary trials are summarized by the
pairs (S1, F1), (S2, F2), . . . , (SN , FN), where Si and Fi represent respectively the number of successes and failures observed
corresponding to the realization of Tk,i with Tk,i = Si + Fi, i = 1, 2, . . . ,N .

The contribution of each Tk,i to the log-likelihood function for θ is

li(θ; Tk,i) = Si ln θ + ln
Fi
j=1

(1 − θqj−1)

= Si ln θ +

Fi
j=1

ln(1 − θqj−1).

Therefore the log-likelihood function for θ is

l(θ; Tk,1, . . . , Tk,N) =

N
i=1

li(θ; Tk,i)

= ln θ

N
i=1

Si +
N
i=1

Fi
j=1

ln(1 − θqj−1).

The derivative of the log-likelihood function with respect to θ is

∂ l(θ; Tk,1, . . . , Tk,N)

∂θ
=

1
θ

N
i=1

Si −
N
i=1

Fi
j=1

qj−1

1 − θqj−1
.

Thus we need to solve the equation

h(θ) =
1
θ

N
i=1

Si −
N
i=1

Fi
j=1

qj−1

1 − θqj−1
= 0.

According to the Newton–Raphson method, the maximum likelihood estimate of θ can be obtained iteratively as

θm+1 = θm −
h(θm)

h′(θm)
, (4)

where

h′(θ) = −
1
θ2

N
i=1

Si −
N
i=1

Fi
j=1

q2j−2

(1 − θqj−1)2
.
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Table 5
Simulated data for k = 5, θ = 0.8 and q = 0.9.

i Sequence Si Fi

1 01110010111011111 12 5
2 10111011110110111011111 18 5
3 1111011111 9 1
4 10101111011111 11 3
5 11111 5 0
6 111011011011111 12 3
7 11100011111 8 3
8 011111 5 1
9 0101111000011111 10 6

10 110011110111001000101100011111 18 12
11 1110011001111011111 14 5
12 111101110011111 12 3
13 11011111 7 1
14 110110110111011011111 16 5
15 101110011111 9 3
16 11001110101011111 12 5
17 11110011111 9 2
18 01101011011011010010011011111 18 11
19 011111 5 1
20 11110011010000011111 12 8

Total 222 83

An approximate 100(1 − α)% confidence interval for θ is estimated as

θ̂ ± zα/2/


I(θ̂),

where I(θ̂) = −h′(θ̂) denotes the observed Fisher information. For q = 1, the maximum likelihood estimate of θ is
obtained as

θ̂ =

N
i=1

Si

N
i=1

Si +
N
i=1

Fi

=

N
i=1

Si

N
i=1

Tk,i

.

For an illustration, we generate N = 20 samples for k = 5, θ = 0.8 and q = 0.9. Table 5 contains simulated data.
For the data presented in Table 5 the maximum likelihood estimate of θ is found to beθ = 0.8064. Approximate 95%

confidence interval for θ is (0.7484, 0.8644).
Next, consider the estimation of the parameter θ in the q-binomial distribution of order k. Let N (1)

n,k ,N
(2)
n,k , . . . ,N

(N)
n,k be a

random sample of size N from the q-binomial distribution of order kwith a known q value. If this random sample is the only
information on hand, then the maximum likelihood estimate of θ may be obtained iteratively using (4) when

h(θ) =

N
i=1

1

f (N (i)
n,k; θ)

∂

∂θ
f (N (i)

n,k; θ),

where f (·; θ) is the probability mass function of Nn,k which is given in Theorem 2. Such a method has been proposed by Aki
and Hirano [19] for estimating the parameter of the binomial distribution of order k.
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