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a b s t r a c t

In this paper, the influence of a cold standby component on a coherent system is studied.
A method for computing the system reliability of coherent systems with a cold standby
component based on signature is presented. Numerical examples are presented. Reliability
and mean time to failure of different systems are computed.
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1. Introduction

There are different methods to increase system reliability. One of them is to equip the systemwith standby units such as
warm, hot and cold. Compared to others, cold standby redundancy can be preferred when switching times are sufficiently
short, since cold standby component is inactive which means it does not fail in standby. Van Gemund and Reijns [1] studied
k-out-of-n system with a single standby and found an analytical way to compute the mean time to failure of the system.
Eryilmaz [2] investigated variousmean residual life functions for the same system. Recently, Eryilmaz [3] studied k-out-of-n
system equipped with a single warm standby component.

In this paper, using system signature, conditioning on the index of the cold standby component and indices of the compo-
nents failed before cold standby component is put into operation, the reliability of coherent systems having a cold standby
component is derived.

Let Xi denote the lifetime of the ith component in a coherent system having lifetime T . If Xi’s are s-independent and have
common absolutely continuous distribution function, then the survival function can be represented as

P(T > t) =

n
i=1

piP(Xi:n > t),

where X1:n ≤ X2:n ≤ · · · ≤ Xn:n are the order statistics associated with X1, X2, . . . , Xn and pi = P(T = Xi:n), in other words,

pi =
The number of orderings for which the ith failure causes the system failure

n!
,

for i = 1, 2, . . . , n which is well known as Samaniego’s Signature [4]. The ith element of the signature vector can be easily
computed from

pi =
rn−i+1(n) n

n−i+1

 −
rn−i(n) n

n−i

 , for i = 1, 2, . . . , n.
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[5] where ri(n) denotes thenumber of path sets including i working components in a coherent system. Since signature has
vital importance to investigate the behavior of the system lifetime, recently many developments have been made in this
area, see [6–13].

In a coherent system with a single cold standby, the index of the standby component as well as the indices of failed
components has significant importancewhichmakes the computation of the reliabilitymore difficult. In Section 3, amethod
for computing the reliability of coherent systems is presented. Finally, comparison of the reliability andmean time to failure
of some systems with and without cold standby component have been illustrated.

2. Notations

Below the notations that will be used throughout the article are provided.

n, number of components in the system;
Y , lifetime of the cold standby component;
Xi, lifetime of the component i, 1 ≤ i ≤ n;
Xs:n, sth smallest among Xi, 1 ≤ i ≤ n;
X (s)
l , remaining lifetime of the components after Xs:n fails: X (s)

l
st
= (Xl − Xs:n|Xl > Xs:n), 1 ≤ l ≤ n − s;

φ, structure function of the system;
T = φ(X1, . . . , Xn), lifetime of the system without cold standby component;
Tw , lifetime of the system with a cold standby component;
Vs, discrete random variable representing the index of the cold standby component when Xs:n fails: Vs = c ⇔ (Xc =

Xs:n|T = Xs:n), c = 1, 2, . . . , n;
Bs,c |Vs = c , a discrete multivariate random variable representing the indices of the failed components given Vs = c, s =

1, . . . , n and c = 1, . . . , n;
(Bs,c |Vs = c) = (B1 = b1, B2 = b2, . . . , Bs−1 = bs−1|Vs = c) ⇔ (0B1 = 0b1 , 0B2 = 0b2 , . . . , 0Bs−1 = 0bs−1 |Xc = Xs:n, T =

Xs:n) where 0 = (0B1 , 0B2 , . . . , 0Bs−1) are the components which have failed before Xs:n;
Rs,c |Vs = c , a discrete multivariate random variable representing the indices of the remaining components given Vs = c,
s = 1, . . . , n and c = 1, . . . , n : Rs,c = (R1 = r1, R2 = r2, . . . , Rn−s = rn−s|Vs = c) ⇔ (X (s)

R1
= X (s)

r1 , X (s)
R2

= X (s)
r2 , . . . ,

X (s)
Rn−s

= X (s)
rn−s |Xc = Xs:n, T = Xs:n).

3. Main results

Consider a binary coherent system with structure function φ. Let T = φ(X1, . . . , Xn) denote the lifetime of a coherent
system without a cold standby component and Tw denote the lifetime of the same system with a cold standby component
whose lifetime is Y . Moreover, X1, . . . , Xn have a common continuous cumulative distribution function (c.d.f); F and Y have
a continuous c.d.f G.

Eryilmaz [14] studied coherent systems equippedwith a cold standby componentwhichmay be put into operation at the
time of the first component failure in the system. In this paper,we consider the general case inwhich the standby component
may get involved at the time of the sth component failure s = kφ, . . . , zφ + 1 where kφ is the minimum number of failed
components that cause the system failure whereas zφ is the maximum number of failed components that system can still
operate. It is clear that P(T = Xs:n) > 0 for s = kφ, . . . , zφ + 1.

After replacing the standby component with sth failed component which causes the system failure at the same time, the
remaining lifetime of the system consisting of s − 1 failed components (0’s), n − s functioning components, and a standby
component (Y ) can be represented as

φs(0B1 , 0B2 , . . . , 0Bs−1 , YVs , X
(s)
R1

, X (s)
R2

, . . . , X (s)
Rn−s

).

When sth failure occurs which causes system failure at the same time, cold standby component gets involved to the system.
At this time, there are totally n − s + 1 functioning components in the system. The reliability of the remaining lifetime of
the system is computed based on these n − s + 1 functioning components. However, places of the s − 1 failed components
should be taken into consideration (not their lifetimes since they failed already) in the structure function of the system to
calculate the main lifetime random variable Tw .

It is well known that the random variables X (s)
1 , . . . , X (s)

n−s are conditionally independent given Xs:n = x, and

P{X (s)
1 > x1, . . . , X

(s)
n−s > xn−s|Xs:n = x} =

n−s
l=1

F̄(xl + x)
F̄(x)

.

The main goal is to find the reliability characteristics of Tw , i.e.

Tw
= T +

zφ+1
s=kφ

φs(0B1 , 0B2 , . . . , 0Bs−1 , YVs , X
(s)
R1

, X (s)
R2

, . . . , X (s)
Rn−s

).
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Lemma 1. For t > 0 and s = kφ, . . . , zφ + 1;

P{φs(0b1 , 0b2 , . . . , 0bs−1 , Yc, X (s)
r1 , X (s)

r2 , . . . , X (s)
rn−s

) > t|Xs:n = x}

=
1

F̄ n−s(x)


· · ·


φs(0b1 ,0b2 ,...,0bs−1 ,yc ,xr1 ,xr2 ,...,xrn−s )>t

g(yc)
n−s
m=1

f (xrm + x)dxr1dxr2 . . . dxrn−sdyc .

Proof. Due to the fact that Y and X1, . . . , Xn are independent for s = kφ, . . . , zφ + 1

P{φs(0b1 , 0b2 , . . . , 0bs−1 , Yc, X (s)
r1 , X (s)

r2 , . . . , X (s)
rn−s

) > t|Xs:n = x}

=


· · ·


φs(0b1 ,0b2 ,...,0bs−1 ,yc ,xr1 ,xr2 ,...,xrn−s )>t

g(yc)f (xr1 , xr2 , . . . , xrn−s |xs:n = x)dxr1dxr2 . . . dxrn−sdyc .

Since the joint p.d.f. of X (s)
r1 , X (s)

r2 , . . . , X (s)
rn−s given Xs:n = x is

f (xr1 , xr2 , . . . , xrn−s |xs:n = x) =
1

F̄ n−s(x)

n−s
m=1

f (xrm + x).

The proof is complete. �

Remark 1. Due to the fact that given Xs:n = x, the random variables X (s)
1 , . . . , X (s)

n−s are independent for s = kφ, . . . , zφ + 1.
So, the conditional probability given in Lemma 1 is indeed the survival function of the coherent system φs consisting of s−1
failed components, n−s independent component having the samemarginal survival function F̄(t+x)

F̄(x)
and the vsth component

has the survival function Ḡ(t). Moreover given Xs:n = x if we order the residual lifetime of the remaining n − s components
such that

X (s)
1:n−s ≤ X (s)

2:n−s ≤ · · · ≤ X (s)
n−s:n−s.

The survival function of the kth order statistics of the residual lifetime of the remaining n− s components for k = 1, 2, . . . ,
n − s, can be found as

P(X (s)
k:n−s > t|Xs:n = x) =

k−1
i=0


n − s

i


1 −

F̄(t + x)
F̄(x)

i 
F̄(t + x)
F̄(x)

n−s−i

.

Theorem 1. Let p be the signature of a coherent system T = φ(X1, . . . , Xn) which has a cold standby component with lifetime
distribution G. Then

P(Tw > t) =

zφ+1
s=kφ


psP(Xs:n > t) + ps

n
c=1

P(Vs = c)


1≤b1<···<bs−1≤n

P

Bs,c = (b1, . . . , bs−1)


×

 t

0
P{φs(0b1 , 0b2 , . . . , 0bs−1 , Yc, X (s)

r1 , X (s)
r2 , . . . , X (s)

rn−s
) > t − x|Xs:n = x}dFs:n(x)


.

Proof. For a coherent system P(T = Xs:n) > 0 for s = kφ, . . . , zφ + 1. Any coherent system operating with n components
may fail at the time of sth component failure. If the system failure is caused by the failure of the sth component, then the
standby component gets involved to the system. Therefore the survival function of the coherent system with a standby
component can be written as follows:

P(Tw > t) = P{T + φkφ (0B1 , 0B2 , . . . , 0Bkφ−1 , YVkφ
, X

(kφ )

R1
, X

(kφ )

R2
, . . . , X

(kφ )

Rn−kφ
) > t, T = Xkφ :n} + P(T > t, T > Xkφ :n)

= pkφP{T + φkφ (0B1 , 0B2 , . . . , 0Bkφ−1 , YVkφ
, X

(kφ )

R1
, X

(kφ )

R2
, . . . , X

(kφ )

Rn−kφ
) > t|T = Xkφ :n}

+ P(T > t, T > Xkφ :n)

= pkφP{T + φkφ (0B1 , 0B2 , . . . , 0Bkφ−1 , YVkφ
, X

(kφ )

R1
, X

(kφ )

R2
, . . . , X

(kφ )

Rn−kφ
) > t|T = Xkφ :n}

+ pkφ+1P{T + φkφ+1(0B1 , 0B2 , . . . , 0Bkφ
, YVkφ+1 , X

(kφ+1)
R1

, X
(kφ+1)
R2

, . . . , X
(kφ+1)
Rn−kφ−1

) > t|T = Xkφ+1:n}

+ P(T > t, T > Xkφ+1:n)

= pkφP{T + φkφ (0B1 , 0B2 , . . . , 0Bkφ−1 , YVkφ
, X

(kφ )

R1
, X

(kφ )

R2
, . . . , X

(kφ )

Rn−kφ
) > t|T = Xkφ :n}

+ pkφ+1P{T + φkφ+1(0B1 , 0B2 , . . . , 0Bkφ
, YVkφ+1 , X

(kφ+1)
R1

, X
(kφ+1)
R2

, . . . , X
(kφ+1)
Rn−kφ−1

) > t|T = Xkφ+1:n} + · · ·
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+ pzφ+1P{T + φzφ+1(0B1 , 0B2 , . . . , 0Bzφ
, YVzφ+1 , X

(zφ+1)
R1

, X
(zφ+1)
R2

, . . . , X
(zφ+1)
Rn−zφ−1

) > t|T = Xzφ+1:n}

+ P(T > t, T > Xzφ+1:n).

It is obvious that P(T > t, T > Xzφ+1:n) = 0.
Now, for s = kφ, . . . , zφ + 1 consider the conditional probability

P{T + φs(0B1 , 0B2 , . . . , 0Bs−1 , YVs , X
(s)
R1

, X (s)
R2

, . . . , X (s)
Rn−s

) > t|T = Xs:n}

=

n
c=1

P{Xc + φs(0B1 , 0B2 , . . . , 0Bs−1 , Yc , X
(s)
R1

, X (s)
R2

, . . . , X (s)
Rn−s

) > t, Xs:n = Xc , T = Xs:n}

P(T = Xs:n)

=

n
c=1

P{Xc + φs(0B1 , 0B2 , . . . , 0Bs−1 , Yc , X
(s)
R1

, X (s)
R2

, . . . , X (s)
Rn−s

) > t|Xs:n = Xc , T = Xs:n}P(Xs:n = Xc |T = Xs:n)

=

n
c=1

P(Vs = c)


1≤b1<···<bs−1≤n
P{Xc + φs(0b1 , . . . , 0bs−1 , Yc , X

(s)
r1 , . . . , X (s)

rn−s ) > t| 0B1 = 0b1
, . . . , 0Bs−1 = 0bs−1

, Xs:n = Xc , T = Xs:n}

P(Xs:n = Xc , T = Xs:n)

× P(0B1 = 0b1
, . . . , 0Bs−1 = 0bs−1

, Xs:n = Xc , T = Xs:n)

=

n
c=1

P(Vs = c)


1≤b1<···<bs−1≤n

P(0B1 = 0b1
, . . . , 0Bs−1 = 0bs−1

|Xs:n = Xc , T = Xs:n)

× P{Xc + φs(0b1 , . . . , 0bs−1 , Yc , X (s)
r1 , . . . , X (s)

rn−s
) > t| 0B1 = 0b1

, . . . , 0Bs−1 = 0bs−1
, Xs:n = Xc , T = Xs:n}

=

n
c=1

P(Vs = c)


1≤b1<···<bs−1≤n

P

Bs,c = (b1, . . . , bs−1)

 
P{φs(0b1 , . . . , 0bs−1 , Yc , X (s)

r1 , . . . , X (s)
rn−s

) > t − x|Xs:n = x}dFs:n(x),

=

n
c=1

P(Vs = c)


1≤b1<···<bs−1≤n

P

Bs,c = (b1, . . . , bs−1)


×


∞

t
dFs:n(x) +

 t

0
P{φs(0b1 , . . . , 0bs−1 , Yc , X (s)

r1 , . . . , X (s)
rn−s

) > t − x|Xs:n = x}dFs:n(x)


=

n
c=1

P(Vs = c)


1≤b1<···<bs−1≤n

P

Bs,c = (b1, . . . , bs−1)


×

 t

0
P{φs(0b1 , . . . , 0bs−1 , Yc , X (s)

r1 , . . . , X (s)
rn−s

) > t − x|Xs:n = x}dFs:n(x) + P(Xs:n > t)


.

Hence,

P(Tw > t) =

zφ+1
s=kφ


psP(Xs:n > t) + ps

n
c=1

P(Vs = c)


1≤b1<···<bs−1≤n

P

Bs,c = (b1, . . . , bs−1)


×

 t

0
P{φs(0b1 , . . . , 0bs−1 , Yc, X (s)

r1 , . . . , X (s)
rn−s

) > t − x|Xs:n = x}dFs:n(x)


. �

Theorem 2. Consider a coherent system having a signature vector p, with a cold standby component having distribution function
G while other components have common distribution function F . Then system reliability can be computed as follows:

P(Tw > t) =

zφ+1
s=kφ


psP(Xs:n > t) + ps

n
c=1

P(Vs = c)


1≤b1<···<bs−1≤n

P

Bs,c = (b1, . . . , bs−1)


×

 t

0


Ḡ(t − x)

n−s
k=1

p̄c,(b1,b2,...,bs−1)
k P(X (s)

k:n−s > t − x|Xs:n = x) +Ḡ(t − x)p̄c,(b1,b2,...,bs−1)
n−s+1


dFs:n(x)


,

where p̄
c,(b1,b2,...,bs−1)
k is the number of orderings for which kth failure among the (n−s) remaining components and a cold standby

component cause the system to fail where cth component (cold standby) assumed to be functioning and components having indices
b1, b2, . . . , bs−1 have already failed. Moreover X (s)

k:n−s is the kth order statistics of the residual lifetime of the remaining (n − s)
functioning components.

p̄c,(b1,b2,...,bs−1)
k

=
The number of orderings for which the kth failure of the remaining components causes the system to fail

n − s!
k = 1, . . . , n − s,
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and

p̄c,(b1,b2,...,bs−1)
n−s+1 =


1, if the failure of the system can be caused by only the failure of the cold standby
0, if the failure of the system can be caused by the remaining components.

Proof. When the cold standby component is put into operation at time x for the system to survive up to time t , the cold
standby componentmust function between the time x and t since the failure of the cold standby component will lead to sys-
tem failure with probability 1. Assuming the cold standby component functions between the time t and x system failure can
be caused by the failure of the remaining components. Given Xs:n = x residual lifetime of the remaining (n− s) components
are independent and identically distributed. Therefore the survival function of the coherent system φs(0b1 , . . . , 0bs−1 , Yc,

X (s)
r1 , . . . , X (s)

rn−s) having s − 1 failed components at places b1, b2, . . . , bs−1 and a cold standby component at place c can be
computed by its signature function p̄c,(b1,b2,...,bs−1)

k for k = 1, . . . , n − s and p̄c,(b1,b2,...,bs−1)
n−s+1 = 0. If the failure of the system

does not depend on the failure of the remaining componentswhichmeans system survives until the cold standby component
fails in that case p̄c,(b1,b2,...,bs−1)

k = 0 for k = 1, . . . , n − s and p̄c,(b1,b2,...,bs−1)
n−s+1 = 1. �

It is known thatwhen both active and standby components have common exponential distribution, the randomvariables
X (s)
R1

, X (s)
R2

, . . . , X (s)
Rn−s

, YVs are independent and have the same exponential distribution. Therefore, the structure function can
be written as

φs(0B1 , . . . , 0Bs−1 , YVs , X
(s)
R1

, . . . , X (s)
Rn−s

)
st
= φs(0B1 , . . . , 0Bs−1 , YVs , XR1 , . . . , XRn−s).

Corollary 1. Under the assumption of all components, including the cold standby component, have common exponential distri-
bution F(x) = 1 − e−λx, x > 0 the reliability of coherent systems with a cold standby component turns into

P(Tw > t) =

zφ+1
s=kφ

psP(Xs:n > t) + ps
n

c=1

P(Vs = c)


1≤b1<···<bs−1≤n

P

Bs,c = (b1, . . . , bs−1)


×

 t

0


F̄(t − x)

n−s
k=1

p̄c,(b1,b2,...,bs−1)
k P(Xk:n−s > t − x) + F̄(t − x)p̄c,(b1,b2,...,bs−1)

n−s+1


dFs:n(x).

Example 1. Consider the coherent system with lifetime

T = min(X1,max(X2, X3)).

The signature of this system is p = ( 1
3 ,

2
3 , 0). In this system, kφ = zφ = 1. For s = 1, there are no failed components

(0’s). P(V1 = 1) = 1, P(V1 = 2) = P(V1 = 3) = 0 which means only component 1 can be replaced by the cold standby
component. The remaining lifetime of the components after the first failure is X (1)

2 and X (1)
3 . p̄1,− can be found as (0, 1, 0)

since when the cold standby component functions, the system works until both components 2 and 3 fail. For s = 2, all
components can be cold standby component with probabilities P(V2 = 1) =

1
2 , and P(V2 = 2) = P(V2 = 3) =

1
4 . Suppose

component 1 is replaced with the cold standby component. Previously failed component can be 2 or 3 (02 or 03). Moreover,
let component 2 (3) be replaced by the cold standby component. In this case, previously failed component is 03 (02).

p̄1,(2) = p̄1,(3) = p̄2,(3) = p̄3,(2) is (1, 0) because for each case the failure of the remaining component will lead to system
failure.

s = 1 c
V1 1
B1,c –
R1,c (2, 3)
P(V1 = c) 1
p̄c,B1,c (0, 1, 0)

s = 2 c
V2 1 2 3
B2,c (2) (3) (3) (2)
R2,c (3) (2) (1) (1)
P(V2 = c) 1

2
1
4

1
4

p̄c,B2,c (1, 0) (1, 0) (1, 0) (1, 0)
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Using Theorem 2

P(Tw > t) =
1
3
P(X1:3 > t) +

2
3
P(X2:3 > t)

+
1
3

 t

0
Ḡ(t − x)


F̄(t)
F̄(x)

2

+ 2
F(t) − F(x)

F̄(x)
F̄(t)
F̄(x)


dF1:3(x) +

2
3

 t

0
Ḡ(t − x)

F̄(t)
F̄(x)

dF2:3(x).

Example 2. Consider the coherent system with lifetime

T = max(min(X1, X2, X3),min(X2, X3, X4)).

The signature of this system is p = ( 1
2 ,

1
2 , 0, 0). In this system kφ = zφ = 1.

s = 1 c
V1 2 3
B1,c – –
R1,c (1, 3, 4) (1, 2, 4)
P(v1 = c) 1

2
1
2

p̄c,B1,c ( 1
3 ,

2
3 , 0, 0) ( 1

3 ,
2
3 , 0, 0)

s = 2 c
V2 1 2 3 4
B2,c (4) (1) (4) (1) (4) (1)
R2,c (2, 3) (3, 4) (1, 3) (2, 4) (1, 2) (2, 3)
P(V2 = c) 1

6
2
6

2
6

1
6

p̄c,B2,c (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)

P(Tw > t) =
1
2
P(X1:4 > t) +

1
2
P(X2:4 > t)

+
1
2

 t

0
Ḡ(t − x)


1
3


F̄(t)
F̄(x)

3

+
2
3


F̄(t)
F̄(x)

3

+ 3
F(t) − F(x)

F̄(x)


F̄(t)
F̄(x)

2
dF1:4(x)

+
1
2

 t

0
Ḡ(t − x)


F̄(t)
F̄(x)

2

dF2:4(x).

Example 3. Consider the coherent system which is known as consecutive 3-out-of-5:F with lifetime

T = min(max(X1, X2, X3),max(X2, X3, X4),max(X3, X4, X5)).

The signature of this system is p = (0, 0, 3
10 ,

1
2 ,

2
10 ). In this system kφ = 3 and zφ = 4.

s = 3 c
V3 1 2 3 4 5
B3,c (2, 3) (1, 3) (3, 4) (1, 2) (2, 4) (4, 5) (3, 5) (2, 3) (3, 4)
R3,c (4, 5) (4, 5) (1, 5) (4, 5) (1, 5) (1, 2) (1, 2) (1, 5) (1, 2)
P(V3 = c) 1

9
2
9

3
9

2
9

1
9

p̄c,B3,c ( 1
2 ,

1
2 , 0) ( 1

2 ,
1
2 , 0) ( 1

2 ,
1
2 , 0) (0, 0, 1) (0, 0, 1) (0, 0, 1) ( 1

2 ,
1
2 , 0) ( 1

2 ,
1
2 , 0) ( 1

2 ,
1
2 , 0)

s = 4 c

V4 1 2 3 4 5
B4,c (2, 3, 5) (1, 3, 4) (1, 3, 5) (1, 2, 4) (1, 2, 5) (1, 4, 5) (2, 4, 5) (2, 3, 5) (1, 3, 5) (1, 3, 4)
R4,c (4) (5) (4) (5) (4) (2) (1) (1) (2) (2)
P(V4 = c) 1

10
2
10

4
10

2
10

1
10

p̄c,B4,c (1, 0) (1, 0) (1, 0) (0, 1) (0, 1) (0, 1) (0, 1) (1, 0) (1, 0) (1, 0)
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s = 5 c
V5 3
B5,c (1, 2, 4, 5)
R5,c –
P(V5 = c) 1
p̄c,B5,c (1)

P(Tw > t) =
3
10

P(X3:5 > t) +
1
2
P(X4:5 > t) +

2
10

P(X5:5 > t)

+
3
10

4
9

 t

0
Ḡ(t − x)


1
2


F̄(t)
F̄(x)

2

+
1
2


F̄(t)
F̄(x)

2

+ 2
F(t) − F(x)

F̄(x)
F̄(t)
F̄(x)


dF3:5(x)

+
3
10

2
9

 t

0
Ḡ(t − x)


F̄(t)
F̄(x)

2

+ 2
F(t) − F(x)

F̄(x)
F̄(t)
F̄(x)


dF3:5(x) +

3
10

3
9

 t

0
Ḡ(t − x)dF3:5(x)

+
1
2

6
10

 t

0
Ḡ(t − x)

F̄(t)
F̄(x)

dF4:5(x) +
1
2

4
10

 t

0
Ḡ(t − x)dF4:5(x) +

2
10

 t

0
Ḡ(t − x)dF5:5(x).

Example 4. Consider the coherent system with lifetime

T = min(X1,max(X2, X3),max(X3, X4)).

The signature of this system is p = ( 1
4 ,

7
12 ,

1
6 , 0). In this system kφ = 1 and zφ = 2.

s = 1 c
V1 1
B1,c –
R1,c (2, 3, 4)
P(V1 = c) 1
p̄c,B1,c (0, 2

3 ,
1
3 , 0)

s = 2 c
V2 1 2 3 4
B2,c (2) (3) (4) (3) (2) (4) (3)
R2,c (3, 4) (2, 4) (2, 3) (1, 4) (1, 4) (1, 2) (1, 2)
P(V2 = c) 3

7
1
7

2
7

1
7

p̄c,B2,c ( 1
2 ,

1
2 , 0) (1, 0, 0) ( 1

2 ,
1
2 , 0) (1, 0, 0) ( 1

2 ,
1
2 , 0) ( 1

2 ,
1
2 , 0) (1, 0, 0)

s = 3 c
V3 1 3
B3,c (2, 4) (2, 4)
R3,c (3) (1)
P(V3 = c) 1

2
1
2

p̄c,B3,c (1, 0) (1, 0)

P(Tw > t) =
1
4
P(X1:4 > t) +

7
12

P(X2:4 > t) +
1
6
P(X3:4 > t)

+
1
4

 t

0
Ḡ(t − x)


2
3


F̄(t)
F̄(x)

3

+ 3
F(t) − F(x)

F̄(x)


F̄(t)
F̄(x)

2

+
1
3


F̄(t)
F̄(x)

3

+ 3
F(t) − F(x)

F̄(x)


F̄(t)
F̄(x)

2

+ 3

F(t) − F(x)

F̄(x)

2 F̄(t)
F̄(x)


 dF1:4(x)

+
7
12

3
7

 t

0
Ḡ(t − x)


F̄(t)
F̄(x)

2

dF2:4(x)
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Fig. 1. Reliability function of systems with and without standby.

+
7
12

4
7

 t

0
Ḡ(t − x)


1
2


F̄(t)
F̄(x)

2

+
1
2


F̄(t)
F̄(x)

2

+


F(t) − F(x)

F̄(x)


F̄(t)
F̄(x)


dF2:4(x)

+
1
6

 t

0
Ḡ(t − x)

F̄(t)
F̄(x)

dF3:4(x).

As it can be seen from the examples it is hard to compute P(Tw > t) for systems having complex structures even if they
have few components. However for some particular systems of order n it can be computed easily.

Example 5. Consider the coherent system with lifetime

T = min(X1,max(X2, X3, . . . , Xn)).

The signature of this system is p = ( 1
n ,

1
n , . . . ,

1
n ,

2
n , 0). In this system kφ = 1 and zφ = n−2. For s = 1, 2, . . . , n−2, P(Vs =

1) = 1 and P(Vs = c) = 0, c = 2, . . . , n. For s = n − 1 P(Vn−1 = 1) =
1
2 and P(Vn−1 = c) =

1
2(n−1) c = 2, 3 . . . , n.

Furthermore p̄c,Bs,c = (0, 0, . . . , 0,  
n−s−1

1, 0) for all s and c . Therefore

P(Tw > t) =

n−1
s=1


psP(Xs:n > t) + ps

 t

0
Ḡ(t − x)P(X (s)

n−s:n−s > t − x|Xs:n = x)dFs:n(x)


.

In general, the computation of P(Tw > t) is not easy even when components have exponential lifetime distributions. In
Fig. 1 one can see the reliability function of the four examples given above with and without a standby when F(t) = G(t) =

1 − e−2t , t > 0.
In Table 1, the mean time to failure of different coherent systems with a standby unit (E(Tw)) and without a standby

unit (E(T )) having independent and identical exponentially distributed components with mean 1, have been computed.
It can be seen clearly from Table 1 that the mean time to failure of coherent systems is nearly doubled by adding a cold

standby component which shows the effect of the cold standby to coherent systems.
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Table 1
Mean time to failure of systems with and without standby.

T p E(T ) E(Tw)

1 min(X1,max(X2, X3)) ( 1
3 , 2

3 , 0) 0.6667 1.2222

2 max(min(X1, X2, X3),min(X2, X3, X4)) ( 1
2 , 1

2 , 0, 0) 0.4167 0.7917

3 min(max(X1, X2, X3),max(X2, X3, X4),max(X3, X4, X5)) (0, 0, 3
10 , 1

2 , 2
10 ) 1.3333 2.0944

4 min(X1,max(X2, X3),max(X2, X4)) ( 1
4 , 7

12 , 1
6 , 0) 0.5833 1.0625

5 min(max(X1, X2),max(X2, X3),max(X3, X4)) (0, 1
2 , 1

2 , 0) 0.8333 1.3611

6 min(max(X1, X2),max(X1, X3),max(X1, X4)) (0, 1
2 , 1

4 , 1
4 ) 1.0833 1.9167

7 min(max(X1, X2),max(X2, X3),max(X3, X4),max(X4, X5)) (0, 4
10 , 5

10 , 1
10 , 0) 0.7000 1.1417
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