
SHIPMENT CONSOLIDATION AND

DISPATCHING PROBLEM WITH

TRANSSHIPMENT TERMINALS

SİNEM TOKCAER

February 2018

SHIPMENT CONSOLIDATION AND

DISPATCHING PROBLEM WITH

TRANSSHIPMENT TERMINALS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF BUSINESS

OF

IZMIR UNIVERSITY OF ECONOMICS

BY

SİNEM TOKCAER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

DOCTOR OF PHILOSOPHY

IN

THE GRADUATE SCHOOL OF BUSINESS

February 2018

ABSTRACT

SHIPMENT CONSOLIDATION AND DISPATCHING PROBLEM

WITH TRANSSHIPMENT TERMINALS

Tokcaer, Sinem

Ph.D. in Business Administration

Supervisor: Assoc. Prof. Dr. Özgür ÖZPEYNİRCİ

Co-Advisor: Asst. Prof. Dr. Ahmet CAMCI

December 2017, 120 Pages

Shipment consolidation and dispatching problem is an operational planning prob-

lem of long haul freight forwarders in their daily operations planning. Freight

forwarders aim at planning the delivery of less-than truckload (LTL) customer or-

ders within specified time-windows by using sub-contracted haulers’ vehicles. The

orders are delivered either directly or by using a cross-dock. Each transshipment

decision implies a cost proportional to the size of the order. The main path of a

vehicle is defined regarding the farthest destination in the vehicle and excessive

deviations from the main path is not allowed. The cost of a vehicle is defined

either by the prices indicated in the annual contracts between freight forwarder

and sub-contracted vehicle owner or by the spot market prices. Main objective of

the freight forwarder is to minimize the total cost of vehicles, including the cost

of rented vehicles and transshipped orders.

Respectively, we introduce 2 variants of Shipment Consolidation and Dispatching

Problem (SCDP) with aforementioned assumptions. In the first problem, the

annual contracts with sub-contracted haulers define the cost of vehicle’s route.

In the second problem, the cost is defined by the sum of fixed cost identified by

the farthest destination in the vehicle and the extra charge of additional stops.

iii

For both problems, we propose a feasibility check mechanism for the generated

vehicles, which also considers 5 real life assumptions; stability, orientation, weight

distribution, loading sequence and stacking constraints.

The analytic solution methodologies that we propose throughout the thesis pro-

duce good quality solutions in a very short computation time. Additionally, we

tested proposed solution methodologies on a real-life instance, and the obtained

solutions provide approximately 10% savings for both algorithms, and are ap-

plicable in real life. In this sense, proposed solution methodology may benefit

international freight forwarders in three perspectives; (i) cost savings, (ii) efficient

use of human resources, and (iii) time utilization.

This thesis is supported by the Scientific and Technological Research Council of

Turkey (TÜBİTAK, project no: 214M195).

Keywords: Transportation Planning, Shipment Consolidation, Dispatching, Trans-

shipment Terminals.

iv

ÖZET

AKTARMA TERMİNALLİ YÜK BİRLEŞTİRME VE SEVKİYAT

PROBLEMİ

Tokcaer, Sinem

İşletme Doktora Programı

Tez Yöneticisi: Doç. Dr. Özgür ÖZPEYNİRCİ

Ortak Tez Yöneticisi: Yrd. Doç. Dr. Ahmet CAMCI

Aralık 2017, 120 Sayfa

Uzak mesafe ve uluslararası yük taşımacılığı, rekabetin oldukça fazla ve hizmet

sağlayıcıların en iyi hizmeti, en düşük maliyetle vermek durumunda olduğu bir

pazardır. Bu bakımdan, hizmet sağlayıcıları, hızlı ve ölçek ekonomisinden fay-

dalanan verimli ve düşük maliyetli yük birleştirme sistemleri geliştirmektedirler.

Yük konsolidasyonu ve yükleme planlaması problemi, farklı müşterilere ait, farklı

boyut ve miktardaki yüklerin bir araç içerisine yüklenerek, müşterinin talep ettiği

zaman aralığı içerisinde dağıtımını sağlamaya yönelik bir problem olup, en temel

amacı oluşan maliyetleri en azlamaktır. Bunun yanı sıra, aracın seyahat süresini

kısaltmak amacıyla, ürünlerin son adresine aracın varış ülkesinde bulunan bir

aktarma terminali üzerinden teslim edilmesi ise hizmet sağlayıcıları tarafından

sıklıkla kullanılan bir yöntemdir.

Yukarıdaki varsayımlar doğrultusunda, bu tez ile iki tür Yük Birleştirme ve Yük

Planlaması problemi tanımlanmıştır. İlk problemde, araç rotaları ve maliyet-

leri yıllık sözleşmeler doğrultusunda belirlenmekte, ikinci problemde ise araçtaki

yüklerin arasında en uzak mesafeye sahip olan yükün teslimat noktası araç ro-

tasını ve maliyetini belirlemektedir. Bunun yanı sıra, denge, oryantasyon, ağırlık

dağılımı, yükleme sırası ve istifleme gibi gerçek hayatta var olan yükleme kısıtlarını

v

dikkate alan bir kontrol mekanizması her iki problemin çözüm yöntemine entegre

edilmiştir.

Yapılan deneyler sonucunda, geliştirilen çözüm yöntemlerinin kısa sürede yüksek

kaliteli çözüm ürettiği görülmüştür. Ayrıca, önerilen çözüm yöntemleri bir örnek

üzerinde test edilmiş ve yaklaşık %10 civarında iyileştirmenin mümkün olduğu

görülmüştür. Bu anlamda, analitik çözüm yöntemlerinin uzak mesafe parsiyel

yük taşımacılığı hizmeti sağlayıcılarına (i) maliyet, (ii) insan kaynağının etkin

kullanımı ve (iii) zaman kullanımı açısından fayda sağlayabileceği öngörülmekte-

dir.

Bu tez kapsamında yürütülen çalışmalar Türkiye Bilimsel ve Teknolojik Araştırma

Kurumu tarafından desteklenmiştir (TÜBİTAK, Proje no: 214M195).

Anahtar sözcükler : Ulaşım Planlaması, Yük Birleştirme, Yükleme Planlaması,

Aktarma Terminali.

vi

To Deniz;

My Little Angel

I’m sorry for the time I had to steal from you...

vii

Acknowledgements

People say PhD is a ”journey”, however all journeys has an ending. My PhD

experience was like a never-ending roller coaster with many ups and downs. When

I first came up with this subject matter, all methods applied herein this thesis

was something like a foreign language (maybe Chinese), and I found myself in a

cycle of “learning-coding-debugging-learning while debugging-coding-debugging”

and so on. At this point, where I delivered my thesis, there were two brilliant

academic advisors supporting me; Assoc. Prof. Dr. Dr. Özgür Özpeynirci and

Asst. Prof. Dr. Ahmet Camcı, who thought me everything I know, starting from

the scratch. Without their immense knowledge and hard work, I would not have

accomplished this thesis with so many outputs. They also have gone beyond their

academic duties, and put so much effort in dispelling my anxieties and worries

about my capacity, and pushing me to do better. I would like to express my

sincere gratitude to both of them for their patience, unrelenting support and true

friendship. It was an honor for me to be first their student, then colleagues and

finally business partners.

Besides my advisors, I am also grateful to my committee members; Assoc. Prof.

Dr. Selin Özpeynirci and Assoc. Prof. Dr. Muhittin Hakan Demir for their

insightful comments and challenging questions, which compelled me to make this

thesis better. I would like to add a special thanks to Assoc. Prof. Dr. Selin

Özpeynirci for her sincere friendship.

There are also a number of people behind this thesis, who deserve to be both

acknowledged and thanked here. Firstly, I am grateful to my husband Murat

Tokcaer for believing in me. When I start to pursue an academic career, he knew

that we step in a psychological and economic crisis; however, he supported me

viii

in all possible ways to accomplish this task in my hand. I am also indebted to

my family, my mom Jale Huntürk for her passionate vision of me as a doctor and

relentless care she showed all through my life, and to my dad S. Erkan Huntürk

for his love and encouragement. I am thankful to my brother Tuna Huntürk for

supporting me spiritually and taking me to his boat tours, and Begüm Huntürk

for being more than a real sister.

My time at İzmir University of Economics was enjoyable with many friends that

became a part of my life. I would like to thank Cansu Yıldırım for being “the

blossoming rose of the same sapling” with me, and sharing her academic experi-

ence, supporting me in both academic and administrative duties. I am thankful

to Mert Günerergin for all those cheerful moments we shared, and logistic service

he provided all through my pregnancy. I would like to thank Murad Canbulut,

who patiently listened all my complaints about job, life and everything else, and

shared his wisdom with me. I am thankful to Gökçe Erbuğa for her positive en-

ergy and great sense of humor, which always made me laugh. I would also like

to thank Doğan Başkır and Muhittin Sağnak for being so kind and supportive

friends.

I would like to thank my fellows of 9th floor; Ezgi Özkan, Esra Onater, Birce Do-

brucalı, Cansu Tayaksi, Funda Savaş and Funda Sarıcı for the warm and cheerful

environment they have created. They were always ready to support me when I

am in trouble. It was a pleasure for me to meet you girls. I am thankful to Arya

Sevgen for being an unexpected fellow when I feel so alone, and a perfect copilot

in car, sharing long travels to the university. I would like to thank Seda Lafcı for

all her assistance and being my academic sister.

My sincere thanks also goes to academic staff of Department of Logistics Manage-

ment, who have contributed immensely to my personal and professional time at

ix

Izmir University of Economics. I especially thank to Assoc. Prof. Dr. Bengü Oflaç

and Asst. Prof Dr. Aysu Göçer for their heartfelt friendship in all aspects.

All throughout this process, there were some people, whom were always with me

holding my hand. In the same vein, I would like to thank Başak Çallıoğlu for

feeling the need of a friendship more than 20 years, and understanding whatever

I do. I am also thankful to Ayşe Eroğlu, Dilek and Hakan Tolungüç for sharing

good and bad times of this pace of my life.

Finally, I would like to reserve a special thanks to my daughter Deniz Tokcaer for

giving me strength to stand upright against the troubles, teaching me to be more

patient, and growing me older. I am so lucky to have you as my zest of life and

motivation to go on further.

x

Table of Contents

Abstract . iii

Özet . v

Acknowledgements . viii

Table of Contents . xiii

List of Tables . xv

List of Figures . xvi

List of Abbreviations . xvii

1 Introduction . 1

1.1 Problem Definition . 2

1.2 Motivation and Objectives . 4

1.3 Organisation of the Thesis . 6

2 Literature Review . 9

2.1 Shipment Consolidation . 9

2.1.1 Temporal Consolidation 11

2.1.2 Spatial Consolidation . 12

2.2 Transportation Planning Problems 12

2.2.1 Network Design Problems 13

xi

2.2.2 Vehicle Routing Problems 14

2.2.3 Intermediate Facilities in Transportation Planning Problems 15

2.3 Literature Gap . 17

3 Shipment Consolidation and Dispatching with Transshipment

Terminals and Fixed Routes . 19

3.1 Introduction . 19

3.2 Problem Statement and Mathematical Model 21

3.2.1 Mathematical Model . 21

3.2.2 Computational Complexity 27

3.3 Lower Bound Algorithms . 28

3.3.1 Lower Bound 1: Relax Integrality Constraints 29

3.3.2 Lower Bound 2: Relax Capacity Constraints 30

3.4 Variable Neighborhood Search . 32

3.5 Experiments . 36

3.5.1 Randomly Generated Instances 36

3.5.2 Preliminary Experiments 38

3.5.3 Computational Results . 41

3.6 Conclusion and Further Research 46

4 Shipment Consolidation and Dispatching with Transshipment

Terminals and Spot Market Prices 48

4.1 Introduction . 48

4.2 Literature Review . 49

4.3 Problem Formulation . 52

4.3.1 Assumptions . 52

4.3.2 Mathematical Model . 54

4.4 Solution Methodology . 58

xii

4.4.1 Dantzig-Wolfe Decomposition 59

4.4.2 Column Generation . 61

4.4.3 Branch-and-Price Algorithm 61

4.5 Computational Experiments . 64

4.5.1 Performances of Original Formulation and Branch-and-Price 67

4.5.2 Computational Performance of B&P 69

4.6 Conclusion and Future Works . 76

5 Integrated Three Dimensional Bin Packing Problem and SCD-

TT . 78

5.1 Introduction . 78

5.2 Literature Review . 79

5.3 Mathematical Model . 82

5.4 Heuristic Approach . 85

5.5 Computational Experiments . 86

5.5.1 Preliminary Experiment 88

5.5.2 SCD-TTFR with Loading Constraints 89

5.5.3 SCD-TTSM with Bin Packing 93

5.6 Conclusion and Future works . 98

6 Conclusion and Future Research 101

Bibliography . 106

Curriculum Vitae . 119

xiii

List of Tables

3.1 Neighborhood Set Nk . 34

3.2 The levels of parameters controlling instance generation 37

3.3 All possible problem combinations 39

3.4 Performances of all possible problem combinations (%) in terms of

CPU time . 39

3.5 Results of preliminary experiments 40

3.6 The performance of MM2 under different number of predefined

routes in the route set . 41

3.7 Performances of Mathematical Models within 3600 sec 42

3.8 Performances of Lower Bound Algorithms within 3600 sec 44

3.9 Performances of Variable Neighbourhood Search (VNS) Algorithm

and Mathematical Models . 45

4.1 Reported Performances of Preliminary Experiment 65

4.2 Performances of Original Formulation and Branch-and-Price . . . 69

4.3 Solution Quality of Branch-and-Price 69

4.4 Computation Time Performance of Branch-and-Price 71

4.5 Number of Columns Added . 73

4.6 Number of Nodes Visited . 74

5.1 Performances of Container Loading Problem (CLP) and Moura and

Oliveira (2005) . 88

5.2 Utilization Rates of VNS without and with CLP 91

xiv

5.3 Utilization Rate of Rejected Vehicles by CLP 92

5.4 CPU and Quality Performances of VNS without and with CLP . . 93

5.5 Number of added columns and CPU of Branch-and-Price (B&P)

with and without CLP . 95

5.6 Effect of CLP on Number of Vehicles and Cost in the Optimal

Solution . 96

5.7 Utilization Rate of B&P without and with CLP (%) 97

5.8 Utilization Rate of Rejected Vehiles by CLP Algorithm (%) . . . 97

xv

List of Figures

1.1 Delivery Networks . 4

4.1 Available days for departure for three orders 53

4.2 Convergence Curves of B&P Algorithm without MIP 66

4.3 Convergence Curves of B&P Algorithm with MIP 66

4.4 Mean Deviation of Lower Bounds 68

4.5 Convergence Curves of B&P Algorithm for an instance 75

4.6 Number of Nodes and Columns Compared to Computational Per-

formances . 75

5.1 Column Generation Procedure with CLP Algorithm on a Given Node 94

xvi

List of Acronyms

3D-BPP Three Dimensional Bin Packing Problem.

B&P Branch-and-Price.

CLP Container Loading Problem.

LTL less-than-truckload.

SCD-TT Shipment Consolidation and Dispatching Problem with Transshipment

Terminals.

SCD-TTFR Shipment Consolidation and Dispatching Problem with Transship-

ment Terminals and Fixed Routes.

SCD-TTSM Shipment Consolidation and Dispatching Problem with Transship-

ment Terminals and Spot Market Prices.

VNS Variable Neighbourhood Search.

VRP Vehicle Routing Problem.

xvii

Chapter 1

Introduction

Long haul and international freight transportation is a highly competitive market,

where the freight forwarder companies have to deliver the best service with low

prices. In order to meet this challenge, the freight forwarders mostly establish their

own consolidation systems to achieve economies of scale and efficient use of the

owned or rented vehicles. In this sense, freight forwarders aim to plan the delivery

of less-than-truckload (LTL) customer orders with different sizes and volumes

within specified time-windows; while their main objective is to minimize the total

cost. Additionally, most of the freight forwarders use transshipment terminals

for various reasons including the reduction of cost or travelling time. Freight

forwarders make such consolidation plans frequently in their daily operations,

and usually find solutions manually. If the freight forwarder has a large amount

of LTL shipments, it is usual to assign one or more staff, namely dispatchers,

only for planning the consolidation of orders. This thesis aims to define Shipment

Consolidation and Dispatching Problem with Transshipment Terminals (SCD-

TT) of the freight forwarders, and develop an analytical solution methodology for

the problem.

1

1.1 Problem Definition

The assumptions of real-life problem can be categorized under four main struc-

tures; (i) order structure, (ii) vehicle structure and loading constraints, (iii) route

and cost structure, and (iv) delivery structure.

Order structure defines the previously known information on the orders; such as,

the number of pieces, which are mostly pallets or boxes, length, height, width

and weight for each piece, required time windows for delivery (release day and

deadline), destination and any special conditions required for a safe handling of

the order (hazardous materials, stackability etc.).

Vehicle structure and loading constraints define the capacity for vehicles and the

constraints to be considered while making dispatching plans. For a stable and safe

loading, the items in a vehicle should be loaded in a way that they do not fall down

or tilt over each other, and the weight distribution in a vehicle should be balanced.

Also, the amount of weight on an item must not exceed the load bearing strength

threshold of that item (Bischoff, 2006). For instance, the decision maker should

consider the unstackable and fragile shipments that cannot be placed on top of

each other. Additionally, the orders should be loaded on the vehicle regarding the

unloading sequence, and orders delivered through a transshipment terminal may

be mixed and grouped together to benefit from use of space as those items will

be sorted in the transshipment terminal before delivery to the final destination.

Route and cost structure originates particularly from the business environment.

Since freight forwarders rent vehicles on a one-way trip basis, they don’t have to

consider returns of the vehicles to origin. Moreover, the total length of a trip is

mostly more than 5,000 kilometres in long haul transportation, thus the routing

decision does not have to be as precise as it should be in vehicle routing of short-

2

haul transportation. Furthermore, dynamic business environment requires quick

decision making, so freight forwarders adopt simplifying procedures to support

easy routing decisions with minimal data requirement. In this regard, the farthest

delivery point (stop) in a vehicle defines the main route of that vehicle, and

extra deliveries (stops) with the same vehicle is allowed, only if the delivery point

requires minimum deviation from the main route. Since travelling long way off

the main route results in greater overall cost and loss of time, excessive deviations

from the main path are not allowed for additional stops. Even if an extra stop

is along the route, it increases travelling time, and may result in late deliveries.

Therefore, less stops along the route is favourable, and usually a definite number

of extra stops are allowed.

The cost structure is strongly related with routing decisions, and the distance

to farthest delivery point determines the fixed cost of that vehicle. Each extra

stop is incurred by an extra fixed cost, which is also associated with the limit

on deviation from the main route. The fixed cost of a vehicle may be defined

in two ways; (i) annual contracts made with the sub-contracted haulers and (ii)

spot market prices. Such annual contracts outline the routes defined by zones or

regions, and the price of a route is fixed with respect to the farthest distance in

that zone/region. Predefined fixed routes also define the possible stops along that

route. In this way, excessive deviations from the main route is prevented. Spot

market prices are subject to seasonal changes, therefore, fixed cost includes both

operating cost, which enables price fluctuations, and per kilometre cost multiplied

by the farthest distance in the vehicle.

Delivery structure is shaped by the agreements with agencies in different coun-

tries, and each shipment is delivered directly to its destination or through the

transshipment terminals of the contracted foreign agency. Thus, there is a hybrid

3

delivery structure, where a vehicle is allowed to visit both destinations and trans-

shipment terminals on the same trip. The main objective of using transshipment

terminals is to decrease the travelling time as well as total distance and total cost

by reducing the number of stops. Such a hybrid delivery structure also extends the

range of service by enabling local deliveries to unvisited zones or countries. Each

item delivered through a transshipment terminal incurs a cost of transportation

to final destination, which is proportional to the size of the item.

Figure 1.1: Delivery Networks

1.2 Motivation and Objectives

Although above stated problem is a common operational problem in real-life prac-

tices, and frequently faced in daily operations planning of freight forwarders, the

problem is usually solved manually by the decision maker, namely dispatcher.

The planning phase may take several hours, as the problem inherently has vari-

ous decisions to be considered. Moreover, the dispatching plan proposed by the

4

dispatcher may not be the optimal solution, and may be subject to human error.

The dynamic environment of the business also requires quick decisions of changes

in dispatching plans. For instance, the orders which are supposed to be ready

on departure day may be delayed, or the number of boxes in an order may in-

crease/decrease; thus, substantial changes in dispatching plans may be necessary

and it may be difficult to manage the process.

With all these aspects of the ongoing business operations with manual dispatching

plans, the outcome is higher operating costs and risk of errors and inefficient use of

human resources and time. In this respect, the objective of this thesis is to design

an analytical solution approach for the shipment consolidation and dispatching in

the operations planning of freight forwarders. An analytical solution methodology

may benefit international freight forwarders in three perspectives; (i) cost savings,

(ii) efficient use of human resources, and (iii) time utilization. For instance, Erera

et al. (2013) showed possible cost savings of 300,000 USD (approximately 6-7%)

with an application on a similar problem with a freight forwarder in United States

of America.

The thesis also contributes to existing literature by examining the problem with

a different approach. Firstly, simplified routing and following cost structure is

not frequently studied in the literature. To the best of our knowledge, Koca and

Yıldırım (2012) addressed to routes defined by the farthest destination along the

route, and fixed costs associated with that destination. Secondly, hybrid delivery

structure, which allows stops at both destinations and transshipment terminals

with the same vehicle, is not frequently studied in the literature as well (Guas-

taroba et al., 2016). Thirdly, practical shipment consolidation problem of freight

forwarders has differences from the consolidation and transportation problems

studied in the literature. Thus, the thesis contributes to existing literature by

5

introducing a variant of shipment consolidation and dispatching problem, and

analyzing the main characteristics. The problem is NP-hard and it embraces

research directions for further studies.

1.3 Organisation of the Thesis

In the light of aforementioned problem definition, we define two different prob-

lems with similar assumptions, yet different in cost structures. The first problem

focuses on the problem type, in which the fixed cost of a vehicle is defined with

respect to the annual contracts made by the haulers. In this scope, we define the

problem formulation with predefined routes, and propose a mathematical model

and a heuristic algorithm that decides the route, date of departure of the vehicle

and delivery type for the orders. In the second problem, we formulate the problem

wherein the spot market defines the fixed cost of a vehicle. We aim to develop an

exact solution methodology for the problem, and identify the fixed cost of each

individual vehicle regarding the farthest destination in respective vehicle.

In order to decrease computational complexities, the solution methodology of both

identified problems disregards the bin packing assumptions, such as weight dis-

tribution, stackability etc. In both problems, we constrain that the total volume,

weight and loading meter of orders in a vehicle cannot exceed vehicle capacity.

Hence, the solutions obtained in both problem may be infeasible or suboptimal

when the bin packing assumptions are concerned. Therefore, we develop a bin

packing algorithm, which checks the feasibility of obtained solutions, and embed

the bin packing heuristic to the algorithms of both problems.

In this respect, this thesis is organized as follows. In the second chapter, we discuss

the relevant literature on the proposed problem, and reveal the similarities and

6

differences of the problem from the existing literature.

In the third chapter, we define the assumptions of the problem with predefined

routes with fixed costs, namely Shipment Consolidation and Dispatching Prob-

lem with Transshipment Terminals and Fixed Routes (SCD-TTFR), develop the

mathematical model and valid inequalities to enhance the model, examine the

computational complexity, propose two lower bound algorithms and an upper

bound algorithm. Subsequently, we explain randomly generated instances, and

examine the results of computational experiments conducted on both mathemat-

ical models, lower and upper bound algorithms.

In the fourth chapter, we focus on the Shipment Consolidation and Dispatching

Problem with Transshipment Terminals and Spot Market Prices (SCD-TTSM).

We firstly define the assumptions of SCD-TTSM problem, and introduce a math-

ematical model. Then we apply Dantzig-Wolfe Decomposition approach, and

propose a column generation and branch-and-price algorithm. Finally, we con-

duct computational experiments with the randomly generated instances used in

Chapter 3 on the solution approach.

In the fifth chapter, we propose the solution methodology for the bin packing

assumptions of real-life application. We firstly analyse the Three Dimensional Bin

Packing Problem (3D-BPP) assumptions with reference to the recent literature.

Then we propose a mathematical model and a heuristic algorithm, and integrate

the heuristic algorithm to SCD-TTFR and SCD-TTSM. Finally, we report the

results of computational experiments conducted on the instances used in Bischoff

and Ratcliff (1995a), and compare the performance of our algorithm with Moura

and Oliveira (2005). Moreover, we perform experiments on 3D-BPP integrated

SCD-TTFR and SCD-TTSM, and report the effect of 3D-BPP assumptions on

both problems.

7

In the last chapter, we discuss the results of the experiments, and illustrate the

possible savings for a freight forwarder. We also point to the limitations of the

thesis and further research directions.

8

Chapter 2

Literature Review

This chapter presents an overview of the literature on Shipment Consolidation and

Dispatching Problem with Transshipment Terminals SCD-TT from different per-

spectives of transportation problems. In order to examine the place of SCD-TT

in transportation problems with broad range of focuses, we categorize the litera-

ture based on two decisions; shipment consolidation and transportation planning

problems. Accordingly, in the first section, we discuss the decision of shipment

consolidation, including types, benefits and disadvantages. In the second section,

we address the transportation planning problems with different levels of planning.

We also discuss the intermediate facilities in transportation planning problems.

2.1 Shipment Consolidation

Shipment consolidation is a logistics strategy, where at least two or more customer

orders are dispatched on the same vehicle to create larger batches (Higginson and

Bookbinder, 1994), and decrease the total cost of transportation (Hall, 1987a).

9

Yet, lower cost of transportation may end up with some penalties. While con-

solidating items with different release dates, some orders may await until consol-

idation time; thus, an inventory holding cost incurs. Consolidation also requires

handling and sorting in consolidation terminals, herein that an additional handling

cost appears. Additionally, consolidation of items to different destinations leads

to longer routes, thus late deliveries ensuing from increasing travelling times. The

additional costs or cost factors pertaining to consolidation requires a deliberate

strategy to secure the best outcome (Hall, 1987a).

There are various classifications of shipment consolidation strategies in the exist-

ing literature. Originally Brennan classifies shipment consolidation strategies in

three; temporal, spatial and product consolidation (Brennan, 1981). Items are

consolidated in larger batches regarding the time of release of the larger batch

in temporal consolidation, whereas spatial consolidation concerns with the ag-

gregation of items regarding geographical aspects. Product consolidation sim-

ply consolidates different types of products to create larger batch of shipments.

Other than Brennan’s classification, Sheffi (1986) proposed 6 classes of shipment

consolidation, which are; vehicle units, containers, channels, network, time and

tours. Based on Brennan’s classification of temporal and spatial consolidation,

Hall (1987a) classified consolidation strategies in three; inventory consolidation

(as a form of temporal consolidation), vehicle and terminal consolidation (as two

different forms of spatial consolidation).

Hereinafter, we will focus on classification of Brennan on shipment consolidation,

while discussing only temporal and spatial consolidation, as product consolidation

literature on product consolidation is scarce (Min and Cooper, 1990).

10

2.1.1 Temporal Consolidation

Temporal consolidation strategy focuses on the“time” to create a larger batch of

orders; in other words, the main decision of this strategy is to determine “when”

to release a group of orders. Release time of orders is essentially important as it

determines the batch size, and requires a dispatching rule, namely operating rou-

tine (Abdelwahab and Sargious, 1990). In order to develop an operating routine,

there are two main decisions to be taken; the time to dispatch a vehicle, and the

size of a batch (Çetinkaya and Lee, 2000). Accordingly, there are three commonly

used consolidation policies, which are;

- Q policy requires a batch of Q units to release a shipment. This policy mainly

focuses on maximum utilization shipment units, hence inherently implies cost sav-

ings.

- T policy requires a determined shipping date to a dispatch orders; thus, a ship-

ment is released in every T units of time. The policy target is usually set regarding

the customer requirements on shipping date; hence, the main objective is customer

service level (Higginson and Bookbinder, 1994).

- Hybrid policy : holds orders until the earliest of the quantity (Q) or time (T)

target is achieved. This policy is commonly known as time-and-quantity policy,

and intends to get the best outcome of time or quantity policy.

Because the main motivation of temporal consolidation is to obtain a suitable

consolidation policy, the studies on it inherently aims at measuring the impact

of the examined policy by using some performance metrics, such as cost, holding

time, arrival rates etc. Both analytical models (Higginson and Bookbinder, 1995;

Gupta and Bagchi, 1987; Çetinkaya and Lee, 2000; Bookbinder and Higginson,

2002) and simulation models (Closs and Cook, 1987; Higginson and Bookbinder,

11

1994) are frequently studied to indicate the best performing consolidation policy

with different criteria and factors. So, several criteria have been considered while

examining different consolidation policies; for instance, Çetinkaya et al. (2014)

used service based criteria other than cost-based criteria of the previous litera-

ture and Baykasoglu and Kaplanoglu (2011) proposed multi-agent based decision

making approach to make good decisions in a dynamic business environment.

Çetinkaya (2005) provides a detailed review on shipment consolidation and inven-

tory decisions.

2.1.2 Spatial Consolidation

Spatial consolidation occurs on “space” (Harks et al., 2014), in other words geo-

graphic characteristics of items, and consolidates small items by creating vehicle

routes or paths. The main focus of spatial consolidation research is similar to

shortest-route problems as well as network design problems with consolidation

terminals (Min and Cooper, 1990). The early studies on temporal consolidation

focus on consolidation of LTL orders, which usually weight between a few hun-

dred and a few thousand kilograms (Jarrah et al., 2009). Powell and Sheffi (1983)

initially studied consolidation in the LTL industry as fixed charge network design

problem, and followed by several studies (Powell, 1986; Sheffi, 1986; Powell and

Sheffi, 1989). Additionally, main aim in most of the early studies is to make a

comparison between networks with direct and consolidated distribution strategies,

and analysing the cost effectiveness (Daganzo, 1988), advantages and disadvan-

tages of consolidation (Hall, 1987a; Campbell, 1990) as well as optimization on

network flow (Hall, 1987b; Min, 1996). Recent literature discuss spatial consolida-

tion as a form of network flow or network design problem, vehicle routing problem,

in which both spatial and temporal aspects of the problem are concerned.

12

2.2 Transportation Planning Problems

Transportation planning problems are classified into three classes (Crainic and

Laporte, 1997; Crainic, 2000, 2003); (i) strategic, (ii) tactical and (iii) operational

problems. Strategic planning problems refer to the long term decisions or deci-

sions that require vast amount of investment; such as, facility location or fleet

size decisions. Tactical decision problems take account of mid-term decisions,

like assigning freight through network. Operational planning problems relate to

the short-term decisions, such as scheduling, crew assignment etc. As long as

the operations in SCD-TT are subject to short-term decisions, it relates to the

operational planning problems.

In this section we will focus on the network design problems, vehicle routing

problems. Although network design problems are considered as tactical planning

problems (Crainic, 2000), the vast amount of researches on service network design

problems, especially the networks with hybrid delivery structure is promising,

thus we firstly examine the related service network design problems and proposed

solution methodologies in the literature. As for the operational planning problems,

SCD-TT relates to Vehicle Routing Problem (VRP), thus we survey the associated

literature. Finally, we investigate the literature on intermediate facilities on both

problems, network design and VRP, in order to identify the role of transshipment

terminals in SCD-TT.

2.2.1 Network Design Problems

Network Design Problems are frequently studied to tackle with the planning of

transportation and distribution systems (Crainic, 2000). Since they are gener-

alization of location formulations (Crainic and Laporte, 1997), network design

13

models aim to choose links in a network along with capacity constraints, and

decide features of network, such as; frequency of the service (Powell and Sheffi,

1983; Crainic, 1984) , traffic assignment along the routes (Attanasio et al., 2007),

consideration of service level (Jarrah et al., 2009). The network design models are

applied to several industries and mostly on express shipment delivery problems

over long distances (Barnhart and Schneur, 1996; Kim et al., 1999), liner shipping

network design problems (Liu et al., 2014), problems arise in railway like empty

car distribution problems (Marin and Salmerón, 1996), multimodal transportation

(Crainic and Rousseau, 1986), and operations of LTL carriers (Powell and Sheffi,

1983; Powell, 1986). As exact solution methods are impractical for large instances,

several heuristics have been applied, such as, genetic algorithm (Cunha and Silva,

2007), tabu search (Estrada and Robusté, 2009), ant colony optimization (Barcos

et al., 2010). Decomposition and column generation are also frequently applied

to deal with large instance sets (Powell and Sheffi, 1989; Barnhart and Schneur,

1996; Irnich, 2002; Andersen et al., 2011). For a detailed survey on network de-

sign problems arise in transportation, the reader may refer to Crainic (2000) and

Wieberneit (2008).

2.2.2 Vehicle Routing Problems

VRP finds a set of routes to deliver a given set of customer orders (Fischetti et al.,

1994), while the main objective of the problem may be the minimization of the

total cost (Fischetti et al., 1994), as well as total distance travelled (Desrosiers

et al., 1986), total route duration (Savelsbergh, 1992), or the fuel consumption

(Kuo, 2010). Recently, many extensions of VRP have been studied in the liter-

ature. As a well-known problem, capacitated VRP (Dantzig and Ramser, 1959)

minimizes the total cost of transportation, and has only capacity constraint to

14

be satisfied. Studies on VRP with time windows (Solomon, 1984; Berger et al.,

2003; Khebbache-Hadji et al., 2013) generally assume that the collection or de-

liveries of customer orders should be done within specified time slots, therefore

the routes has to be constructed accordingly. Routing problems with loading

constraints (Gendreau et al., 2006) extend VRP by including bin-packing con-

straints. As long as freight forwarders use contracted vehicles and do not deal

with the returns of vehicle to origin destination, the problem of freight forwarders

is considered as Open-VRP (Sariklis and Powell, 2000; Fu et al., 2005) in the liter-

ature. There are also studies that include the pick-up and delivery (Savelsbergh,

1992), precedence requirements to visit customers (Dumas et al., 1991), and using

cross-dock terminals along the route (Lee et al., 2006).

2.2.3 Intermediate Facilities in Transportation Planning

Problems

In general, an intermediate facility is a location, where products or raw materi-

als are processed, sorted, or consolidated for the transportation between a set of

origins to a set of destinations. As an important entity in transportation plan-

ning problems, an intermediate facility has various types accordingly with the

role it plays. Guastaroba et al. (2016) examined the roles of intermediate fa-

cilities considered in the literature, and categorize 3 different roles, which are

cross-docks, in-transit merge centres, intermediate warehouses called distribution

centres. Similarly, Higginson and Bookbinder (2005) also listed the various roles

that distribution centres have along the supply chain as an intermediate facility.

They define distribution centre as a warehouse, where storage function is limited

or non-existent. In this respect, they define 6 major roles of distribution centres,

which are; make-bulk/break-bulk consolidation centre, cross-dock, transshipment

15

facility, assembly facility, product-fulfilment centre, and depot for returned goods.

Although these roles are interrelated, and both Higginson and Bookbinder (2005)

and Guastaroba et al. (2016) referred to cross-docks as a transshipment centre,

Higginson and Bookbinder (2005) made a clear distinction between cross-docks

and transshipment centres. Cross-docking is a more customer-oriented form of

transshipment, which aims at improving customer service by providing contin-

uous flow of items in minimum time (Gümüş and Bookbinder, 2004). Whereas

transshipment is a process in which items change vehicles or transportation modes

(Beuthe and Kreutzberger, 2008), and has a major role in carrier perspective. In

general terms, transshipment centres provide service to end-of-lines where local

delivery is necessary as well as possibility to make changes vehicles or transporta-

tion modes.

The advantages of intermediate facilities basically relate to the enhancement of

provided services. For instance, cross-docks provides faster product flow, cuts

in inventory and improved customer service (Higginson and Bookbinder, 2005).

From shippers perspective, transshipment centres attend to utilize vehicle routes

by decreasing the number of stops, while increasing the number of items delivered

with the same vehicle (Daganzo, 1988). In this sense, environmental concerns re-

lated to vehicle traffic, especially semi-trailer trucks used in long-haul transporta-

tion, decreases with the use of intermediate facilities to urban areas (Higginson

and Bookbinder, 2005). In contrast, the use of intermediate facilities increases

the total cost of transportation, including the costs of handling and delivery to

final destination. Also, there is an increased risk of damage and loss due to

handling of items several times, and transit time required during in-transit opera-

tions increases total transit time, thus the likelihood of late deliveries. Moreover,

the distribution networks with intermediate facilities requires complex planning

16

and coordination mechanisms to ensure continuous flow of transported materials

(Guastaroba et al., 2016).

Considering aforementioned advantages and disadvantages, there is a body of

literature on intermediate facilities along the distribution network. When the

value of cross-docking as an intermediate facility is concerned, (Galbreth et al.,

2008) addressed to three research questions and specified that cross-docking items

with higher holding costs, stable and low demand is more favourable. (Gümüş

and Bookbinder, 2004) also revealed that direct deliveries are usually optimal

only when demands are near full truck capacity. The applied methods are also

varied and progressed with the developments in computational technologies. Both

optimization models, exact and metaheuristic algorithms are applied to design

the network with transshipment centres. For a detailed survey on intermediate

facilities in transportation problems, the reader may refer to Guastaroba et al.

(2016).

2.3 Literature Gap

In this chapter, we review the existing literature related to SCD-TT in planning

perspective. Respectively, temporal consolidation strategies mainly focus on the

“time” or “quantity” to dispatch a vehicle; thus, the problem mostly relates to the

inventory holding cost/time and customer service level. However, main concern

of SCD-TT is basically related to both spatial and temporal attributes of the

items in three aspects: (i) route, (ii) delivery type and (iii) time. Moreover, the

nature of the problem is deterministic, so the attributes related to the items to be

consolidated are predetermined. Then, the question of SCD-TT becomes “how”

to consolidate items in terms of vehicles and time.

17

The practical problem has distinctive characteristics from the problems studied in

the literature; especially in terms of delivery network, route and cost structure. As

for the delivery network, the role of intermediate facilities in the practical problem

is to provide end-of-line delivery, thus may be handled on the carrier strategy to

provide additional services. In this respect, we will refer to intermediate facili-

ties in SCD-TT as “transshipment terminals throughout the text, depending on

the clear description of Higginson and Bookbinder (2005). Moreover, the hybrid

delivery structure, which allows stops at both destinations and transshipment ter-

minals with the same vehicle, requires further attention (Guastaroba et al., 2016).

Regarding the cost structure, routes defined by the farthest delivery point and en-

suing fixed routing cost is not frequently studied in the literature. To the best of

our knowledge, Koca and Yıldırım (2012) addressed to such a cost structure.

With respect to transportation planning problems, both SCD-TT and network

design problems involve LTL operations, freight consolidation decisions, and make

intensive use of consolidation operations (Crainic, 2000); yet, there are differences

among two problems. Moreover, costs in networks are associated with node-to-

hub, hub-to-node or inter-hub basis, but SCD-TT has a fixed cost associated with

the routes. In real life practices, there are several intermediate facilities in large

international networks (Guastaroba et al., 2016), thus integration of one or more

intermediate facilities, such as consolidation centres, along the same flow requires

further attention (Wieberneit, 2008).

VRP optimizes the vehicle routes considering the capacities, and extensions of

VRP may offer solution to the time and loading aspects of the practical prob-

lem. Although SCD-TT may be formulated as open VRP with time-windows

and hybrid delivery structure along the transshipment centres, the cost structure

of VRP and SCD-TT are different. VRP has a node-to-node structure, whereas

18

SCD-TT has pre-defined routes or routes defined with the farthest destination.

Respectively, the cost structure of VRP is node-to-node, while SCD-TT has fixed

costs for routes. In this respect, we do not model the problem as VRP extension.

With respect to the aforementioned gaps in the literature, we aim to provide a

different approach to shipment consolidation and dispatching problem by defining

a new problem, which has a hybrid delivery network with transshipment terminals

and routing costs, which is adopted by the freight forwarders to simplify decision

making, as it is described in the Section 1.1.

19

Chapter 3

Shipment Consolidation and

Dispatching with Transshipment

Terminals and Fixed Routes

3.1 Introduction

In this chapter, we will discuss the real-life problem, in which the fixed cost of a

vehicle is defined by the annual contracts made with the sub-contracted haulers,

namely Shipment Consolidation and Dispatching with Transshipment Terminals

and Fixed Routes SCD-TTFR. In the annual contracts, the routes are predefined

by zones or regions. Such predefined routes also include the possible stopping

points, which doesn’t require excessive deviations from the main path to the

travelled zone/region. The price of the routes are also identified in the annual

contracts with respect to the farthest destination in that zone/region, even if the

vehicle does not visit that farthest destination. Commonly, the zones/regions

20

in the annual contracts include cities having approximate distance to the origin,

eventually the cost of visiting that zone is more or less the same with small

deviations. Therefore, the cost of visiting a city in a zone gives a good approximate

cost instead of real cost of visiting that city.

In the recent literature, Ghiani et al. (2004) proposed the problem of a manufac-

turer, where set of orders has to be delivered to its destination using predefined

routes over a planning horizon. The problem considers consolidation of orders in

vehicles with fixed routes regarding release date and deadline, where orders can

either be shipped by a common carrier or by rented/owned trucks. On the study

of Ghiani et al. (2004), Attanasio et al. (2007) proposed an algorithm, which dis-

regards capacity constraints and add cuts to eliminate infeasible solutions. The

problem has similarities with SCD-TTFR in terms of order structure and costs

associated with the routes. However, the structure of routes are different in two

problems; SCD-TTFR has extended routes with possible stops along the routes,

while the problem of Ghiani et al. (2004) and Attanasio et al. (2007) has fixed

stopping points along routes. Moreover, the number of stops for a vehicle is lim-

ited and each stop is associated with an extra cost. Additionally, there is only one

dimension (weight) included in the problem of Ghiani et al. (2004) and Attanasio

et al. (2007), whereas SCD-TTFR have three dimensions (weight, volume and

loading meter). Delivery structure is also different as SCD-TTFR allows delivery

from transshipment terminals. In this context, we propose an extension of the

mathematical model proposed by Ghiani et al. (2004).

This chapter is organised as follows. We firstly define the assumptions of the

problem, propose the mathematical model and its extensions. Secondly, we ex-

amine the computational complexity, and introduce two lower bound algorithms.

Then we propose Variable Neighborhood Search algorithm, and examine the per-

21

formance of both mathematical models and upper bound algorithm on randomly

generated instances.

3.2 Problem Statement and Mathematical Model

In this section, we state the problem, develop the mathematical model, and ex-

amine the computational complexity. Based on the real life problem, we define

the SCD-TTFR problem with the following assumptions;

• Information on orders, such as dimensions, destination, release date and

deadline, are deterministic and initially known.

• The orders can be delivered either on wheels or by using a transshipment

terminal. Each transshipment decision implies a cost proportional to the

size of the order.

• Routes are previously defined, and possible stopping points on each route

are known.

• The costs of routes are fixed, defined with respect to the farthest destination

along the route.

• Fixed costs of routes includes a limited number of stops, and after that

number, each additional stop incurs an extra cost of stopping upto maximum

number of stops which cannot be exceeded.

• The number of stops a vehicle can do is limited, hence, the delivery duration

is not affected by the number of stops.

22

3.2.1 Mathematical Model

With respect to the above assumptions, we formulate the mathematical model for

SCD-TTFR as follows;

Indices and Sets

K Set of orders, k ∈ K

I Transshipment Terminals, i ∈ I

J Destinations, j ∈ J

T Days in planning horizon, t ∈ T

N Homogeneous trucks, n ∈ N

R Set of routes, r ∈ R

Ar Possible stopping points along route r, Ar ⊂ J, ∀r

Br transshipment terminal points along route r, Br ⊂ I, ∀r

H t
r Set of orders that may depart on day t by direct delivery to its destination

j on route r, where H t
r ⊂ K ∀r, t

Gt
ir Set of orders that may depart on day t, by delivering from transshipment

terminal i on route r, where Gt
ir ⊂ K ∀i, r, t

Parameters

Details of orders, ∀k;

vk Total volume

wk Total weight

lk Total length

rk Release day

dk Deadline

pk destination, where pk ∈ J

Vehicle capacities;

ν volume capacity

23

γ weight capacity

δ length capacity

τjr Transit time to destination j on route r, ∀j, r

λri Transit time to transshipment terminal i on route r, ∀i, r

ρij Transit time from transshipment terminal i to destination j, ∀i, j

µ Limit on additional number of stops

φ Number of stops included in the fixed cost, where 1 ≤ φ ≤ µ

fr Fixed cost of route r, ∀r

cik Cost of transshipping order k from transshipment terminal i ∀i, k

α Additional cost of each stop after φ stops

M Very big number

Regarding above parameters, note that;

k ∈ Gt
ir if rk ≤ t ≤ dk − λri − ρipk , ∀k, i, r, t

k ∈ H t
r if rk ≤ t ≤ dk − τpkr, ∀k, r, t

Decision variables:

ytnkr =

1 if order k is delivered directly by nth vehicle with route r on day t

0 otherwise

xtnkir =

1 if order k is shipped via transshipment terminal i by nth vehicle with

route r on day t

0 otherwise

κtnjr =

1 if destination j is assigned to nth vehicle with route r on day t

0 otherwise

θtnir =

1 if transshipment terminal i is assigned to nth vehicle with route r on day t

0 otherwise

24

stnr =

1 if nth vehicle with route r is departed on day t

0 otherwise

utnr = Number of stops on nth vehicle with route r on day t

Minimize;

Z =
∑
r∈R

∑
t∈T

∑
n∈N

[
frs

tn
r + αutnr +

∑
i∈I

∑
k∈K

cikx
tn
kir

]
(3.1)

Subject to;

∑
i∈Br

∑
k∈Gt

ir

vkx
tn
kir +

∑
k:k∈Ht

r
pk∈Ar

vky
tn
kr ≤ νstnr ∀r, t, n (3.2)

∑
i∈Br

∑
k∈Gt

ir

wkx
tn
kir +

∑
k:k∈Ht

r
pk∈Ar

wky
tn
kr ≤ γstnr ∀r, t, n (3.3)

∑
i∈Br

∑
k∈Gt

ir

lkx
tn
kir +

∑
k:k∈Ht

r
pk∈Ar

lky
tn
kr ≤ δstnr ∀r, t, n (3.4)

∑
r∈R

∑
i∈Br

∑
n∈N

∑
t:k∈Gt

ir

xtnkir +
∑
r:r∈R
pk∈Ar

∑
n∈N

∑
t:k∈Ht

r

ytnkr = 1 ∀k (3.5)

∑
k∈Gt

ir

xtnkir ≤Mθtnir ∀i, r, t, n (3.6)

∑
k∈Ht

r

ytnkr ≤Mκtnjr ∀j, r, t, n (3.7)

κtnjr ≤ stnr ∀j, r, t, n (3.8)

θtnir ≤ stnr ∀i, r, t, n (3.9)∑
i∈Br

θtnir +
∑
j∈Ar

κtnjr ≤ φ+ utnr ∀r, t, n (3.10)

utnr ≤ µ ∀r, t, n (3.11)

25

xtnkir, y
tn
kr, s

tn
r , κ

tn
jr , θ

tn
ir ∈ {0, 1} ∀k, i, j, r, t, n (3.12)

utnr ≥ 0 ∀r, t, n (3.13)

The objective function (3.1) minimizes the total cost of shipping all orders, in-

cluding fixed costs of routes and additional stops, and the cost of transshipping

orders from transshipment terminals to their final destination. Constraints (3.2),

(3.3) and (3.4) ensure that the total volume, weight and loading meter of orders,

which are loaded on the vehicle n ∈ N with route r ∈ R, departing on day t ∈ T ,

cannot exceed the capacity of that vehicle. The constraints also ensure that the

destination of order k is a stop along route r, and due date is satisfied with re-

spect to release date and transit time required to deliver that order. Constraint

(3.5) ensures that each order k ∈ K is shipped and delivered either on wheels

or via transshipment terminals. Constraint (3.6) ensures that the transshipment

terminal i ∈ I is assigned to vehicle n ∈ N with route r ∈ R , departed on day

t ∈ T only if any order k in that vehicle is shipped via transshipment terminal

i. Constraint (3.7) ensures that the destination j ∈ J is assigned as a stopping

point to vehicle n ∈ N with route r ∈ R, departed on day t ∈ T only if order k

in that vehicle is delivered directly. Constraint (3.8) ensures that the destination

j ∈ J is assigned to the vehicle n ∈ N with route r ∈ R, departed on day t ∈ T .

Constraint (3.9) ensures that the transshipment terminal i ∈ I is assigned to the

vehicle n ∈ N with route r ∈ R, departed on day t ∈ T . Constraints (3.10) and

(3.11) guarantee that the limit on number of stops is not exceeded. Constraint

(3.12) states that decision variables xrtnki , ytnkr, θ
tn
ir , κtnjr and strn are binary variables,

and constraint (3.13) guarantees that utnr is a positive variable.

We improved the above mathematical model by redefining the M values, and

adding two types of valid inequalities. We explain these enhancements below;

26

1) Symmetry Breaking Constraints: As set N creates symmetric solutions, we

have to prevent the use of higher indexed vehicle by skipping the lower indexed

vehicle. Therefore, we add symmetry breaking constraints that ensure the use of

vehicles in sequence, such that;

stnr ≥ st(n+1)
r ∀r, t, n = {1, 2, ..., |N − 1|} (3.14)

2) Defining an Upper Bound for Big M : The very big number, M used in con-

straint sets (3.6) and (3.7), in equations may be reduced as the number of orders

assigned to a destination or transshipment terminal cannot exceed the number of

orders that can be delivered using route r ∈ R within the specified time-windows.

Therefore, we simply count the number of orders that can be delivered through

transshipment terminal i by satisfying the required time windows, and redefine

M for equations (3.6) and (3.7) as Mxirt and Myirt respectively;

xmt
ir =

∑
k∈Gt

ir
i∈Br

1 ∀i, r, t

ymt
jr =

∑
k∈Ht

r
pk∈Ar

1 ∀j, r, t

Therefore, the equations (3.6) and (3.7) are restated as;

∑
k∈Gt

ir

xtnkir ≤ xmt
ir θ

tn
ir ∀i, r, t, n (3.15)

∑
k∈Ht

r

ytnkr ≤ ymt
jr κ

tn
jr ∀j, r, t, n (3.16)

3) Direct Relationship between order assignment and vehicle departure: Although

constraint sets (3.2), (3.3) and (3.4) ensures departure of vehicle n on route r on

day t if an order is assigned to that vehicle, we added a constraint that defines a

27

direct relation between order assignment to destination or transshipment terminal

and vehicle departure decision. Such a constraint that creates a tighter bound is

stated as;

ytnkr +
∑
i∈I

xtnkir ≤ stnr ∀k, r, t, n (3.17)

With respect to above mentioned additional constraints, throughout the text, we

will mention MM1 as the basic mathematical model, and MM2 as the enhanced

mathematical model. The constraints (3.2), (3.3), (3.4), (3.5), (3.8), (3.9), (3.10),

(3.11), (3.12) and (3.13) are common in both mathematical models. MM1 uses

constraints (3.6), (3.7) and (3.14); whereas MM2 uses constraints (3.14)-(3.17).

3.2.2 Computational Complexity

In this section, we examine the computational complexity of SCD-TTFR by show-

ing that a special case of SCD-TTFR is a multi-dimensional bin-packing problem.

Theorem 1 SCD-TTFR is NP-hard in strong sense.

Proof 1 Consider a special case of SCD-TTFR with the following assumptions;

• There is only one route in set of routes, R = {1}. Thus, fixed cost of route

R can be denoted as f ,

• There is only one destination J = {1}, and thus Ar = {1},

• There is only one day in planning horizon T = {1},

• There is no transshipment terminals I = {1}, thus Br = ∅, and there is

no transit time or cost associated with transshipment terminals. Moreover,

28

there is no need to make a decision if the order k ∈ K will be delivered via

transshipment terminals. Then, xtnkir = 0 and θtnir = 0,

• There is no limit on the number of stops. Thus utnr = 0,

• The destination and release date of each order are identically the same,

pk = 1 ∀k ∈ K and rk = 1 ∀k ∈ K,

• The orders can be delivered within the same day, thus, transit time to desti-

nation equals 0, τrpk = 0, Therefore, deadline of each order k ∈ K will equal

to 1, dk = 1 ∀k ∈ K.

In this context, the special case of SCD-TTFR can be formulated as follows;

Minimize
∑
n∈N

f.sn

Subject to;
∑
k∈K

yknvk ≤ νsn ∀n

∑
k∈K

yknwk ≤ γsn ∀n

∑
k∈K

yknlk ≤ δsn ∀n

∑
n∈N

ykn = 1 ∀k

ykn, sn ∈ {0, 1} ∀k, n

Above problem is a multi-dimensional Bin-Packing problem, which is a NP-hard

problem in strong sense (Coffman Jr et al., 1996) and a special case of SCD-

TTFR. Thus, SCD-TTFR is NP-hard in strong sense.

29

3.3 Lower Bound Algorithms

In this section, we provide two lower bound algorithms both work iteratively. Ini-

tially the algorithms relaxes a set of constraints. At each iteration, the algorithm

solves the relaxed problem optimally (or reports the best feasible solution found

within a time limit). The algorithm analyzes the solution and adds a subset of

the relaxed constraints that are violated. Then it solves the updated problem.

The algorithm stops after a certain computation time or there exists no violated

constraints. The first lower bound algorithm (LB1) relaxes the integrality con-

straints, whereas the second lower bound algorithm (LB2) relaxes the capacity

constraints.

3.3.1 Lower Bound 1: Relax Integrality Constraints

For the Lower Bound 1 Algorithm (LB1), we relax the integrality constraints and

solve the problem; then, by analyzing the solution of the relaxed problem, we force

some of the decision variables to be binary, and resolve the restated model. We

continue the same operation iteratively until the stopping condition is satisfied.

We formulate the relaxed SCD-TTFR as P1;

Minimize Z = f(x)

Subject to Ax ≤ B

0 ≤ x ≤ 1

Where x is the decision variable vector, x ∈ X, and X is a feasible solution set.

LB1 algorithm redefines x as a vector composed of continuous and binary variables

such that x = [xc, xb], where xb ∈ Bin represent the binary components of the

solution vector. The set Bin is the set of indices such that xb must be binary.

30

The redefined problem P2 is as follows;

Minimize Z = f(x)

Subject to Ax ≤ B

x = [xc, xb]

0 ≤ xc ≤ 1, c ∈ X \Bin
xb ∈ Bin, b ∈ Bin

LB1 algorithm solves P2 iteratively, finds a solution x′ = [x′c, x
′
b], computes [lo, up]

values by using a specific approach. Assuming that the values of decision variables

that are close to 0.5 creates difficulty in each iteration, the algorithm finds the

highest value which is lower than 0.5, and subtracts a 10% of margin to define lo for

each decision variable vector (lo = 0.9max(c:x′c≤0.5)(x
′
c)). Similarly, the algorithm

finds smallest value which is greater than 0.5, and adds a 10% of margin to define

up (up = 1.1min(c:x′c>0.5)(x
′
c)). Respectively, algorithm updates Bin as follows;

if lo ≤ x′c ≤ up⇒ Bin = Bin ∪ c

The algorithm stops when the decision variables of SCD-TTFR corresponding to

the orders are all binary, or time limit is exceeded.

Algorithm 3.1 Lower Bound 1

Initialization: Relax integrality constraints as 0 ≤ x ≤ 1, and redefine decision

variable vector x; such that, x = [xc, xb], where xb ∈ {0, 1}, b ∈ Bin and 0 ≤ xc ≤
1, c ∈ X \Bin. Initially Bin = ∅. Define time limit.

Main Step: Until time limit is exceeded, or |Bin| = |K|, repeat following steps;

Step 1: Solve redefined problem P2 and obtain a solution x′, where
[
x′c, x

′
b

]
Step 2: Update [lo, up]

Step 3: Update Bin, if lo ≤ x′c ≤ up

31

3.3.2 Lower Bound 2: Relax Capacity Constraints

Lower Bound 2 Algorithm (LB2) removes the capacity constraints, (3.2), (3.3) and

(3.4), and applies an iterative algorithm that adds cuts, where the total amount

of orders in a vehicle exceeds its capacity. We continue in the same manner

iteratively until the stopping condition is satisfied.

After removing the capacity constraints, we add some valid inequalities. Even

though there are no capacities set to the problem, a feasible solution must hold

that the number of vehicles are more than the total amount of orders divided by

the vehicle capacity; thus, a valid inequality may be such that;

∑
r∈R

∑
t∈T

∑
n∈N

stnr ≥ max

(⌈∑
k∈K

vk
ν

⌉
,

⌈∑
k∈K

wk
γ

⌉
,

⌈∑
k∈K

lk
δ

⌉)
(3.18)

If we assume that timecapt is the maximum number of orders that can depart on

day t in the same vehicle (regardless of the capacity), with respect to the release

date, deadline and minimum transit time required for delivery of the order, any

feasible solution should hold that the number of orders in a vehicle must not be

more than timecapt;

timecapt = max
r∈R

(∣∣∣(⋃
i∈I

Gt
ir

)⋃
H t
r

∣∣∣) (3.19)

∑
i∈I

∑
k∈K

xtnkir +
∑
k∈K

ytnkr ≤ timecapt ∀r, t, n (3.20)

Let EC be the set of vehicles that total amount of orders in it exceeds the capacity,

and λe is the set of orders in vehicle e ∈ EC, where k ∈ λe. Then, we added cuts

to the relaxed problem with no capacity constraints, which are formulated as

32

follows;

∑
i∈I

∑
k∈λe

xtnkir +
∑
k∈λe

ytnkr ≤ |λe| − 1 ∀e, r, t, n (3.21)

The LB2 algorithm iteratively solves the problem, updates set EC, and adds cuts

to the problem. If there are no vehicles with excess capacity; hence, there are no

cuts to be added, or time limit is exceeded, the algorithm stops.

Algorithm 3.2 Lower Bound 2

Initialization: Relax capacity constraints, and add valid inequalities; which ensures

that, the number of vehicles is more than the total amount of orders divided by

the vehicle capacity, and the number of orders in a vehicle must not be more than

timecapt, where timecapt = maxr∈R
(∣∣∣⋃i∈I G

t
ir

⋃
Ht

r

∣∣∣) .

Main Step: Until time limit is exceeded or there are no vehicles with excess capacity,

repeat following steps;

Step 1: Update the set of vehicles with excess capacity, e ∈ EC
Step 2: Update the number of orders in the vehicles existed in EC, λe, ∀e ∈ EC
Step 3: Add cuts, where the number of orders in the vehicle e is less than

(λe − 1)

3.4 Variable Neighborhood Search

In this section, we propose a VNS algorithm to the SCD-TTFR problem. VNS is a

local search algorithm with a systematic change of neighborhood in order to escape

local minima (Mladenović and Hansen, 1997). A local search heuristic usually

uses one neighborhood structure, instead VNS uses more than one neighborhood

as global minimum is a local minimum with respect to all possible neighborhood

structures (Hansen and Mladenović, 2001). Increasingly far neighborhoods from

the incumbent solution are explored, and the algorithm moves to another solution

if the solution is better than the incumbent solution.

33

Algorithm 3.3 represents the proposed VNS algorithm to SCDP-CDs problem.

Assuming that x is the initial solution, we choose a solution x′ at random in the

first neighborhood, and apply enumeration algorithm around the chosen solution.

If the local minimum x′′ obtained after enumeration is better than the incumbent

solution (f(x′′) < f(x)), then the search is removed to recently obtained solution

point x ← x′′. Otherwise, the algorithm proceeds to the next neighborhood,

and returns back to the first neighborhood, after all neighborhoods are explored,

until a stopping condition is satisfied. We define three stopping conditions: (i)

maximum CPU time, (ii) maximum global iteration number, and (iii) maximum

outer iteration number.

Algorithm 3.3 Variable Neighborhood Search

Initialization: Find an initial solution x, set the neighborhood structures Nk, k =

1, ..., kmax, define the stopping condition.

Main Step: Until k = kmax, repeat the following steps;

(a) Shaking: Generate a random feasible point x′ from kth neighborhood of x,

x′ ∈ Nk(x).

(b) Local Search: Apply enumeration algorithm around x′ and find a local

minimum x′′.

(c) Move or Not: If local optimum x′′ is better than the incumbent solution

x, move to this local optimum (x← x′′) and continue search with N1, set k ← 1;

otherwise set k ← k + 1.

In order to obtain an initial solution, we modify the First Fit Decreasing Algorithm

(FFD), which is a simple and commonly used construction algorithm for bin-

packing problems. The algorithm sorts the orders in decreasing chargeable weight,

packs the largest order into the first available vehicle if and only if it is feasible

in terms of capacity and transit time, and stops when all orders are packed in a

vehicle.

In shaking procedure, we use five operators to construct neighborhood struc-

tures Nk, where k denotes the neighborhoods, k = 1, ..., kmax. Here, we apply

34

each operator 3 times in different levels, thus we have 24 neighborhoods in total

(kmax = 24) (Table 3.1). The operators are; move, swap, perturbation, remove

and regeneration; and defined as:

Move: Move randomly selected η different orders to the randomly selected ve-

hicles if move action is feasible. If no such move action exists, skip to the next

neighborhood.

Swap: Randomly select η pair of orders (η1, η2), such that η1 6=η2. Swap orders if

both orders fit to their corresponding vehicle and the swap action is feasible. If

no such swap action exists, skip to the next neighborhood.

Perturbation: Remove all orders in randomly selected η vehicles, create new fea-

sible vehicles with the remaining orders, place removed orders to recently created

vehicles randomly. If no feasible solution exists, or all removed orders cannot be

placed, skip to the next neighborhood.

Remove: Remove η vehicles with the most residual capacity, and place all orders

in T − η vehicles, where T is the number of vehicles in the incumbent solution,

by using Best-Fit-Decreasing (BFD) algorithm. If all orders cannot be placed in

T − η vehicles, skip to the next neighborhood.

Regeneration: Create a new solution with T vehicles, where T is the number of

vehicles in the incumbent solution, by using BFD algorithm. If all orders cannot

be placed in T − η vehicles, skip to the next neighborhood.

We control the randomness during shaking procedure in order to increase pos-

sible actions regarding three assumptions; (i) small orders have relatively higher

probability to be placed in other vehicles, (ii) a change made in relatively expen-

sive vehicles have a higher probability to provide a decrease in total cost, and

35

Table 3.1: Neighborhood Set Nk

k Operator Level

1-2-3 Move η = 1

4-5-6 Move η = 2

7-8-9 Swap η = 1

10-11-12 Swap η = 2

13-14-15 Perturbation η = 1

16-17-18 Perturbation η = 2

19-20-21 Remove η = 1

22-23-24 Regeneration -

(iii) selecting orders which are ready on the same day have higher probability

to provide a feasible solution. Therefore, during move operation, we randomly

select the orders by giving priority to relatively small orders placed in relatively

expensive vehicles. In swap operator, the orders with small and similar in volume

are swapped. In perturbation operator, the vehicles with relatively higher cost

are selected. Remove and regeneration operations benefit from assumption (iii).

Accordingly, BFD algorithm starts from a randomly selected day, packs all items

that can depart on that day in the best fitting feasible vehicle, then skips to the

next day.

In local search procedure, we apply an enumeration algorithm to the vehicles

that altered during shaking procedure, and find the new costs of those vehicles

(Algorithm 3.4). Considering that I is the set of transshipment terminals, where

I = 1, 2, 3, ..., i, there are 2i alternative ways to deliver all orders in a vehicle. If we

consider an example having two transshipment terminals, the alternatives are; (i)

deliver all items directly, (ii) deliver some of the items by using only transshipment

terminal A, (iii) deliver some of the items by using only transshipment terminal

B, and (iv) deliver some of the items by using both transshipment terminals A

and B. In this sense, enumeration algorithm finds the least cost of all alternatives,

36

and picks the best value.

Algorithm 3.4 Enumeration

Initialization: Define the set of delivery alternatives A,A = 1, 2, ..., a; the set of

altered vehicles in the incumbent solution N = 1, 2, ..., nmax, and the associated cost

of each vehicle as zn; set of routes, R = 1, 2, ..., r, and sort routes in increasing cost.

Main step: Until, n = nmax, repeat the following steps;

(a) Step 1: For all r; if fr ≤ zn, stop and return zn, otherwise find the cost of

each alternative a, and select the least cost as z′n.

(b) Adım 2: if z′n < zn, set (zn ← z′n) and return zn.

3.5 Experiments

In this section, we conduct computational experiments on randomly generated

instances. We first present the generation of randomly generated instances re-

garding the real life practices. We explain the preliminary experiments in order

to define the characteristics, which increases complexity and thus computation

time. Finally, we provide the results of the experiments conducted on MM1,

MM2, LB1, LB2 and UB by examining the performances.

3.5.1 Randomly Generated Instances

With respect to the real life assumptions, we randomly generated instances by

controlling some parameters. Firstly, we generated instances with different num-

ber of orders, where I defines the number of orders in the instance. Note that, we

only generate orders, and the set of routes, destinations, transshipment terminals

and related transit times are known, and doesn’t change for any instance set.

Dimensions of the Orders : Considering the bin-packing assumptions to the prob-

37

lem, we generated the dimensions of the orders in detail. The orders are defined

in shape of pallets or boxes with 0.6 and 0.4 probabilities respectively. The items

within each order are identical; however different orders have dissimilar dimen-

sions. The items, both pallets and boxes, are in 4 different dimensions, which are

assigned with equal probabilities. The weights of boxes are randomly assigned

between 4 kg to 8 kg and the weights of pallets are assigned randomly assigned

between 150 kg to 1000 kg. The number of items randomly generated between 1

to 650 if the items are boxes, and 1 to 17 if the items are pallets. Total volume,

weight and length of each order is computed with respect to the dimensions and

number of items.

Destination of the Orders : In order to enable orders to be assigned to same

destination and control the density of destinations, we set an upper bound D

on the total number of destinations in an instance, and define 3 different levels

of D. We randomly select D destinations, then randomly assign orders to those

destinations. In this respect, the levels of D doesn’t guarantee that there are

exactly D number of destinations in the instance, they only control the density of

destinations. The small level of D assigns more orders to the same destination,

while there are less orders going to the same destination for the bigger levels of

D.

Release Date and Deadline of the Orders : We randomly generate the release date

of orders, rk, with respect to the planning horizon and transit time required to

deliver to the destination of order. Random variable β is defined to determine the

deadline of the orders. We define an upper bound, βup, on β, in order to control

the elasticity of orders’ required time windows for delivery. We randomly select

β, where where 0.10 ≤ β ≤ βup, and define deadline of the orders; such that,

dk = (minttk + rk)(1 + β), where minttk is the minimum transit time required to

38

deliver order k. As long as β is close to 0.1, deadline for the order will be close

to the release date, and vice versa. In this respect, we generated two levels of

parameters. In level 1, the orders have no elasticity for delivery (E = 0), while

there are some available days to await orders for departure in level 2 (E = 1).

Table 3.2: The levels of parameters controlling instance generation

Level

Parameter 1 2 3 4 5

I 10 20 30 50 100

E 0 1

D 1 2 3

Table 3.2 shows the levels of parameters controlling the instance generation. We

generated 10 instances for each combination of parameters, and thus we have 300

instances in total.

3.5.2 Preliminary Experiments

In this section, we discuss the results of three preliminary experiments we con-

ducted with two motivations; (i) to determine the best performing mathematical

model, (ii) analyse the performance of mathematical models on instances with

different parameters.

As the first preliminary experiment, we analyse the effects of three enhancements;

reducing the parameter M , adding symmetry breaking constraint (14) and con-

straint on direct relation (17). We solve all possible combinations (Table 3.3)

in a small instance set, and report the performances of all possible mathemati-

cal models. In Table 3.4, we compare the CPU time of each model to the best

performing mathematical model for that instance, and examine the average per-

39

formances over tested instances. In this context, the mathematical model with all

constraints (P8) outperformed all others. The next best two mathematical models

are the ones with symmetry breaking and direct relationship constraints (P7), and

with symmetry breaking constraint (P3) respectively. Although P7 is better than

P3, their performances are very close. In accordance with these results, we prefer

to use P3 (namely MM1) and P8 (namely MM2) in all experiments. Moreover,

we used P8 as the base mathematical model for lower bound algorithms.

Table 3.3: All possible problem combinations

P1 P2 P3 P4 P5 P6 P7 P8

Reduced M X X X X

Breaking Symmetry X X X X

Direct Relationship X X X X

Table 3.4: Performances of all possible problem combinations (%) in
terms of CPU time

Instance P1 P2 P3 P4 P5 P6 P7 P8

1 528.7 528.7 30.1 379.2 404.0 206.5 0.0 19.7

2 821.1 313.1 18.5 262.7 146.9 14.5 7.8 0.0

3 127.1 95.7 16.1 52.8 33.7 17.1 0.0 15.9

4 994.7 506.9 40.3 660.0 159.2 61.7 8.3 0.0

5 3411.6 1190.7 25.8 963.3 639.6 42.4 3.9 0.0

6 14046.6 6760.6 119.7 1490.1 2168.8 6.8 268.7 0.0

7 244.6 270.9 20.3 165.8 175.1 30.9 0.0 11.8

8 0.0 4.2 2.2 12.9 6.8 8.7 5.9 11.1

9 194.7 465.7 23.9 162.2 137.9 154.8 0.2 0.0

10 22.1 60.5 29.6 12.2 0.0 33.0 28.7 24.2

Average CPU 2039.11 1019.70 32.65 416.13 387.19 57.64 32.37 8.28

For the second preliminary experiment, we solve MM2 in GAMS 22.8 using Intel

Xeon X5482 with 7.4 GHz and 10 GB RAM. We limit the computation time by

3600 sec, and terminate the run if the optimal solution cannot be found within

40

the limited time. We examine the effect of number of orders in an instance, (I),

number of different destinations among the instance (D) and elasticity of orders’

departures (E), which indicates the number of days that an order may wait until

departure. We define 2 levels of difficulty for E and 3 levels for D.

Table 3.5: Results of preliminary experiments

I E D # # solved Max CPU Avg CPU

10 0 1 10 10 2.4 1.3

2 10 10 1,4 1.1

3 10 10 1.3 1.0

10 1 1 10 10 41.1 9.0

2 10 10 370.6 39.2

3 10 10 31.4 8.1

20 0 1 10 10 6.9 3.7

2 10 10 9.1 3.6

3 10 10 13.0 4.0

20 1 1 10 6 3604.3 766.9

2 10 8 3604.7 806.5

3 10 10 3330.5 472.4

Table 3.5 shows some preliminary results of experiments, by explaining the effect

of I, E and D, on number of instances optimally solved, average and maximum

computation time. The results show that I and E have significant effect on

the number of instances solved optimally and computation time, while there is

no significant effect of D. As the number of items in an instance increase, the

computation time increases, and the number of items optimally solved decreases.

Similarly, E has a negative effect on the instances optimally solved and compu-

tation time. As the elasticity increases, the number of orders that may depart

in each day increases resulting with a number of more possible combinations for

each day. In this sense, the computation time increases as expected.

As the third experiment, we tested the effects of number of predefined routes in

41

the route set on performance of the mathematical models. In this respect, we gen-

erated 4 different set of routes, where |R| = {5, 10, 20, 50}. The best performing

mathematical model, MM2, is tested in GAMS 22.8 using Intel Xeon X5482 with

7.4 GHz and 10 GB RAM on 30 relatively easy instances with I = {10, 20, 30}.

As shown on table 3.6, the computation time increases correspondingly with the

increase in number of predefined routes. Paired two sample T-test also shows that

the increase in computation time is significant. Based upon the fact that several

phases, especially local search procedure of VNS loops in route set, we expect the

same increase in computation time, if the number of predefined routes increases

in VNS algorithm. Therefore, we used the route set with less elements, |R| = 5.

This is also consistent with the real-life practices, as there are limited number of

routes in an annual contract for the sake of simplicity.

Table 3.6: The performance of MM2 under different number of prede-
fined routes in the route set

I
Average CPU

|R| = 5 |R| = 10 |R| = 20 |R| = 50

10 3.0 4.4 7.0 20.0

20 4.4 9.1 10.4 27.5

30 10.1 21.7 26.7 244.6

Average 5.8 11.7 14.7 97.4

3.5.3 Computational Results

In this section, we provide the results of the experiments conducted on MM1,

MM2, LB1, LB2 and UB by examining the performances.

42

3.5.3.1 Experiments on Mathematical Models and Lower Bound Al-

gorithms

We solved MM1, MM2, LB1 and LB2 in GAMS 22.8 using Intel X5482 6.4 GHz

with and 10 GB RAM. We set the upper limit for computation time as 3600 sec

for mathematical models. We limit each iteration of lower bound algorithms with

120 seconds, and limit overall computation time at 3600 seconds.

Table 3.7 shows the performances of mathematical models, by indicating the num-

ber of instances solved optimally, maximum and average CPU times for the in-

stances solved optimally, and the average gaps. MM1 solves 168 instances opti-

mally within 3600 sec, while MM2 solved 169. When we apply paired T-test on

the CPU times, MM2 is significantly better than MM1, whereas there is no sig-

nificant difference between the average gaps. For relatively easy instances, where

E = 0, there is again no significant difference between MM1 and MM2, while

mean CPU time of MM2 is significantly better than MM1 for relatively difficult

instances (E = 1).

43

Table 3.7: Performances of Mathematical Models within 3600 sec

MM1 MM2

I E # # opt Gap (%) CPU # opt Gap (%) CPU

10
0 30 30 - 1.2 30 - 1.1

1 30 30 - 18.8 30 - 6.2

20
0 30 30 - 3.8 30 - 3.7

1 30 24 1.2 382.0 24 1.0 334.4

30
0 30 30 - 41.1 30 - 21.5

1 30 8 2.9 1092.8 7 2.8 1206.9

50
0 30 16 1.6 1183.7 18 1.5 972.8

1 30 - 7.6 - - 7.6 -

100
0 30 - 7.9 - - 8.0 -

1 30 - 18.8 - - 16.1 -

Average 300 168 4.0 248.4 169 3.7 217.9

Table 3.8 shows the performances of lower bound algorithms, as well as the com-

parison of best possible values obtained with mathematical models. When we

compare LB1 and LB2 algorithms in terms of CPU time, there is no signifi-

cant difference between them. In order to indicate the best performing lower

bound algorithm, we examine the gap of LB1 and LB2 to the maximum of

known best possible values. We apply paired T-test on the gaps to examine

solution quality, and mean gap of LB1 (GAPLB1 = 0.02) is significantly better

than those of LB2 (GAPLB2 = 0.04) for all instances where E = 0, such that

P (GAPLB1 < GAPLB2) = 0. On contrary, mean gap of LB2 (GAPLB2 = 0.01) is

significantly better than those of LB1 (GAPLB1 = 0.02) for instances where E = 1,

such that P (GAPLB2 < GAPLB1) = 0. In this sense, LB1 outperforms LB2 in

terms of solution quality for relatively easy instances, while LB2 outperforms LB1

for relatively difficult instances. The reason for such a difference in performances

parallel to the change in elasticity may be a result of increasing number of vehicles

44

in a solution, in which there is no elasticity to await orders. When the number of

vehicles required to dispatch all orders increase, LB2 algorithm has to add more

constraints, thus the solution performance decreases.

When lower bound algorithms are compared to the best possible values found by

MM1 or MM2, lower bounds can find the exact best possible value of MMs for

143 instances, and performs better in 35 instances out of 300. Yet, MMs can

find better lower bound values in 122 out of 300 instances. Additionally, lower

bound algorithms perform approximately 2% worse than the lower bound values

obtained by solving mathematical models on the average.

Table 3.8: Performances of Lower Bound Algorithms within 3600 sec

CPU Gap to Max(BPLB1, BPLB2) Gap to Max(BPMM1, BPMM2)

I E # LB1 LB2 LB1 (%) LB2 (%) LB1 (%) LB2 (%)

10
0 30 5.2 1.0 0.00 0.00 0.00 0.00

1 30 2.0 16.0 0.05 0.00 0.05 0.00

20
0 30 45.8 58.3 0.01 0.00 0.01 0.00

1 30 1929.9 1574.4 3.23 0.65 3.05 0.41

30
0 30 679.6 380.3 0.78 0.54 1.19 0.93

1 30 3554.0 3424.1 3.03 1.17 4.70 2.77

50
0 30 2816.7 3339.2 0.41 4.77 5.88 10.02

1 30 3672.5 3663.8 1.50 1.10 1.35 0.89

100
0 30 3687.5 3652.6 0.07 4.31 3.25 7.38

1 30 3339.3 3726.1 - 0.00 - 1.74

Average 300 1973.3 1983.6 1.01 1.25 2.17 2.41

3.5.3.2 Experiments on VNS

We solved VNS Algorithm in C environment using Intel X5482 6.4 GHz with

and 10 GB RAM. In order to identify the maximum outer iteration number,

we tested the performances of different levels of outer iteration numbers in a

limited number of instances, and select the number with the best performance.

We defined stopping conditions; (i) 15∗ I seconds for maximum CPU time, (ii) 20

45

for maximum global iteration number, and (iii) 20∗I for maximum outer iteration

number.

Table 3.9 shows the performances of VNS algorithm and mathematical models.

The solution quality of VNS and mathematical models are reported regarding the

maximum lower bound achieved by MM1, MM2, LB1 or LB2. The CPU time of

mathematical models are reported by indicating the shortest time in 2 ways; (i) if

both MM1 and MM2 find the optimal solution, and (ii) the solution time of the

best upper bound if there is a gap. In this way, we compare the solution quality

and CPU time of VNS by the best performances achieved by both mathematical

models. Accordingly, the solution quality of VNS is approximately the same with

those of mathematical model on the average. Yet, VNS can find good quality

solutions in a very short computation time compared to mathematical models.

Although he number of instances that are optimally solved with mathematical

models is higher than the ones optimally solved with heuristic algorithm, VNS

performs better for the larger problem sizes. For instance, the relative gap of VNS

for larger problems with I = {50, 100} is 1% better on the average compared to

the gap of mathematical models. Additionally, the number of instances, which

have a relative gap above 10 % is 16 for VNS, whereas 33 for mathematical models.

46

Table 3.9: Performances of VNS Algorithm and Mathematical Models

MMs VNS

I E # # opt Gap (%) CPU # opt Gap (%) CPU

10 0 30 30 0.00 1.0 30 0.00 5.3

1 30 30 0.00 6.1 29 0.00 5.0

20 0 30 30 0.00 3.2 29 0.01 16.5

1 30 27 0.28 748.6 25 0.38 5.5

30 0 30 30 0.00 19.2 29 0.00 31.8

1 30 9 1.87 2903.8 1 4.00 12.8

50 0 30 19 1.27 1798.3 12 1.37 65.1

1 30 0 5.79 3622.6 0 6.60 41.6

100 0 30 0 7.59 3629.1 0 8.97 306.3

1 30 0 13.54 3679.6 0 6.70 299.7

Average 300 175 3.03 1641.2 155 2.80 79.0

3.6 Conclusion and Further Research

In this chapter, we develop a solution approach to SCD-TTFR problem. We de-

fine the main problem and its assumptions, propose a mathematical model, which

decides on the consolidation of shipments, truck route, intermediate stops and

departure day, and examine the computational complexity. We propose three

enhancements to the mathematical model; symmetry breaking constraints, defin-

ing an upper bound for big M , and direct relationship between order assignment

and vehicle departure. Preliminary experiments show that, the mathematical

model with all three enhancements outperforms all others, and symmetry break-

ing constraint is the most striking enhancement. We also define two lower bound

algorithms, and an upper bound algorithm. Then, we conduct computational

experiments on mathematical models, lower and upper bounds with randomly

47

generated instances.

The experiments show that, CPU times of MM2 are significantly better than those

of MM1 on the average. When we compare LB1 algorithm and LB2 algorithm

in terms of CPU time, none of them dominates the other one. However, LB2

is significantly better than LB1 in terms of solution quality for relatively easy

instances, while LB2 is better than LB1 for relatively difficult instances. As for

the upper bound algorithm, the solution quality of VNS is approximately the

same with those of mathematical model on the average. Yet, VNS can find good

quality solutions in a very short computation time compared to mathematical

models, especially for difficult instances, where E = 1.

As an output of this chapter, we introduce a simplified version of SCD-TTFR

as case material for undergraduate students including the lecture notes (Tokcaer

et al., 2016), and presented the case material as finalist in case competition at

INFORMS 2016, Nashville USA.

As for the further research directions, we may improve the quality of lower bound

by applying another algorithm. Additionally, the performance of VNS can be en-

hanced by increasing the iteration limit and including more operations to shaking

procedure.

48

Chapter 4

Shipment Consolidation and

Dispatching with Transshipment

Terminals and Spot Market

Prices

4.1 Introduction

In Chapter 3, we assume that the cost of a vehicle is defined by the annual

contracts including a set of predefined routes, which have a set of possible stopping

points and associated fixed costs, namely Shipment Consolidation and Dispatching

Problem with Transshipment Terminals and Fixed Costs (SCD-TTFR). In this

chapter, we will focus on another assumption of real-life practice, in which spot

market defines the fixed cost of a rented vehicle. In this case of SCD-TT, the

cost of a rented vehicle is again associated with the farthest destination in that

49

vehicle, yet there are no predefined routes with fixed costs.

In this context, we may follow two solution approaches for the problem with spot

market prices, namely SCD-TTSM; (i) to generate new routes and extend the set

of routes used in the problem formulation in Chapter 3, (ii) to propose a new

problem which has no predefined routes. First assumption requires an algorithm,

which generates new routes accordingly with the destinations in an order set, so

that the dispatching plans are made with subject to farthest destination in the

vehicle. However, as discussed in subsection 3.5.2 of chapter 3, this approach has

an outcome of substantial increase in computation time. The second approach

entails a new formulation for the problem hence a new solution methodology. As

extending the set of fixed routes is not efficient in terms of computation time, we

follow the second approach with a new formulation, propose a new mathematical

model, and apply a problem specific exact algorithm.

This chapter is organized as follows. We firstly discuss the literature on solu-

tion methodology. Then we explain the assumptions of the problem, and define

the mathematical model for SCD-TTSM. In section 4.4, we describe the solution

methodology with Dantzig-Wolfe decomposition, following column generation and

B&P algorithms. Then we tested the performances of both original formulation

and Branch-and-Price (B&P) on the randomly generated instances used in Chap-

ter 3. We finally, conclude the chapter by discussing the results and addressing

to the future works.

4.2 Literature Review

In this section, we address to the related studies with the SCD-TTSM problem and

the similar problems in the literature using the solution methodology. Since SCD-

50

TTSM problem has a special cost structure, the relevant literature on the problem

is rare, in fact, only Koca and Yıldırım (2012) addressed to such a cost structure to

the best of our knowledge. Their study examined spare parts distribution system

of a major automotive manufacturer in Turkey. In this system, the cost of a given

vehicle is defined by the farthest demand point in that vehicle. They modelled

the problem as Capacitated Concentrator Location Problem, which is a special

case of a network design problem. They proposed a hierarchical approach, which

solves the problem in two stages. In the first stage, the demand is aggregated

with respect to the capacity requirement of that vehicle. Then in the second

stage, the portion of the capacity allocated to the demand is disaggregated with

an optimization model. The experiments showed that the hierarchical approach

outperformed the direct formulation, especially for the large instances.

As for the solution methodology, column generation is a technique for solving large

scale problems with excessive number of decision variables. With a disaggregated

formulation of the original problem to a master problem and a sub-problem, an

iterative algorithm generates new columns. If column generation provides non-

integer solutions, column generation is solved in a branch-and-bound search tree,

which is known as B&P algorithm. Following the guiding study of Barnhart et al.

(1998), B&P algorithm has been applied on many integer programming problems.

As discussed in Chapter 2, the SCD-TTSM is considered as a transportation

planning problem, there is a body of literature, in which column generation and

branch-and-price techniques are frequently applied. With respect to the similar

problems with SCD-TTSM in the literature, such as SNDP or VRP with time

windows, there are many approaches while decomposing the problem, yet mainly

two approaches are popular. For the first approach, each column represents a

feasible vehicle route, and master problem minimizes the cost of selected routes

51

(Irnich, 2002; Danna and Pape, 2005; Santos et al., 2013). Second approach

assumes that each column represents a feasible working day plan, and master

problem minimizes the cost of selected plans.

Considering the first approach, Irnich (2002) applied a branch and price algorithm

for a service network design problem of a optimization of the letter mail delivery

network, and formulated the master problem as set partitioning model, whereas

pricing problem is a shortest path problem, which creates routes subject to capac-

ity constraints and time windows requirements. They also define compatibility of

orders, which assigns the orders with at least one common departure time to the

same route. In this way, they eliminate the time space.

As regards to the second approach, Azi et al. (2010) introduced a B&P algo-

rithm for VRP with time-windows and multiple-use of vehicles, and reformulate

the master problem as a set packing problem, of which every column represents

a workday. In their formulation, each pricing problem is again a shortest path

problem with resource constraints. They also proposed different branching strate-

gies, such that, branching on customers, vehicles, flow on arcs and two consecutive

fractional arcs. They analyzed the performance of the algorithm regarding differ-

ent characteristics of the problem, and conclude that B&P algorithm can solve

the instances upto 25 customers optimally.

Relating to the above described literature, we adopt a similar solution methodol-

ogy used in the first approach, where each column in the decomposed problem rep-

resents a feasible vehicle. Similar to Irnich (2002), we also use the time-windows

requirement to define eligibility of orders to be on the same vehicle, and eliminate

the time related decisions.

52

4.3 Problem Formulation

In this section, we firstly define the assumptions of SCD-TTSM, then we explain

the formulation of the mathematical model.

4.3.1 Assumptions

The assumptions of SCD-TTSM is particularly based on real-life applications,

and similar to the assumptions of SCD-TTFR, yet the route and cost of a vehi-

cle is defined by the farthest destination in that vehicle. With this aspect, the

assumptions of the SCD-TTSM are as follows;

• Information on orders, such as dimensions, destination, release date and

deadline, are deterministic and initially known.

• The orders can be delivered to their destination either on wheels or by

using a transshipment terminal. Each transshipment decision implies a cost

proportional to the size of the order.

• The main path of a vehicle is defined regarding the farthest destination in the

vehicle, and the fixed cost of the vehicle is associated with that destination.

• All but the farthest destinations in the vehicle are defined as extra stops.

• If there is an extra stop of the vehicle, excessive deviations from the main

path is not allowed.

• Fixed costs of the rented vehicles includes a limited number of extra stops,

and after that number, each additional stop incurs an extra cost of stopping

upto maximum number of stops which cannot be exceeded.

53

• The number of stops a vehicle can do is limited, hence, the delivery duration

is not affected by the number of stops.

Since the orders have time-windows for deliveries (release day and deadline), there

is a time dimension in the problem. Hence, transit time to each destination is

known and assumed to be constant regardless of other destinations in the vehicle.

Within this context, we used H t
r and Gt

ir sets to define time window requirements

in Chapter 3. Here, we identify the eligibility of each order pair k, l ∈ K to be on

the same vehicle by defining a parameter, such that;

akl =

1 if orders k and l can be in the same vehicle

0 otherwise

To illustrate an example, we assume 3 orders, which have release days as 1, 4 and

6, and deadlines as 10, 12 and 13 respectively. Minimum transit time required to

deliver these orders is 6 days. Figure 4.1 illustrates available days for departure

for each order with the grey marks. As order (1) and (2) can depart on the same

vehicle on day 3, a12 = 1, whereas order (1) and (3) don’t have any days in

common for departure, thus a13 = 0.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

Figure 4.1: Available days for departure for three orders

With a similar fashion, we define parameter bkl to identify the orders, which cannot

be delivered directly with the same vehicle, due to customs restrictions, country

54

passing problems etc. If the destinations of both orders k, l ∈ K are possible

stopping points on any of the routes, then these two orders may be delivered

directly with the same vehicle.

bkl =

1 if orders k and l can be delivered directly with the same vehicle

0 otherwise

4.3.2 Mathematical Model

With above assumptions, the original formulation (OF) can be formulated as

follows;

Indices and Sets

K Orders, k ∈ K

I Transshipment Terminals, i ∈ I

T Vehicles, t ∈ T

J Destinations, j ∈ J

Parameters

Dimensions of order k;

vk Total volume

wk Total weight

lk Total length

Vehicle capacities;

ν Volume

γ Weight

δ Length

pk Destination of order k, where pk ∈ J

dk Distance to the destination of order k

desi Distance to transshipment terminal i

55

pkm Per kilometre cost

foc Fixed operating cost of a vehicle

costki Cost of delivering order k from transshipment terminal i

µ Limit on additional number of stops

φ Number of stops included in the fixed cost, where 1 ≤ φ ≤ µ

ρ Additional cost of each stop after φ stops

akl

1 if orders k and l can be in the same vehicle

0 otherwise

bkl

1 if orders k and l can be delivered directly with the same vehicle

0 otherwise

Decision Variables

αt Fixed cost of vehicle t

βt Number of extra stops for vehicle t

xtk

1 if order k is departed in vehicle t

0 otherwise

ytk

1 if order k is delivered directly with vehicle t

0 otherwise

ztki

1 if order k is in vehicle t and delivered through transshipment terminal i

0 otherwise

useti

1 if vehicle t visits transshipment terminal i

0 otherwise

56

δtj

1 if vehicle t visits destination j

0 otherwise

Using above sets, parameters and decision variables, the mathematical model is

formulated as follows;

OF : Minimize
∑
t∈T

(
αt + ρβt +

∑
i∈I

∑
k∈K

costkiz
t
ki

)
(4.1)

Subject to; αt ≥ (dk.pkm+ foc)ytk ∀k, t (4.2)

αt ≥ (desi.pkm+ foc)useti ∀i, t (4.3)

useti ≥ ztki ∀k, i, t (4.4)

δtpk ≥ ytk ∀k, t (4.5)

βt ≥
∑
k∈K

δtpk +
∑
i∈I

useti − φ ∀t (4.6)

βt ≤ µ ∀t (4.7)

xtk = ytk +
∑
i∈I

ztki ∀k, t (4.8)

∑
t∈T

xtk = 1 ∀k (4.9)

xtk + xtl ≤ 1 ∀t, (k, l) | akl = 0

(4.10)

xtk + xtl ≤ 1 ∀t, (k, l) | bkl = 0

(4.11)∑
k∈K

vkx
t
k ≤ ν ∀t

(4.12)∑
k∈K

wkx
t
k ≤ γ ∀t

(4.13)

57

∑
k∈K

lkx
t
k ≤ δ ∀t

(4.14)

αt ≥ αt−1 ∀t | t ≥ 2

(4.15)

xtk, y
t
k, z

t
ki, use

t
i, δ

t
j ∈ {0, 1} ∀k, i, t, j

(4.16)

αt ≥ 0 ∀t

(4.17)

βt ∈ {0, 1, 2, ...} ∀t

(4.18)

Objective function (4.1) minimizes the total cost including the fixed cost, the cost

of extra stops and transshipment costs. Constraint sets (4.2) and (4.3) identify

the fixed cost of vehicle regarding the farthest distance in the vehicle. Constraint

set (4.4) defines if an order is assigned to a vehicle if it is delivered to its final

destination directly or by using a transshipment terminal. Constraint set (4.5)

assigns the destination of an order in a vehicle, if the order is delivered directly

to its destination with that vehicle. Constraint sets (4.6) and (4.7) identify and

limit the number of extra stops. Constraint set (4.8) ensures that the order

is assigned to a vehicle if it is delivered directly or by using a transshipment

terminal. Constraint set (4.9) ensures that each order is served. Constraint sets

(4.10) defines the eligibility of orders to be in the same vehicle regarding the

release days and deadlines. Constraint set (4.11) identifies if the orders can be

delivered directly with the same vehicle. Constraint sets (4.12), (4.13) and (4.14)

satisfy the capacity constraints. Constraint set (4.15) ensure the use of vehicles in

sequence. Constraint sets (4.16), (4.17) and (4.18) are the integrality constraints.

58

4.4 Solution Methodology

Since the structure of aforementioned OF is suitable for a disaggregated for-

mulation, we applied Dantzig–Wolfe decomposition, which is known to be suc-

cessful in solving large scale problems (Desrosiers and Lübbecke, 2005). With

Dantzig–Wolfe decomposition, the OF is reformulated as master problem, which

has a large number of variables, while the sub-problem, so called pricing prob-

lem, is defined by a subset of the constraints of the original formulation. The

master problem having excessive number of variables, thus columns, is difficult

to manage (Vanderbeck, 2000). Therefore, a restricted master problem, which

has a subset of columns of master problem is solved. Concurrently, sub-problem,

so called pricing problem generates further columns by using the dual prices of

restricted master problem. If pricing problem generates a new column with a neg-

ative reduced cost (for a minimization problem), the column is added to restricted

master problem as a new entering column. In this context, master problem and

pricing problem are solved iteratively until non-negative reduced cost is identified.

Once positive reduced cost returns, the iteration stops as the incumbent solution

is optimal for the restricted master problem. However, this optimal solution for

restricted master problem does not guarantee the optimality of original formula-

tion. Eventually, if this solution at the end of column generation does not satisfy

integrality conditions, it is not optimal to the original problem. In this case,

column generation is solved in a branch-and-bound search tree after branching,

which is so called branch-and-price algorithm (Barnhart et al., 1998; Desrosiers

and Lübbecke, 2005; Lübbecke and Desrosiers, 2005).

In this section, we firstly reformulate OF by applying Dantzig-Wolfe decompo-

sition, then we explain the column-generation algorithm and branch-and-price

scheme.

59

4.4.1 Dantzig-Wolfe Decomposition

Assuming that the route and the cost of a vehicle can be calculated if the orders

assigned to that vehicle are known, we decompose the OF by using the Constraint

set (4.9), and define the Master Problem as a set covering problem. In this set

covering problem, each column represents a feasible vehicle, which has a group of

orders in it in a way that capacity constraints and time-windows requirements are

satisfied. Then R represents the set of feasible vehicles, and cr defines the cost of

vehicle r ∈ R. For a feasible vehicle, we also define ωkt, the value of which is 1,

if order k is in vehicle r and 0 otherwise. Accordingly, the decision variable here

will be;

xr =

1 if vehicle r is selected

0 otherwise

Then, we may formulate the master problem (MP) as;

MP : Minimize
∑
r∈R

crxr (4.19)

Subject to;
∑
r ∈R

ωkrxr ≥ 1 ∀k ∈ K (4.20)

xr ∈ {0, 1} ∀r ∈ R (4.21)

Objective function (4.19) minimizes the total cost of selected vehicles. Constraint

set (4.20) assigns each order to a vehicle, and Constraint set (4.21) assures the

integrality of decision variable xr.

Above MP retains Constraint set (4.9) of original formulation explicitly, whereas

remaining constraints are used while generating feasible routes. By solving the

linear programming (LP) relaxation of the MP in a column generation procedure,

we obtain λk variables, which are the negative dual prices of constraint (4.20) for

60

each order k ∈ K. We can generate further feasible columns by solving the pricing

problem (PP), which is a knapsack problem with side constraints and multiple

dimensions;

PP : Minimize α + ρβ +
∑
i∈I

∑
k∈K

costkizki −
∑
k∈K

λkxk (4.22)

Subject to α ≥ (dk.pkm+ foc)yk ∀k (4.23)

α ≥ (desi.pkm+ foc)usei ∀i (4.24)

usei ≥ zki ∀k, i (4.25)

δpk ≥ yk ∀k (4.26)

β ≥
∑
k∈K

δpk +
∑
i∈I

usei − φ (4.27)

β ≤ µ (4.28)

xk = yk +
∑
i∈I

zki ∀k (4.29)

xk + xl ≤ 1 ∀(k, l)|akl = 0 (4.30)

xk + xl ≤ 1 ∀(k, l)|bkl = 0 (4.31)∑
k∈K

vkxk ≤ ν (4.32)

∑
k∈K

wkxk ≤ γ (4.33)

∑
k∈K

lkxk ≤ δ (4.34)

xk, yk, zki, usei, δj ∈ {0, 1} ∀k, i, j (4.35)

α ≥ 0 (4.36)

β ∈ {0, 1, 2, ...} (4.37)

61

4.4.2 Column Generation

The column generation (CG) procedure starts with a feasible set of columns R′ ⊂

R, which is restricted master problem (RMP). As for the initialization of CG

procedure, we define the initial column set R′ by assigning each order to a single

vehicle having the cost associated with the destination of that order. The linear

relaxation of RMP, so called LRMP, gives us the negative dual prices λk,∀k ∈ K.

LRMP and PP is solved iteratively, and at each iteration, PP finds a new column

with the least reduced cost by using the dual prices from the LRMP. LRMP

is solved repeatedly until no negative reduced cost is identified, thus no more

columns are added. When CG stops at the root node, if the solution obtained is

integer, then it is optimal to OF. Otherwise, CG is embedded in a branch-and-

bound algorithm, so called branch-and-price (B&P), with the set of columns we

generated initially and during column generation algorithm. Before initializing

the B&P algorithm, we solve the RMP as a MIP at root-node, and get an integer

solution with the columns generated at the root-node. We consider it as an

acceleration strategy if the integrality conditions cannot be satisfied at the root-

node.

4.4.3 Branch-and-Price Algorithm

In the branch-and-bound algorithm, we firstly define variables to branch. We

select a pair of orders, (k, l), which are on the same column, and the sum of xr

values for that column in the visited node is closest to the target pair value τ ,

such that;

pairkl =

∣∣∣∣∣τ − ∑
r inR;

ωkr=1,ωlr=1

xr

∣∣∣∣∣ ∀k, l
62

Consequently, we select the (k, l) pair with minimum pairk,l value as branching

variables, and create two child nodes. At the right child node, we assume that

(k, l) order pair should be in the same vehicle, whereas (k, l) order pair should

not be in the same vehicle at the left child node. Without having a substantial

change in RMP, we only delete the respective columns, which has the (k, l) order

pair in different vehicles at the right child node. Similarly, we delete the columns

having the (k, l) order pair in the same vehicles at the left child node. As for the

PP, we added a relevant constraint with respect to the visited child node, such

that; we update PP by adding constraint (4.38), which restrains (k, l) order pair

to be on different vehicles at the right child;

xk − xl = 0 (4.38)

If PP is solved at the left child, then we add constraint (4.39) preventing (k, l)

order pair to be in the same vehicle;

xk + xl ≤ 1 (4.39)

In the use of aforementioned branching scheme, there are three aspects that af-

fects the number of visited nodes; (i) search strategy, (ii) τ value and (iii) node

selection. At this point, there are two search strategies to be followed; depth-first

and breadth-first. Besides obtaining feasible solutions in shorter computation

time (Fayed and Atiya, 2013), depth-first search strategy allows for easy column

management in RMP and constraint handling in PP. Depth-first strategy first

moves downward the search tree by definition, and moves upwards if the node is

fathomed. Thus, we only need to add the deleted columns to RMP, and delete the

constraints from PP with respect to branching rule, while leaving a node upwards

the search tree. Once the node is left, the respective information on the left node

63

is no longer necessary. On contrary, breadth-first strategy requires a particular

memory structure for column management and constraint handling. Addition-

ally, the process of deleting / adding columns and constraints is expected to be

repeated several times during the search. With all these aspects, we explore the

search tree by using depth-first strategy.

Once we identify the search strategy, we consider τ value in tandem with node

selection. There are two alternatives for node selection, such that we may first

visit right child, then left child node, or vice versa. In this context, we tested

the algorithm on small instances, and examined the number of visited nodes with

different τ values on both alternatives. We conclude that the algorithm visited less

nodes and generated less columns with first right-then left node visiting alternative

and τ = 0.7. Considering that greater values of τ is an indication of (k, l) order

pair’s likelihood to be on the same vehicle, first right-then left strategy is to the

purpose by imposing (k, l) order pair to be on the same vehicle.

In B&P algorithm (Algorithm 4.1), CG procedure is executed as described in

subsection 4.4.2 at each node of search tree, such that RMP is initialized with the

columns used in the last visited node. If the optimal solution of the LPMP at a

non-root node is not integer, and the optimal objective value of the LPMP is less

than the best known upper bound, then we branch on another selected (k, l) order

pair. As for the branching strategy, first right child node is visited, and RMP and

PP is updated accordingly. If the current node is fathomed, the last generated

left child node will be visited. BP algorithm stops when all nodes are visited and

stopping condition for time limit is satisfied.

64

Algorithm 4.1 Branch-and-Price

Initialization: Initialize RMPn with set of initial columns. Let n define the number

of nodes and UB denote the best known upper bound at the root-node.

Main Step: Until all nodes are visited (n = 0), or time limit is exceeded, repeat the

following steps;

Step 1: Column Generation Procedure

(1a) Initialize RMPn with set of columns as for node n

(1b) Solve LRMP and transfer dual prices λnk of node n to PPn.

(1c) Solve PPn to optimality, and get reduced costs, namely φn. If φn < 0,

generate a new entering column to RMPn and go to Step 1, else proceed to

Step (1d).

(1d) If the optimal solution of the LPMP is non-integer, or the integer optimal

objective value of the LPMP is less than the best known upper bound UB∗, go

to Step (2a). Else go to Step (2b).
Step 2: Branching

(2a) Update pairkl, branch on selected (k, l) order pair, update RMPn and

PPn, such that n← n+ 2 at right child node and n← n+ 1 at left child node.

Visit the right child node and go to Main Step.

(2b) Fathom current node, set n ← n − 1, and update UB∗ if the optimal

solution of LRMP is greater than best known UB∗. If there are any unexplored

left child nodes (n > 0), visit the last created left child and go to Main Step.

4.5 Computational Experiments

In the SCD-TTSM, we assume that the routes are no longer fixed, and the dis-

tances from origin to each destination is known. Thus, we adopt a distance based

costing structure, where the cost of used route is defined regarding the farthest

destination in the vehicle. In this sense, there are 4 type of costs in the cost

function; per kilometre cost multiplied by the farthest distance, extra stopping

costs, fixed cost of operating a vehicle (e.g. Ro-Ro expanses, driver fees etc.) and

transshipment costs. In order to obtain similar route costs with those of Chapter

3, we randomly generate different routes, and calculate the fixed costs of those

routes accordingly with the cost structure in Chapter 3. Then, we examine the

effect of extra stops and farthest distance on the fixed cost by applying regression

analysis, and obtain the cost parameters, namely per kilometre cost, extra stop-

ping cost and fixed cost of operating a vehicle, with R2 = 0.9. Transshipment

assumptions are the same, thus there is no change in transshipment costs.

65

We code both OF and B&P on CPLEX Optimization Studio and conduct the

computational experiments on the randomly generated instances used in Chapter

3 by using Core i7 7500U with 2.7 GHz and 8GB RAM. We also set the time limit

as 3600 seconds as for the stopping condition.

As a preliminary experiment, we solve the RMP as mixed integer programming

problem (MIP) at different phases of B&P algorithm as an acceleration strategy.

When the column generation procedure stops at root node, we solve RMP as

MIP with the columns generated until root node. Then, we test both algorithms,

B&P with and without MIP, on 120 instances with different number of orders

(I = {20, 30}) so as to compare the computation times and the solution quality.

Table 4.1 shows the performances of the algorithms in terms of gap at root node,

CPU in seconds, number of generated columns and number of visited nodes. Both

relative gap and CPU time of B&P with MIP is significantly less than those of

B&P without MIP (P=0.03). Moreover, B&P with MIP generates less columns

than the algorithm without MIP (P=0.03), yet the number of visited nodes is not

significantly different (P=0.17).

Table 4.1: Reported Performances of Preliminary Experiment

Gap at RN (%) CPU # of Col Nodes Visited

I B without MIP with MIP without MIP with MIP without MIP with MIP without MIP with MIP

20 0 11.9 0.2 1.6 2.0 42.1 42.1 8.3 8.2

1 11.8 0.5 10.6 11.2 144.0 137.3 123.6 110.8

30 0 15.8 0.5 22.0 20.6 79.3 79.0 90.9 84.7

1 28.5 1.9 1008.7 958.0 889.1 860.0 6898.8 6740.1

Average 17.0 0.8 260.7 247.9 288.6 279.6 1780.4 1735.9

We also examine the convergence curves of an instance for both algorithms; B&P

without MIP (Figure 4.2) and B&P with MIP (Figure 4.3). The convergence

curves for both algorithms are similar, and both algorithms can reach near optimal

solutions in a short computation time. However, B&P with MIP reaches to 3.71

66

% of gap at 70th iteration, whereas B&P without MIP provides 11 % of gap at the

same iteration, and reaches to 3.71 % at 3471th iteration. Moreover, B&P without

MIP continues upto 5868 iterations, which is quite higher than B&P with MIP.

Figure 4.2: Convergence Curves of B&P Algorithm without MIP

Figure 4.3: Convergence Curves of B&P Algorithm with MIP

67

In this respect, we assume that solving B&P with MIP enhances the overall per-

formance of the algorithm by decreasing the gap and computation time. However,

the number of columns, thus problem size of RMP substantially increases for large

scale problems, and consequently, the computation time required to solve RMP

as MIP increases. Hence, we solve RMP as MIP only at two phases; (i) at the

end of root node because the algorithm generates less columns after root node,

and (i) when B&P algorithm stops as the gap may decrease for the problems

that stops due to time limit. We additionally set a time limit as of 180 seconds,

when solving RMP as MIP, because that the problem size, thus the computation

time, substantially increases for the larger sizes of the order set, especially where

I = {50, 100}.

Hereinafter, we firstly compare the solution quality and computation performance

of B&P with those of OF, then examine the results of experiments on B&P with

MIP.

4.5.1 Performances of Original Formulation and Branch-

and-Price

In this section we compare the performance of original formulation with branch-

and-price. We foremost measure the quality of lower bounds of original formu-

lation (OF) and branch-and-price by measuring the mean relative deviation (in

%) between the known highest lower bound (Figure 4.4). As for the lower bound

of OF, we report the best known bound, whereas lower bound of B&P is linear

programming relaxation of restricted master problem (RMP). Our computational

experiments suggest that LP relaxation of RMP gives us tighter lower bounds.

68

Figure 4.4: Mean Deviation of Lower Bounds

As shown on Figure 4.4, original formulation cannot provide good lower bounds

especially for the instances that could not be solved to proven optimality within

the time limit; thus, the reported gap of original formulation is considerably high

and insignificant. In this sense, we only compare the solution quality and CPU

for instances with I = {10, 20} in Table 4.2. Out of examined 120 instances,

OF can find optimal solutions only for 88 instances, while B&P can solve all to

optimality. Additionally, the computation time performance of B&P is expectedly

better than OF, in other means, B&P can find optimal solutions in 22 seconds

on the average, whereas average CPU time for the instances that OF can solve

to optimality is 248 seconds. Note that, the average CPU is 1142 seconds on the

average for all examined instances, including the ones that terminate due to time

limit.

69

Table 4.2: Performances of Original Formulation and Branch-and-Price

OF BP

I B # # opt Gap (%) Ave CPU Max CPU # opt Gap (%) Ave CPU Max CPU

10 0 30 30 0.00 2.18 5.43 30 0.00 0.13 0.26

1 30 30 0.00 2.36 4.79 30 0.00 0.46 3.13

20 0 30 8 12.16 2810.37 3604.68 30 0.00 2.02 11.40

1 30 20 2.45 1751.94 3604.69 30 0.00 11.19 72.66

Average 120 88 3.65 1141.71 3604.69 120 0.00 3.45 21.86

4.5.2 Computational Performance of B&P

In this section, we examine the results of experiments on B&P in four aspects;

solution quality, computation time, number of columns added and nodes visited.

- Solution Quality

Table 4.3 shows the solution quality of B&P algorithm by indicating the number

of instances solved optimally, and the relative gap at the root node and the end of

the algorithm including MIP results. Key findings regarding the solution quality

are as follows;

Table 4.3: Solution Quality of Branch-and-Price

MIP after MIP after

Root Node Root Node Branch-and-Price Branch-and-Price

I E # opt Gap (%) # opt Gap (%) # opt Gap (%) # opt Gap (%)

10 0 23 1.5 29 0.0 30 0.0 30 0.0

1 18 7.1 24 0.4 30 0.0 30 0.0

20 0 8 11.9 18 0.2 30 0.0 30 0.0

1 9 11.8 13 0.5 30 0.0 30 0.0

30 0 2 15.8 5 0.5 30 0.0 30 0.0

1 3 28.5 3 1.9 24 1.0 24 1.0

50 0 0 28.8 0 2.7 22 2.3 22 2.2

1 1 48.4 1 2.4 5 2.0 5 1.8

100 0 0 51.5 0 7.4 0 7.0 0 6.7

1 0 75.8 0 1.9 0 1.7 0 1.2

Average 64 28.1 93 1.8 201 1.4 201 1.3

70

• B&P algorithm obtains the optimal solution for 201 (67%) instances out of

300, while 64 (21%) of them are solved to optimality at root node.

• The average gap changes under different problem characteristics. For the

instances with less orders (I = {10, 20}), the average gap is 8%, while it is

41.5% for the larger instances (with I = {30, 50, 100}). For all instances, the

gap at root node is 28.1% on the average. If we solve RMP as mixed integer

programming problem with the columns generated until the root node, the

average gap decreases to 1.8%, and the number of instances solved optimally

at the root node increases to 93 (31%).

• If the optimal solution cannot be found at the root node, the average gap de-

creases to 1.4% when B&P algorithm terminates. In this sense, the average

improvement after root node is 0.4%, which is relatively low than expected.

• As the number of orders in an instance (I) increase, the number of instances

solved to optimality decreases. The average gap increases for the larger

number of orders.

• The elasticity of orders, E, doesn’t have a significant effect on the solution

quality. However, for the instances with 50 and 100 orders (I = 50 and

I = 100), the average gap of instances with E = 0 is significantly different

and higher than the gap of instances with E = 1.

- Computation Time

Table 4.4 shows the computation time performance of B&P algorithm, and the

key findings on computation time performance are as follows;

• Average CPU time for all instances is 1261 seconds. As for the instances

71

solved optimally, the average CPU is 109 seconds, while maximum CPU is

3440 seconds.

• For 157 instances out of 300 (52%), optimal solution is found within 60

seconds.

• CPU time increases as the number of orders increase, such that average

CPU is 0.3 seconds for instances with 10 orders, while it is 6.6 seconds for

instances with 20 orders.

• CPU time increases, if the orders have an elasticity of waiting time for

departure. The average CPU time is 998 seconds for the instances which

don’t have elasticity for departure (E = 0). For the instances with E = 1,

average CPU is 1524 seconds.

Table 4.4: Computation Time Performance of Branch-and-Price

Root Node B&P

I E Ave CPU Max CPU Ave CPU Max CPU

10 0 0.1 0.2 0.1 0.3

1 0.2 0.4 0.5 3.1

20 0 1.0 1.9 2.0 11.4

1 1.7 3.1 11.2 72.7

30 0 4.3 6.8 20.6 87.2

1 7.5 12.3 958.0 3600.2

50 0 26.1 42.1 1370.5 3600.4

1 57.1 87.9 3049.7 3600.9

100 0 397.9 617.1 3600.8 3602.0

1 959.4 1377.9 3602.9 3617.1

Average 145.5 1377.9 1261.6 3617.1

- Number of Columns Added

72

Table 4.5 shows the number of columns added during B&P algorithm including

the computation time performances as well. In the table, first section shows the

results at the root node. Second section shows the number of columns added after

root node until the algorithm terminates. The third section represents the total

number of columns added when the algorithm stops. The key findings on the

number of added columns are summarized as follows;

• On the average, the number of added columns is 489 and the maximum

number of added columns is 5513.

• The number of columns added changes under different problem features,

such that the number of columns added increases parallel to the number of

orders in an instance. For the instances with I = 10, the average number

of added columns per order is 2, while on the average 4 columns added per

order for the instances with I = 20, and 16 for the instances with I = 30.

• The number of columns added increases, if the orders have an elasticity of

waiting time for departure. The average number of added columns per order

is 16 for the instances which have elasticity for departure (E = 1). For the

instances with E = 0, average number of columns per order is 4.

73

Table 4.5: Number of Columns Added

Root Node After Root Node Total

I E CPU # ColAdd CPU # ColAdd CPU # ColAdd

10 0 0.11 13.8 0.02 0.1 0.13 13.9

1 0.21 19.6 0.25 5.3 0.46 24.9

20 0 0.96 35.8 1.06 6.3 2.02 42.1

1 1.74 54.7 9.45 82.7 11.19 137.3

30 0 4.29 59.6 16.29 19.4 20.58 79.0

1 7.46 93.7 950.54 766.3 957.99 860.0

50 0 26.13 122.2 1668.32 220.5 1694.45 342.7

1 57.14 192.4 2992.56 1406.8 3049.70 1599.2

100 0 397.88 302.5 3202.92 257.5 3600.80 560.0

1 959.43 452.4 2643.42 781.0 3602.85 1233.4

Average 145.53 134.7 1148.48 354.6 1294.02 489.3

- Number of Nodes Visited

Table 4.6 displays the number of visited nodes till the algorithm stops including

the number of instances solved to optimality. Considering that 93 instances are

solved optimally at root node, for remaining 207 out of 300 instances, the number

of visited nodes is 2571 on the average, and for these instances, the maximum

number of visited nodes is 34810. The number of visited nodes after root node

substantially increases as the the number of instances in an order increases.

74

Table 4.6: Number of Nodes Visited

of Nodes

I B # of opt Ave Max

10 0 23 2.3 4

1 18 18.2 84

20 0 8 11.2 62

1 9 158.3 1118

30 0 2 90.6 422

1 3 7489.0 34810

50 0 0 3617.7 11360

1 1 7108.3 11246

100 0 0 2113.3 3310

1 0 676.3 1952

Average 64 2571.6 34810

In addition to the aforementioned key findings, we examine the number of columns

generated on the convergence curve of an instance (Figure 4.5), and the algorithm

can find the optimal solution at a very early stage of iterations, yet it continues

to add columns, which are redundant.

Figure 4.6 shows the computational performance of the algorithm including the

number of visited nodes and generated columns, under different problem speci-

fications. As shown on the figure, time required for root node increases parallel

to the increase in number of orders in an instance, thus, time left for branching

is less for the instances, which cannot be solved to proven optimality within the

time limit. In this case, the CPU left after root node has a negative effect on

the nodes visited and the columns generated, which in return affects the solution

quality, especially for large instances. Likewise, for the instances with I = 100,

the algorithm generates less columns by visiting more nodes where E = 0. In

75

Figure 4.5: Convergence Curves of B&P Algorithm for an instance

contrast, the algorithm generated more columns at each node for instances with

E = 1. Therefore, the solution quality is better for E = 1 than E = 0, although

CPU time after root node is shorter for E = 1 than E = 0.

Figure 4.6: Number of Nodes and Columns Compared to Computa-
tional Performances

76

4.6 Conclusion and Future Works

In this chapter, we examine the SCD-TT with spot market prices and propose a

mathematical model and an efficient exact algorithm. We decompose the problem,

and reformulate the mathematical model in master and pricing problem. Then

we propose a branch-and-price algorithm, in which an iterative column generation

algorithm generates new columns by solving pricing problem at each iteration.

Our algorithm is able to solve randomly generated instances of previous chapter

in reasonable computation times, and provides upper bounds with good quality.

Compared to the performance of original formulation (OF), B&P outperforms OF

in terms of both computation time and solution quality. Furthermore, B&P pro-

vides better lower bounds than the OF. Yet, the lower bounds of B&P, especially

for the large scale instances, can be improved by changing search strategy. In

the proposed algorithm, we adopt a depth first strategy, which can be replaced

by breadth-first strategy. The former search strategy reaches distant child nodes

easily, and may provide good quality upper bounds in shorter computation time,

while the latter one may provide better lower bounds by exploring some child

nodes early. However, depth first may be computationally expensive as it vis-

its many sub-branches before obtaining the optimal solution. In this context,

Fayed and Atiya (2013) proposed a mixed breadth-depth traversing algorithm,

which substantially decreases the computation time to reach the optimal solu-

tion. Therefore, we may follow a similar approach as for the search strategy.

In addition to the improvement in quality of lower bounds, number of visited

nodes needs further attention. As the number of orders in an instance increases,

the number of visited nodes increases considerably. In this respect, changing

the a mixed search strategy may result in an improvement on the number of

77

visited nodes. We also plan to test different branching strategies, and compare

the performances.

As our computational experiment shows, the pricing problem can be solved in a

very short time; yet, CPU required for pricing problem may substantially increase

for the instances including more than 100 orders. Therefore, we may apply fast

and greedy solution approaches to solve pricing problem as another extension.

78

Chapter 5

Integrated Three Dimensional

Bin Packing Problem and

SCD-TT

5.1 Introduction

In chapter 3 and 4, the orders are placed in the vehicle regarding the total volume,

weight and loading meter of the orders in a vehicle. The only constraint is that

the total amount of orders should be less than or equal to the vehicle capacities.

However, the solution achieved with this assumption may be infeasible, as the

items in a vehicle may not fit in, even if total volume is less then the capacity. We

may mitigate the risk of an infeasible solution by reducing the allowed capacity,

yet, such an assumption may result in inefficient use of vehicle capacities. Both

infeasible solutions and inefficient use of vehicles are undesirable outcomes. Thus,

in this part, we propose a feasibility check mechanism, which considers bin packing

79

assumptions and positioning of each item in a vehicle.

This chapter is organised as follows. In the second section, we will give a brief

literature review on the problem assumptions and solution methodology. Then,

we will propose a mathematical model in the third section. We will explain the

heuristic algorithm in the fourth section, and test the performance of heuristic

algorithm on specified two problems, SCD-TTFR and SCD-TTSM, int the fifth

section. We will finally conclude the findings and discuss the future works.

5.2 Literature Review

The problem referred in this chapter is a 3D-BPP, which has many variants in

the literature, considering different real life assumptions. The role of 3D-BPP in

this chapter is to check feasibility of the vehicles obtained in chapter 3 and 4.

Therefore, the 3D-BPP will solve only one vehicle at a time and check if the items

in the vehicle can fit regarding the capacities. Such a variant of 3D-BPP is referred

as Container Loading Problem CLP. We will also include 5 real life assumptions;

which are stability constraints, orientation, weight distribution, loading sequence

and stacking constraints.

• Stability Constraints Stability or vertical load balance constraints ensure

the safety of loaded items, and restrain items to fall down or tilt over each

other. Therefore, the items should be balanced from top or bottom surface

(Bischoff and Ratcliff, 1995b) in a way that the center of gravity of each

item is on top of another item or vehicle floor (Lin et al., 2006). Such a

constraint also increases the efficient use of available space in a container

(Bischoff, 1991). The most common way to satisfy the constraint is to limit

80

the unsupported bottom surface of an item on vehicle floor or top of another

item. While, this limit may be a fraction of the item size (Junqueira et al.,

2012), it mat also be fully restricted so that all items’ bottom surfaces

are 100% on top of another item (Bortfeldt and Wäscher, 2013). In the

mathematical model we will use the latter assumption; yet, in the heuristic

algorithm we do not allow the items’ bottom surface to be free of the ground,

not even partially.

• Orientation Constraints An item may be orientated in a container in at

most 6 different ways. Recent review of Bortfeldt and Wäscher (2013) listed

the studies allowing different type of orientations; such as allowing only one

orientation of vertical or horizontal (Martello et al., 2000), allowing only

vertical and restricting horizontal orientation (Hemminki et al., 1998) and

vice versa (Bischoff and Ratcliff, 1995b), and allowing both orientations

(Wang et al., 2008). In our setting we will assume that each axis of each

box may stand vertically or not, resulting with 2, 4 or 6 possible different

orientations. This is the approach used in the data set which is mostly used

in the bin packing literature.

• Weight Distribution Constraints For a stable and safe loading, the

weigh distribution in a vehicle should be balanced. Therefore, center of

gravity of the total weight should be close to the midpoint of the vehicle

(Davies and Bischoff, 1999). We will consider a similar assumption for the

problem with respect to the real life practice, in which the weight distribu-

tion is allocated regarding the load on axles. Respectively, we assume that

the vehicle has three compartments, of which the second one is the biggest

one, and has the largest weight capacity. Thus, the first and the third ones

cannot accommodate extremely heavy goods.

81

• Loading Sequence Constraints In the first part of the thesis, the items

of each order are grouped and planned to be loaded on the vehicle together.

There are several studies in the literature discussing the same assumption

(Bischoff and Ratcliff, 1995b), (Junqueira et al., 2011), (Ceschia and Schaerf,

2013), and they all address to the problem in a similar way. There are 2

real life considerations in this manner; firstly, the orders delivered through

a transshipment terminal may be mixed and grouped together to benefit

from use of space as those items will be sorted in the cross-dock before

delivery to the final destination. Secondly, the orders should be loaded on

the vehicle regarding the unloading sequence, therefore last order loaded

on the vehicle should be the first one to be offloaded. This last-in-first-

out (LIFO) constraint ensures that the order to be unloaded is at the back

on the ground or on top of another order. However, when all items are

allowed to be on top, the solution may have horizontal layers of items for a

single customer, which may result in additional handling during unloading.

Therefore, we will use a distance parameter (δik) defining the maximum

depth an order can be loaded on top of the preceding order.

The heuristics for CLP can be categorized under placement (construction) and

improvement heuristics (Zhao et al., 2016). Placement heuristics, whether if it

uses predetermined or dynamic ordering, decides on the arrangement of orders in

a container. Improvement heuristics mostly use placement heuristics while con-

structing the initial solution or moving to another neighbourhood. Wall building

and layer building are the most common approaches in placement heuristics. Wall

building, which was originally proposed by George and Robinson (1980), initially

selects the first box of each wall, then places the same type of box for the rest of

the wall column by column, until there is no more space left in the wall or there

is no more left of the selected box type. The length of box identifies the length of

82

the wall, and the box selection criteria changes in different stages of wall creation

procedure. Based on George and Robinson (1980), Bischoff and Marriott (1990)

tested 14 heuristic approaches with different ranking and filling methods, and fi-

nalize that there is no significant difference among tested approaches. Bischoff and

Ratcliff (1995a) and Gehring et al. (1990) also tested different ranking approaches

as well.

Layer building approach, which is relatively less studied in the literature, firstly

creates base layer, then places new layers on top of base layer horizontally. The

main problem in this approach is that the boxes may be placed unstable in the

container. Loh and Nee (1992), Lodi et al. (2002) and Ratcliff and Bischoff (1998)

follow a similar building strategy.

Improvement heuristics mainly aim at looking for a better solution than the so-

lution found by a placement heuristic providing fast and reasonably quality solu-

tions. In this sense, many metaheuristic approaches have been adopted; such as,

genetic algorithm (Hemminki, 1994; Gehring and Bortfeldt, 1997; Wu et al., 2010),

and tabu search algorithm (Bortfeldt et al., 2003; Bortfeldt and Gehring, 1998;

Liu et al., 2011). Moura and Oliveira (2005) proposed a new algorithm based on

greedy randomized adaptive search procedure (GRASP) for improvement of con-

tainer loading problem. Parreño et al. (2008) also proposed a GRASP algorithm

based on maximal space in the container, and achieve good quality solutions in

short computing times and can improve them if longer times are available.

Christensen and Rousøe (2009) defined the length of a wall by tree search, and

place items in the wall with a greedy algorithm, in order to cope with loading se-

quence and load bearing strength constraints. Similarly, Pisinger (2002) proposed

a heuristic based on wall building approach, combined with tree-search heuristic,

which selects the best set of layer depths and strip widths, and finds the optimal

83

solution by solving a Knapsack Problem (KP), once the layer and strip is selected.

5.3 Mathematical Model

In this part, we propose a mathematical model to CLP based on Junqueira et al.

(2011) and Junqueira et al. (2012) with stability, loading sequence and stacking

assumptions.

Indices and Sets

K Set of orders

I Set of box types

Parameters

bik Number of boxes for order k of box type i

Pi Weight of box type i

L, W ,

H

Dimensions of the vehicle

X, Y , Z Possible positions along axes L, W and H

li, wi, hi Dimensions of the box type i

δik The distance allowed for order k having box type i between boxes of

consecutive destinations

σi Load bearing strength of box type i

M Very big number

Decision Variables

aikxyz

1 if a box of type i from destination k is placed with its front-left-

bottom corner at position (x, y, z)

0 otherwise

Lk The necessary length on axis x to load all boxes of order k

84

Maximize 0 (5.1)

Subject to
∑
i∈I

∑
k∈K

∑
x∈X;

x′−li+1≤x≤x′

∑
y∈Y ;

y′−wi+1≤y≤y′

∑
z∈Z;

z′−hi+1≤z≤z′

aikxyz ≤ 1 ∀x′ ∈ X, y′ ∈ Y, z′ ∈ Z (5.2)

∑
x∈X

∑
y∈Y

∑
z∈Z

aikxyz ≥ bik i ∈ I, k ∈ K (5.3)∑
j∈I;

z−hj≥0

∑
k′∈K;
k′≤k

∑
x∈X|x′−lj+1≤x
x≤x′+li−1

∑
y∈Y |y′−wj+1≤y
y≤y′+wi−1

L̄ij.W̄ij.ajk′xy(z′−hj)

≥ li.wi.aikx′y′z′

∀i ∈ I, k ∈ K, x′ ∈ X, y′ ∈ Y, z′ ∈ Z (5.4)

(x+ li).aikxyz ≤ Lk ∀i ∈ I, k ∈ K, x ∈ X, y ∈ Y, z ∈ Z (5.5)

Lk−1 − δik ≤ x.aikxyz + (1− aikxyz).M ∀i ∈ I, k ∈ K : k ≥ 2, x ∈ X, y ∈ Y, z ∈ Z (5.6)

Lk−1 ≤ Lk ∀k ∈ K, k ≥ 2 (5.7)∑
i∈I

∑
k∈K

∑
x∈X;

x′−li+1≤x≤x′

∑
y∈Y ;

y′−wi+1≤y≤y′

∑
z∈Z;

z′+1≤z≤H−hi

Pi
li.wi

aikxyz

≤
∑
i∈I

∑
k∈K

∑
x∈X;

x′−li+1≤x≤x′

∑
y∈Y ;

y′−wi+1≤y≤y′

∑
z∈Z;

z′−hi+1≤z≤z′

σi.aikxyz

∀x′ ∈ X, y′ ∈ Y, z′ ∈ Z (5.8)

aikxyz ∈ {0, 1} ∀x ∈ X, y ∈ Y, z ∈ Z, i ∈ I, k ∈ K (5.9)

Lk ≥ 0 ∀k ∈ K (5.10)

For constraint set (3), note that;

L̄ij = min{x′ + li, x+ lj} −max{x′, x}

W̄ij = min{y′ + wi, y + wj} −max{y′, y}.

The problem defined here is a feasibility problem, thus the objective function is

constant and zero. Constraint set (5.2) avoids items to occupy the same space.

Constraint set (5.3) ensures that all items are placed in the vehicle. Constraint set

(5.4) satisfy unloading sequence and stability of the items. Constraint set (5.5)

defines the distance of each order group to axis X (or the wall length of order

k). Constraint set (5.6) is for the cases, where the items of an order is loaded

on top of a consecutive delivery, and ensures that the inwards distance does not

exceed allowed arm length to prevent difficulties in unloading. Constraint set (5.7)

ensures that prior deliveries are close to the back of the vehicle, and satisfy LIFO

requirement. Constraint set (5.8) satisfy the required amount of weight on top of

the items regarding the load bearing strength for each type of item. Constraint

sets (5.9) and (5.10) define the integrality constraints.

85

In the mathematical model, weight distribution and orientation assumptions are

not included due to computational complexity. Yet, we may include those as-

sumptions based on the mathematical model proposed by Chen et al. (1995). We

coded model in GAMS solver, and tested it on randomly generated instances.

Most of the instances are either solved in a short time, or infeasible. Additionally,

model generation take quite a long time, as there are excessive number of deci-

sion variables. For instance, there are 20,000 decision variables for a vehicle with

L = 50, W = 20 and H = 20. Thus, we can only solve the model on very small

instances, and we cannot obtain a feasible solution in a reasonable computation

time.

5.4 Heuristic Approach

In this section, we propose a heuristic algorithm (CLP) based on the wall building

algorithm initially proposed by George and Robinson (1980), which also allows all

type of orientations. The wall building algorithm creates walls along the length

direction of the vehicle, and consecutively fills the walls. In our algorithm, we

included the real life practices, which are orientation, stability, weight distribution

and loading sequence assumptions. Stacking assumption is not included due to

the necessity of a short running time for the algorithm.

Firstly the orders are sorted accordingly with the LIFO approach; thus the order

to be delivered lastly is placed in the vehicle first. Secondly, the maximal bottom

area of each box type is determined by considering each possible orientation and

the boxes are sorted in decreasing order of maximal bottom area. Then the box

type from top of the list is selected as the next item to be placed. The length

of the recently placed box defines the length of the wall, and the boxes with the

86

same or similar size are placed consecutively to create the wall. Each placed box

creates two empty spaces; one of which is on top and the other is next to the

recently placed box. During the wall building, firstly the empty space on top is

checked, whether if the next item to be placed fits. If not, the empty space next to

the recently placed box is checked. The empty spaces, which cannot allocate any

boxes, are assigned to the set of rejected spaces, and checked if it can be merged

with the previously created rejected spaces. In such way, we create larger empty

spaces.

By controlling the starting point of walls and empty spaces, we ensure that the

real life constraints are satisfied. Orientation is satisfied by the algorithm itself

while selecting the next box to be placed. Additionally, the stability constraint is

satisfied during the placement by not allowing the box to be unsupported at any

percentage from the bottom surface. As for the weight distribution constraint,

we define the maximum weight that each compartment can take. When the max-

imum weight of a compartment is achieved, the current wall under construction

is cut and the algorithm starts from a new wall starting from the next compart-

ment. Additionally, the empty spaces in that compartment is cut up to the next

compartment in order to prevent any new placements. With respect to the load-

ing sequence, we restrict the wall building algorithm in such a way that the last

order to be delivered is assigned to the first wall until all boxes of that order is

placed. Then, remaining orders are placed to the last possible wall, so that the

latter deliveries are placed at the back of prior deliveries. Although each box of an

order needs to be loaded together, the order of previous delivery can be loaded to

the empty space on top of or next to the latter delivery. For such cases, the only

necessity is the ease of unloading operation. Therefore, we added a limit of arms

length, which ensures that each box is within a reachable limit, thus the delivery

can be performed easily. Respectively, when the algorithm starts to place a new

87

order, we rearrange the starting point of the empty spaces, and delete the empty

spaces before the arms length limit.

Algorithm 5.1 CLP Algorithm

Initialization: Sort box types in order of farthest destination and decreasing maxi-

mal bottom area.

Main Step: Until no boxes or no space left, repeat the following steps;

Step 1: Wall building

(1a) Choose next box type to start filling the wall. The length of the wall is the

length of the box in x direction of its chosen orientation.

(1b) Fill wall until no more space left or no boxes left of the chosen type.

(1c) Generate empty spaces to be filled in Step 2.

(1d) If weight limit is reached for the current compartment cut rejected and

empty spaces from the beginning point of (with respect to x axis) next compart-

ment. Set next wall’s beginning point to next compartment.

(1e) If there is no more box left of the chosen type choose the next type of box.

(1f) If there is no more box left of the current destination move to the set of

boxes of the next destination and cut rejected and empty spaces according to the

arm’s length parameter. Set next wall’s beginning point to next compartment.

(1g) Go to Step (2)..
Step 2: Space filling: Until no empty space left, repeat the following steps

(2a) Choose next box type to start filling the space. It is the first box fitting to

the space in the ordered set of boxes. If no box type fits in the space add space

to rejected spaces.

(2b) Fill space until no more space left or no boxes left of the chosen type.

(2c) Generate empty spaces.

(2d) If weight limit is reached for the current compartment cut rejected and

empty spaces from the beginning point of (with respect to x axis) next compart-

ment. Set next wall’s beginning point to next compartment.

(2e) If there is no more box left of the chosen type move to the next type of

box.

(2f) If there is no more box left of the current destination move to the set of

boxes of the next destination and cut rejected and empty spaces according to the

arm’s length parameter. Set next wall’s beginning point to next compartment.

(2g) Join empty and rejected spaces to generate larger spaces.

5.5 Computational Experiments

In this section, we describe and detail the experiments on the aforementioned

CLP algorithm. Initially, we test the performance of the algorithm on vehicle

utilization by using the instances of Bischoff and Ratcliff (1995a), and compare

the utilization and CPU performances of our algorithm with Moura and Oliveira

88

(2005). Then, we embed the CLP algorithm into the solution methodologies

proposed in Chapter 3 and Chapter 4.

5.5.1 Preliminary Experiment

As a preliminary experiment, we tested the utilization rate of the proposed algo-

rithm. In this sense, we coded the CLP algorithm in C environment and conducted

the experiments using Intel Core i5-3230M with 2.6GHz and 4 GB RAM. The data

set used in the experiments are well known test instances from Bischoff and Rat-

cliff (1995a). The instance set is decomposed of seven different levels with various

box types. At each level, there are 100 instances and increasing number of box

types. Such that, there are 3 different box types in level BR1, while level BR7

has 20 different box types. Additionally, the number of items for each box type is

more than 50 on the average. The total volume of an instance is almost as of the

volume capacity of a container. Therefore, it is unlikely to obtain feasible solution

for all instances, in which all boxes can be inserted. Yet, the experiments sug-

gest a utilization rate for the solution methodology. In this respect, we compare

the utilization and computation time performance of our CLP algorithm with the

performances of the algorithm proposed by Moura and Oliveira (2005).

As shown in Table 5.1, experiments suggest that the utilization rate of our al-

gorithm is 82% on the average, which is relative worse than those of Moura and

Oliveira (2005). Yet, our algorithm outperforms Moura and Oliveira (2005) in

terms of computation time. Considering that the CLP algorithm will be recalled

excessive number of times when it is embedded to the solution methodologies of

Chapter 3 and 4, computation time performance is more appreciated.

89

Table 5.1: Performances of CLP and Moura and Oliveira (2005)

Utilization rates (%)

CLP Moura and Oliveira (2005)

BR1 80.6 89.1

BR2 81.7 90.4

BR3 82.6 90.9

BR4 82.2 90.4

BR5 82.3 89.7

BR6 81.7 89.7

Ave. Utilization 81.9 90.0

Ave. CPU (sec) 0.3 172.1

5.5.2 SCD-TTFR with Loading Constraints

In this section, we conduct the computational experiments on the randomly gen-

erated data used in Chapter 3, including the dimensions of the boxes defined for

each order. As for the LIFO requirement, we assign a delivery priority sequence for

each order and transshipment terminal with respect to the distance of respective

destination to origin. Additionally, we randomly define orientation restrictions

for each order.

As for the acknowledged capacity of vehicles, we consider two capacities; (i) actual

and (ii) accepted (utilized) vehicle capacities. For (i) actual vehicle capacity,

we comply with the actual allowable weight limit and actual dimensions of a

vehicle. For (ii) accepted (utilized) vehicle capacity, we are inspired from the

real-life applications; freight forwarders’ manner of making dispatching plans by

considering less capacity than the actual capacity of the vehicles, especially for the

volume. In this way, freight forwarders guarantee that the orders planned for the

vehicle can fit. In this sense, we apply actual vehicle capacities in CLP algorithm

as it can utilize 82% on the average. During VNS algorithm, we also check if any

90

possible change is feasible in terms of capacities, yet this time we use the accepted

(utilized) vehicle capacities in order to guarantee the feasibility. To this end, we

applied accepted capacity as 80% of the actual capacity just for the volume by

adjusting only the height of the vehicle and keeping the other dimensions and

weight at their allowed maximum.

As a reminder for the reader, proposed VNS algorithm for SCD-TTFR iteratively

searches the increasing neighborhoods of the incumbent solution, and moves to

a new solution if any improvement is achieved. As for the interaction of VNS

and CLP algorithms, we call CLP if any improvement is observed after local

search. CLP checks if this new solution is feasible in terms of container loading

constraints, and returns 1 to VNS algorithm if the new solution is feasible, or 0

if it is infeasible. If the returned value is 1, then VNS continues by accepting the

new solution as the incumbent one. If the returned value is 0, the VNS algorithm

rejects the new solution and continues with the incumbent solution.

In order to decrease the number of times that CLP is called, we only check the

feasibility of vehicles which are altered during the shaking procedure. For instance,

if VNS applies a move operation, and moves one order from a vehicle to another

one, then only two vehicles have substantial changes. Assuming that the remaining

vehicles are previously checked and confirmed in terms of loading constraints, we

do not check their feasibility, and call CLP only for the altered two vehicles. In

this way, we attain savings in computation time.

We initially analyze the vehicle utilization rates of VNS with and without CLP in

Table 5.2 including the number of vehicles, the utilization rates (in %) considering

the volume (V), weight (W) and length (L) capacity of the vehicles. Paired sample

t-test suggests that the number of vehicles in the obtained solution increases

91

Table 5.2: Utilization Rates of VNS without and with CLP

VNS without CLP VNS with CLP

I E # # opt # of veh Gap (%) CPU (sec) # opt # of veh Gap (%) CPU (sec)

10 0 30 30 7.2 0.0 5.3 28 7.2 0.6 9.9

1 30 29 5.2 0.0 5.0 26 5.3 0.8 9.6

20 0 30 29 10.4 0.0 16.5 28 10.4 0.1 23.4

1 30 25 7.1 0.4 5.5 13 7.3 2.4 6.7

30 0 30 27 14.0 0.0 31.8 25 14.1 0.5 33.9

1 30 1 10.7 4.0 12.8 1 10.9 5.1 14.8

50 0 30 12 20.6 1.4 65.1 7 20.7 1.7 66.7

1 30 0 17.2 6.6 41.6 0 17.5 8.0 46.6

100 0 30 0 36.2 9.0 306.3 0 36.4 9.7 252.8

1 30 0 32.5 6.7 299.7 0 32.9 8.3 309.0

Grand Total 300 153 16.1 2.8 79.0 128 16.3 3.7 77.3

significantly, when CLP is embedded to VNS algorithm. Additionally, the average

utilization increases parallel to the increase in number of orders, and there is

a negative correlation between the number of vehicles and utilization rates as

expected. The elasticity of orders for departure also has a positive effect on

utilization rate. In other words, if there is a possibility to await an order for

another day, there may be more vehicles to accommodate this order. In this

sense, both larger instances and instances with elastic departure dates have more

possible movements. Therefore, the utilization rate increases if there are more

alternative dispatching plans for both algorithms; hence, less number of vehicles

are needed to depart all orders.

Inspired by the above findings, we examine the utilization rate of rejected vehicles

and number of times that CLP rejected during VNS. Table 5.3 shows the rejection

rate and utilization of rejected vehicles in terms of volume, weight and length. The

rejection rate indicates the proportion of total number of times CLP returned

infeasible to the total number of times CLP is called. As the possibility to move

92

an order to another vehicle increases (either because of increasing number of orders

or elasticity for departure), the number of times improvements, thus CLP is called,

increases.

Table 5.3: Utilization Rate of Rejected Vehicles by CLP

Utilization rate of Rejected Vehicles (%)

Rejection Volume Weight Length

I E Rate (%) Min Ave Max Min Ave Max Min Ave Max

10 0 14.7 80.1 88.3 95.2 40.0 55.7 63.3 77.6 83.1 94.3

1 15.3 67.2 90.1 99.7 22.7 45.8 59.2 64.4 84.9 96.0

20 0 6.9 87.5 95.4 99.6 27.0 48.6 91.0 80.9 90.7 98.3

1 13.5 78.6 94.3 99.9 30.4 63.5 95.9 74.9 90.1 98.8

30 0 8.0 59.4 91.8 99.4 26.4 60.4 90.4 57.2 85.1 95.6

1 9.7 59.1 93.0 99.7 26.3 62.2 96.3 58.4 87.8 99.3

50 0 10.6 81.6 93.1 99.7 18.0 65.0 91.2 74.5 88.1 98.8

1 15.4 84.4 94.4 99.8 31.2 63.1 94.7 77.9 88.9 98.6

100 0 15.6 77.0 92.7 99.4 33.7 65.4 90.8 71.0 87.9 98.0

1 15.3 88.1 96.5 99.9 23.9 63.1 90.6 82.1 91.8 99.9

Average 12.7 59.1 93.6 99.9 18.0 61.8 96.3 57.2 88.5 99.9

When the utilization rate of rejected vehicles is concerned, the major source of re-

jection seems to be the volume and length capacity, while weight capacity doesn’t

have a significant effect. We assume that such an outcome is specific to the char-

acteristics of generated instances, and can not be generalized. Considering the

utilization rates, we suggest that the vehicles with capacity over 90% will most

likely be rejected by CLP algorithm.

Table 5.4 shows the performances of both algorithm including the number of

instances solved to optimality, average gap and CPU time.The number of instances

that are optimally solved decreases when CLP is embedded to VNS. In addition

to increase in suboptimal solutions, the gap increases 1% on the average, and

the highest increase in gap is observed in the larger instances. On behalf of

93

Table 5.4: CPU and Quality Performances of VNS without and with
CLP

VNS without CLP VNS with CLP

I E # # opt Gap (%) CPU (sec) # opt Gap (%) CPU (sec)

10 0 30 30 0.0 5.3 28 0.6 9.9

1 30 29 0.0 5.0 26 0.8 9.6

20 0 30 29 0.0 16.5 28 0.1 23.4

1 30 25 0.4 5.5 13 2.4 6.7

30 0 30 27 0.0 31.8 25 0.5 33.9

1 30 1 4.0 12.8 1 5.1 14.8

50 0 30 12 1.4 65.1 7 1.7 66.7

1 30 0 6.6 41.6 0 8.0 46.6

100 0 30 0 9.0 306.3 0 9.7 252.8

1 30 0 6.7 299.7 0 8.3 309.0

Average 300 153 2.8 79.0 128 3.7 77.3

computation time performance, average CPU does not have a significant increase,

yet, paired sample t-test suggests that CPU time significantly increases for those

instances that are solved to optimality.

5.5.3 SCD-TTSM with Bin Packing

In this section, we conduct the experiments on Branch-and-Price B&P algorithm

with CLP with the instances used in Chapter 4. As for the necessary parameters

of CLP algorithm, we use the orientation restrictions defined in the previous

section. Additionally, we used the distance to the destination of orders to identify

the delivery sequence. With the same assumption of Section 5.5.2, CLP algorithm

uses actual vehicle capacity, and B&P algorithm accepts utilized vehicle capacity.

Figure 5.1 shows the CLP embedded B&P algorithm on a given node. As column

generation procedure generates a new column, we call CLP algorithm and check if

94

Start

Set initial columns

Solve RMP

Solve PP

Any new

columns?

Does CLP

returns

feasible?

Add constraint to PP

Add columns to RMP

End of Node

Get µk

Yes

No

Yes

No

Figure 5.1: Column Generation Procedure with CLP Algorithm on a
Given Node

the generated column is feasible in terms of loading constraints. If CLP algorithm

returns “1”, then the recently generated column is feasible. Thus, we added the

recently generated column to restricted master problem. If the returned value from

CLP is “0”, then the recently added column is infeasible when loading constraints

are concerned. In this case, we add a constraint to the pricing problem stating

that the sum of x variables (which indicates if the order is loaded on the vehicle)

should be less than the number of orders in that vehicle. Consequently, such a

column with the orders of rejected vehicle cannot be generated at the further

iterations, due to the recently added constraint. Additionally, we do not add the

indicated infeasible column to restricted master problem, hence all orders in the

rejected vehicle are no longer available to be loaded on the same vehicle.

In order to measure the effect of CLP algorithm accurately, we conduct compu-

95

tational experiments on small scale instances with I = {10, 20, 30}, which can be

solved optimally within the determined time limit. For the instances that hit the

specified time limit, we may not be able to estimate the effect on the computation

time, number of added columns and vehicles in the optimal solution. Additionally,

we may not compare the gap of sub-optimal instances, as the feasible regions of

two algorithms are not the same.

Table 5.5: Number of added columns and CPU of B&P with and with-
out CLP

B&P without CLP B&P with CLP

I B #opt # Cols # Nodes CPU (sec) #opt # Cols # Nodes CPU (sec)

10 10 30 13.9 0.5 0.1 30 13.5 0.5 0.2

70 30 24.9 7.3 0.5 30 21.9 4.3 0.3

20 10 30 42.1 8.2 2.0 30 38.9 4.7 1.2

70 30 137.3 110.8 11.2 30 117.8 142.2 8.4

30 10 30 79.0 84.7 20.6 30 70.7 43.9 15.1

70 24 509.0 1542.7 297.5 29 290.4 372.1 69.1

Average 174 121.5 249.2 47.0 179 85.4 85.0 13.9

Table 5.5 shows the number of instances optimally solved, number of columns

generated, number of visited nodes and computation time (in seconds). Surpris-

ingly, paired t-test results suggests that B&P with CLP outperforms B&P in all

reported indicators. If CLP returns “0”, thus the column generated is infeasible in

terms of loading constraints, then column generation algorithm tries to generate a

new column, which unlikely includes the orders with the highest dual prices from

the restricted master problem. Eventually, the pricing problem may not be able to

find a column with a negative reduced cost. In this sense, the column generation

procedure is able to generate less columns in B&P with CLP. Deriving from the

branching strategy, B&P visit less nodes, as there are less possible combinations

of orders in a vehicle, due to loading constraints. With all these factors combined

together, the CPU time required to solve the problem to optimality decreases,

and the number of solutions solved optimally increases.

96

Table 5.6 displays the effect of CLP Algorithm on the deviation of cost from the

value achieved by B&P without CLP and number of vehicles for the obtained so-

lution. Additionally, the rejection rate indicates the percent of rejected columns

to total number of times that pricing problem is solved. Although shown rejection

rate is high, it may be misleading, especially for small scale instances. For exam-

ple, B&P produces only one column for an instance with orders having dispersed

release dates. When CLP rejects the only one generated column, the rejection

rate will be 100%. However, if we examine the overall sums of rejected columns

and number of times pricing problem is called, CLP rejected approximately 2.5%

of all columns generated during all instances experimented.

Table 5.6: Effect of CLP on Number of Vehicles and Cost in the Optimal
Solution

Rejection Deviation # of Vehicles

I B Rate (%) (%) B&P B&P-CLP

10 10 36.8 5.9 7.2 7.6

70 21.9 4.2 5.3 5.5

20 10 20.7 5.3 10.6 11.1

70 19.1 5.5 7.2 7.6

30 10 11.6 4.7 14.2 14.8

70 17.7 3.0 10.8 11.1

Average 20.2 4.7 9.3 9.7

As a result of rejected vehicles, the number of vehicles required to depart all orders

increases. Thus, B&P with CLP departs more vehicles than B&P algorithm, and

paired t-test result suggests that such an increase is significant. Respectively, the

B&P with CLP obtains greater values for the same instance than B&P algorithm,

and the deviation from the optimal value of B&P is approximately 5%.

Table 5.7 shows the utilization rate of B&P without and with CLP (in percent)

97

in terms of volume, weight and length. For all three examined dimensions, the

utilization rate decreases approximately 2% on the average when the CLP algo-

rithm is embedded to B&P. The utilization rate is less than expected, yet the

experiments are conducted with instances having upto 30 orders, thus we assume

that utilization would increase as the number of orders in an instance increase.

Table 5.7: Utilization Rate of B&P without and with CLP (%)

B&P without CLP B&P with CLP

I B V W L V W L

10 10 50.4 18.3 48.5 49.0 17.7 47.1

70 68.2 24.7 65.7 67.0 24.1 64.6

20 10 55.2 26.2 53.4 53.2 25.1 51.4

70 80.6 38.4 77.9 77.4 36.7 74.8

30 10 65.7 27.8 62.9 62.9 26.7 60.3

70 86.2 36.7 82.6 84.1 36.0 80.6

Average 67.1 28.4 64.6 65.0 27.4 62.5

Table 5.8 shows the utilization rate of rejected vehicles in terms of volume, weight

and length. Similar to the findings of Section 5.5.2, major source of rejection is

likely to be volume or length capacity of vehicles as weight utilization of rejected

vehicles is relatively low. Yet, it is specific to the characteristics of the instances

as it is stated in the previous section. CLP performs better when there are more

orders in an instance, or orders can await for departure.

98

Table 5.8: Utilization Rate of Rejected Vehiles by CLP Algorithm (%)

Volume Weight Length

I B Min Ave Max Min Ave Max Min Ave Max

10 10 1.8 42.0 85.5 3.1 18.1 63.3 1.8 40.4 77.9

70 1.8 62.8 95.2 3.1 25.4 59.9 1.8 59.8 93.5

20 10 5.7 47.8 89.2 6.9 22.5 57.0 5.9 46.2 85.9

70 39.3 81.1 95.8 17.7 51.5 74.8 35.8 77.9 94.6

30 10 29.7 67.2 95.1 7.9 35.8 72.1 29.3 63.7 88.4

70 64.5 88.2 96.4 36.4 53.2 71.6 62.6 84.0 91.8

Average 1.8 66.2 96.4 3.1 35.3 74.8 1.8 63.3 94.6

5.6 Conclusion and Future works

In this chapter we develop a 3D-BPP Algorithm that controls if the generated

vehicles are feasible in terms of real-life loading constraints, which is also known

as CLP algorithm. The developed algorithm is based on the wall building algo-

rithm proposed by George and Robinson (1980). Then we integrate the developed

algorithm to both solution methodologies in Chapter 3 and Chapter 4.

In order to test the time and utilization performance of CLP algorithm, we tested

the algorithm on the well known bin-packing instances of Bischoff and Ratcliff

(1995a). The experiment findings suggest that the utilization rate is approxi-

mately 82%, yet our algorithm can produce solution in a very short computation

time, 0.3 seconds on the average. If we consider that the CLP algorithm is called

several times when it is embedded to both algorithms, computation time perfor-

mance takes on critical importance. Utilization rate of the test runs is relatively

lower than the ones reported in the literature. Yet it would be sufficient enough

to create feasible solutions as we assume that the industry utilizes the vehicle

99

capacities around 80%, and accepts utilized vehicle capacity as such.

While incorporating the CLP algorithm to the solution methodology in Chapter 3,

namely VNS, we call CLP algorithm each time we observed an improvement after

local search procedure. If all of the altered vehicles are feasible in terms of loading

constraints, then the algorithm moves to the new solution. If not, the algorithm

rejects the incumbent solution and continues with the rejected one. For B&P,

we call CLP algorithm each time pricing problem generates a new column. If

CLP indicates that recently generated column is feasible, then it is added to

restricted master problem. If the new column is infeasible, then the algorithm

adds a constraint, which disables the orders in the generated column to be on the

same vehicle all together.

When we examine the results of computational experiments, the embedded CLP

algorithm increases the computation time to solve instances to optimality for VNS,

while decreasing computation time for B&P. Such diverse effect on computation

time of CLP originates from the different structures of VNS and B&P. Firstly,

we do not have a tabu list for the vehicles that are detected infeasible by CLP

algorithm. Additionally, VNS continues to search solution space until the defined

iteration limit is achieved, and without a tabu list, some infeasible vehicles may

be generated recurrently and duplicate calls of CLP may be possible. As a conse-

quence of redundant calls of CLP and the obligatory iteration limit, computation

time increases. On the other hand, B&P continues to hold a record of infeasible

vehicles by keeping the constraints added to pricing problem. As the number of

possible combinations of orders decrease with the constraints disabling infeasible

vehicles to be generated again, so does the number of nodes to be visited. Con-

sidering that B&P stops when all nodes are visited, and there are less nodes to

visit when CLP is embedded; hence, computation time decreases.

100

When we examine the change in number of vehicles and utilization rate after

the CLP algorithm is embedded, the results of experiments suggests that CLP

impaired both performances. Due to rejected vehicles, utilization rate decreases,

and the number of vehicles in the obtained solution increases. As a consequence,

solution quality decreases for both algorithms. For VNS with CLP, the number

of optimal solutions decrease and the average increase in gap is around 1%. For

B&P with CLP, the average deviation from the optimal solution of B&P without

CLP is the approximately 5%.

Although utilization rate of CLP is sufficient enough to meet real-life expectations,

deriving from the above findings, CLP still leads to inefficient use of vehicles, and

thus poor solution quality. Therefore, we assume two different approaches for

further research directions. Firstly, both algorithms may be tested on instances

having small boxes in order to find the major source of low utilization rate. For

instance, weight utilization is relatively lower than the volume and length utiliza-

tion, yet we assume that such a result is specific to our instances. However, we

cannot foresee if volume and length utilization rates are also low because of in-

stance characteristics. Secondly, CLP algorithm may be improved to increase the

utilization rate. As another further research, a tabu list for VNS algorithm, which

keeps the infeasible vehicles may also be incorporated to decrease the rejection

rate and reduce effect of CLP on computation time.

101

Chapter 6

Conclusion and Future Research

In this chapter, we will summarize the main focus of this thesis, applied method-

ology and findings and conclude with the future research objectives.

In this thesis, we aim at providing new solution methodologies for a real-life

problem of freight forwarders providing long haul freight transportation and LTL

service. The main focus is to consolidate LTL orders with time-windows. The

orders may be delivered either to their destinations directly or by using trans-

shipment terminals. The route of a vehicle is defined by the farthest destination

in the vehicle, and cost is associated with that farthest destination. If contracted

vehicles are used, then the predefined routes, which are indicated in the annual

contracts, determines the cost of vehicle by considering the farthest destination.

If spot market vehicles are used, then the cost is subject to the distance to the

farthest destination and an operation cost. In either way, the main objective of

freight forwarders is to minimize the total cost of used vehicles and the cost using

transshipment terminal. Eventually, such a real life problem is different from the

ones in the literature in two ways; (i) cost structure and (ii) delivery structure. In

this context, we propose two different problems, which have similar assumptions

102

of loading constraints and delivery structures, yet having different cost structures.

The first problem having fixed and predefined routes, respectively fixed costs for

those routes, is commonly observed in annual contracts between freight forwarders

and vehicle owners. We call this problem as Shipment Consolidation and Dis-

patching with Fixed Routes (SCD-TTFR). We initially develop a mathematical

model and two lower bound algorithms, then propose a Variable Neighborhood

Search (VNS) Algorithm for such a problem.

We added 3 types of constraints to the proposed mathematical model in order to

enhance the performance, which are symmetry breaking constraint, defining an

upper bound for M and direct relation between order assignment to vehicle and

vehicle departure. Computational experiments show that all three enhancements

provides better solutions. We also conduct a computational experiment to indi-

cate the effect of number of routes, and tested the enhanced mathematical model

with different number of routes. The results show that a larger route set with

more predefined routes brings about an increase in computation time. When we

compare VNS algorithm with the mathematical model, VNS outperforms math-

ematical model in terms of computation time, and VNS provides approximately

the same solution quality as of the mathematical model. Both number of orders in

an instance and elasticity of orders to await for departure affects the performance

of VNS algorithm on solution quality and computation time.

As for the further research directions for Chapter 3, we may improve the quality

of lower bound by applying another algorithm. Additionally, the performance

of VNS can be enhanced by increasing the iteration limit and including more

operations to shaking procedure.

The second problem is mainly faced when there are no contracts between freight

103

forwarder and vehicle owner, and the cost of a vehicle is determined by the spot

market prices. Therefore, the cost of a vehicle is defined by the farthest destination

in the vehicle and excessive deviations along the route to that farthest destina-

tion is not allowed. We call the second problem as Shipment Consolidation and

Dispatching with Spot Market Prices (SCD-TTSM). We develop a mathematical

model for the problem, then applied Dantzig-Wolfe Decomposition approach and

a Branch-and-Price (B&P) algorithm, in which a column generation procedure

based on the decomposed problem is called iteratively.

The computational experiments on the solution methodology of Chapter 4 show

that B&P algorithm provides better lower bound than original formulation (OF),

and outperforms OF in terms of both computation time and solution quality. The

experiment results show that the performance of algorithm changes under different

problem characteristics. The number of visited nodes after root node and number

of generated columns substantially increases as the the number of instances in

an order increases. Similarly, the algorithm visits more nodes and produces more

columns when there is an elasticity to await orders. As there are more possible

combinations of orders for larger instances or instances having elastic orders, such

an increase on number of generated columns and visited nodes is expected. On

the other hand, the algorithm can find the optimal solution at a very early stage

of iterations, yet it continues to add columns, which are redundant. Such an

outcome shows that B&P can find near optimal solutions in a short computation

time.

As the number of instances increases, the quality of lower bounds increase, and

the number of nodes to be visited increases substantially. As a future study, we

can improve the lower bound by changing the search strategy to depth-first or

mixed breadth-depth traversing algorithm, as it is proposed by Fayed and Atiya

104

(2013). Additionally, in order to enhance the upper bound performance for large

scale instances, we may apply fast and greedy solution approaches to solve pricing

problem as another extension.

In Chapter 5, we develop a mathematical model and a heuristic algorithm, which

is based the wall building algorithm of George and Robinson (1980), and includes

the real life constraints, such as orientation, stability, weight distribution, loading

sequence and stacking assumptions. Basically the heuristic algorithm checks if

those constraints are satisfied in the generated solution, thus it is a heuristic for

a commonly known problem; Container Loading Problem (CLP). We integrated

the CLP Algorithm to both algorithms proposed for the two problems.

Initially, we tested the performance of our heuristic algorithm on the test instances

of Bischoff and Ratcliff (1995a), and results show that the utilization rate (approx-

imately 82 %) and computation time (0.3 seconds on the average) is acceptable

enough to meet the utilization requirement of industry, and the requirement of a

quick response in order to integrate the heuristic to both algorithms. Afterwards,

we tested the performance of CLP integrated VNS and B&P algorithms on the

randomly generated instances of Chapter 3. We examine that utilization rate and

the number of vehicles are impaired after CLP is embedded to VNS and B&P. As

a result, both solution quality decreases, hence for VNS with CLP, the number

of optimal solutions decrease and the average increase in gap is around 1%. For

B&P with CLP, the average deviation from the optimal solution of B&P without

CLP is the approximately 5%. As for the computation time performance, the

embedded CLP algorithm increases the computation time to solve instances to

optimality for VNS, while decreasing computation time for B&P.

As for the future works of Chapter 5, we may test the CLP embedded algorithms

with small boxes in order to see if the major source of low utilization rate is the

105

characteristics of boxes. Additionally, we may improve CLP algorithm to increase

the utilization rate. As another further research, we may also incorporate a tabu

list for VNS algorithm, which keeps the infeasible vehicles. In this way, we expect

to decrease the rejection rate and reduce effect of CLP on computation time.

In this thesis, we focus on two problems separately, yet it is possible to take the

problem together under some circumstances. For instance, when there is high

season, it may be a good idea to use contracted vehicles as the prices indicated

in the annual contracts will most likely be relatively lower than the spot market

prices. The other way around, when it is low season, spot market prices will be

lower than the annual contracted prices, hence vehicles of spot market will be

favorable. In this sense the freight forwarder should decide the type of vehicle to

be used, either contracted vehicles, or vehicles of spot market. In this case, we

assume that both types of problems can be managed under B&P algorithm, by

defining two types of columns, each representing a problem type. For SCD-TTSM,

the transition to a problem with types of columns would be straightforward, yet

decomposition of SCD-TTFR requires further attention.

In addition to the second type of pricing problem, the pricing problem may be

formulated as Prize Collecting Open Traveling Salesman Problem (PC O-TSP).

In this way, more accurate routes may be generated, yet the computational com-

plexity, thus computation time required to solve pricing problem to optimality

increases.

The tactical level decisions in the stated problem may be another research direc-

tion. Especially the contracted transshipment terminals plays a significant role

in consolidation decisions in terms of location and prices defined in the contracts.

Considering the number of contracted transshipment terminals and their loca-

tions, both will affect the routing decisions, whereas the prices of the contracted

106

terminals will influence the delivery terms of orders (either direct delivery or deliv-

ery from a transshipment terminal). In this sense, enhancements on both tactical

decisions may benefit freight forwarders in the long run.

In conclusion, the analytical solution methodologies that we propose throughout

the thesis produces good quality solutions in a very short computation time. Ad-

ditionally, we tested proposed solution methodologies on a real-life instance, and

the obtained solutions provide approximately 10% savings for both algorithms,

and are applicable in real life. In this sense, proposed solution methodology may

benefit international freight forwarders in three perspectives; (i) cost savings, (ii)

efficient use of human resources, and (iii) time utilization.

107

Bibliography

Abdelwahab, W. M. and Sargious, M. (1990). Freight rate structure and optimal

shipment size in freight. Logistics and Transportation Review, 26(3):271.

Andersen, J., Christiansen, M., Crainic, T. G., and Grønhaug, R. (2011). Branch

and price for service network design with asset management constraints. Trans-

portation Science, 45(1):33–49.

Attanasio, A., Fuduli, A., Ghiani, G., and Triki, C. (2007). Integrated shipment

dispatching and packing problems: a case study. Journal of Mathematical Mod-

elling and Algorithms, 6(1):77–85.

Azi, N., Gendreau, M., and Potvin, J.-Y. (2010). An exact algorithm for a vehicle

routing problem with time windows and multiple use of vehicles. European

Journal of Operational Research, 202(3):756–763.

Barcos, L., Rodŕıguez, V., Álvarez, M. J., and Robusté, F. (2010). Routing de-

sign for less-than-truckload motor carriers using ant colony optimization. Trans-

portation Research Part E: Logistics and Transportation Review, 46(3):367–383.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., and Vance,

P. H. (1998). Branch-and-price: Column generation for solving huge integer

programs. Operations Research, 46(3):316–329.

108

Barnhart, C. and Schneur, R. R. (1996). Air network design for express shipment

service. Operations Research, 44(6):852–863.

Baykasoglu, A. and Kaplanoglu, V. (2011). A multi-agent approach to load con-

solidation in transportation. Advances in Engineering Software, 42(7):477–490.

Berger, J., Barkaoui, M., and Braysy, O. (2003). A route-directed hybrid ge-

netic approach for the vehicle routing problem with time windows. Information

Systems and Operational Research, 41(2):179–194.

Beuthe, M. and Kreutzberger, E. (2008). Consolidation and trans-shipment. In

Handbook of Logistics and Supply-Chain Management, pages 239–252. Emerald

Group Publishing Limited.

Bischoff, E. (2006). Three-dimensional packing of items with limited load bearing

strength. European Journal of Operational Research, 168(3):952–966.

Bischoff, E. and Ratcliff, M. (1995a). Issues in the development of approaches to

container loading. Omega, 23(4):377 – 390.

Bischoff, E. E. (1991). Stability aspects of pallet loading. Operations-Research-

Spektrum, 13(4):189–197.

Bischoff, E. E. and Marriott, M. D. (1990). A comparative evaluation of heuristics

for container loading. European Journal of Operational Research, 44(2):267 –

276.

Bischoff, E. E. and Ratcliff, M. (1995b). Issues in the development of approaches

to container loading. Omega, 23(4):377–390.

Bookbinder, J. H. and Higginson, J. K. (2002). Probabilistic modeling of freight

consolidation by private carriage. Transportation Research Part E: Logistics

and Transportation Review, 38(5):305–318.

109

Bortfeldt, A. and Gehring, H. (1998). Applying Tabu Search to Container Loading

Problems, pages 533–538. Springer Berlin Heidelberg, Berlin, Heidelberg.

Bortfeldt, A., Gehring, H., and Mack, D. (2003). A parallel tabu search algorithm

for solving the container loading problem. Parallel Computing, 29(5):641 – 662.

Parallel computing in logistics.

Bortfeldt, A. and Wäscher, G. (2013). Constraints in container loading–a state-

of-the-art review. European Journal of Operational Research, 229(1):1–20.

Brennan, J. J. (1981). Models and analysis of temporal consolidation. Dissertation

Abstracts International Part B: Science and Engineering[DISS. ABST. INT.

PT. B- SCI. & ENG.],, 42(1):1981.

Campbell, J. F. (1990). Freight consolidation and routing with transportation

economies of scale. Transportation Research Part B: Methodological, 24(5):345–

361.

Ceschia, S. and Schaerf, A. (2013). Local search for a multi-drop multi-container

loading problem. Journal of Heuristics, 19(2):275–294.

Çetinkaya, S. (2005). Coordination of inventory and shipment consolidation deci-

sions: A review of premises, models, and justification. In Applications of supply

chain management and e-commerce research, pages 3–51. Springer.

Çetinkaya, S. and Lee, C.-Y. (2000). Stock replenishment and shipment scheduling

for vendor-managed inventory systems. Management Science, 46(2):217–232.

Çetinkaya, S., Mutlu, F., and Wei, B. (2014). On the service performance of alter-

native shipment consolidation policies. Operations Research Letters, 42(1):41–

47.

110

Chen, C., Lee, S.-M., and Shen, Q. (1995). An analytical model for the container

loading problem. European Journal of Operational Research, 80(1):68–76.

Christensen, S. G. and Rousøe, D. M. (2009). Container loading with multi-drop

constraints. International Transactions in Operational Research, 16(6):727–743.

Closs, D. J. and Cook, R. L. (1987). Multi-stage transportation consolidation

analysis using dynamic simulation. International Journal of Physical Distribu-

tion & Materials Management, 17(3):28–45.

Coffman Jr, E. G., Garey, M. R., and Johnson, D. S. (1996). Approximation

algorithms for bin packing: a survey. In Approximation algorithms for NP-hard

problems, pages 46–93. PWS Publishing Co.

Crainic, T. G. (1984). A comparison of two methods for tactical planning in rail

freight transportation. In Operational Research’84: Proceedings.

Crainic, T. G. (2000). Service network design in freight transportation. European

Journal of Operational Research, 122(2):272–288.

Crainic, T. G. (2003). Long-haul freight transportation. Springer.

Crainic, T. G. and Laporte, G. (1997). Planning models for freight transportation.

European Journal of Operational Research, 97(3):409–438.

Crainic, T. G. and Rousseau, J.-M. (1986). Multicommodity, multimode freight

transportation: A general modeling and algorithmic framework for the ser-

vice network design problem. Transportation Research Part B: Methodological,

20(3):225–242.

Cunha, C. B. and Silva, M. R. (2007). A genetic algorithm for the problem

of configuring a hub-and-spoke network for a ltl trucking company in brazil.

European Journal of Operational Research, 179(3):747–758.

111

Daganzo, C. F. (1988). Shipment composition enhancement at a consolidation

center. Transportation Research Part B: Methodological, 22(2):103–124.

Danna, E. and Pape, C. (2005). Branch-and-price heuristics: A case study on

the vehicle routing problem with time windows. In Column Generation, pages

99–129. Springer.

Dantzig, G. B. and Ramser, J. H. (1959). The truck dispatching problem. Man-

agement Science, 6(1):80–91.

Davies, A. P. and Bischoff, E. E. (1999). Weight distribution considerations in

container loading. European Journal of Operational Research, 114(3):509–527.

Desrosiers, J., Dumas, Y., and Soumis, F. (1986). A dynamic programming so-

lution of the large-scale single-vehicle dial-a-ride problem with time windows.

American Journal of Mathematical and Management Sciences, 6(3-4):301–325.

Desrosiers, J. and Lübbecke, M. E. (2005). A primer in column generation. In

Column Generation, pages 1–32. Springer.

Dumas, Y., Desrosiers, J., and Soumis, F. (1991). The pickup and delivery prob-

lem with time windows. European Journal of Operational Research, 54(1):7–22.

Erera, A., Hewitt, M., Savelsbergh, M., and Zhang, Y. (2013). Improved load

plan design through integer programming based local search. Transportation

Science, 47(3):412–427.

Estrada, M. and Robusté, F. (2009). Long-haul shipment optimization for less-

than-truckload carriers. Transportation Research Record: Journal of the Trans-

portation Research Board, (2091):12–20.

Fayed, H. A. and Atiya, A. F. (2013). A mixed breadth-depth first strategy

112

for the branch and bound tree of euclidean k-center problems. Computational

Optimization and Applications, 54(3):675–703.

Fischetti, M., Toth, P., and Vigo, D. (1994). A branch-and-bound algorithm

for the capacitated vehicle routing problem on directed graphs. Operations

Research, 42(5):846–859.

Fu, Z., Eglese, R., and Li, L. Y. (2005). A new tabu search heuristic for the

open vehicle routing problem. Journal of the Operational Research Society,

56(3):267–274.

Galbreth, M. R., Hill, J. A., and Handley, S. (2008). An investigation of the value

of cross-docking for supply chain management. Journal of Business Logistics,

29(1):225–239.

Gehring, H. and Bortfeldt, A. (1997). A genetic algorithm for solving the con-

tainer loading problem. International Transactions in Operational Research,

4(5-6):401–418.

Gehring, H., Menschner, K., and Meyer, M. (1990). A computer-based heuris-

tic for packing pooled shipment containers. European Journal of Operational

Research, 44(2):277 – 288.

Gendreau, M., Iori, M., Laporte, G., and Martello, S. (2006). A tabu search

algorithm for a routing and container loading problem. Transportation Science,

40(3):342–350.

George, J. and Robinson, D. (1980). A heuristic for packing boxes into a container.

Computers & Operations Research, 7(3):147 – 156.

Ghiani, G., Laporte, G., and Musmanno, R. (2004). Introduction to Logistics

Systems Planning and Control. John Wiley & Sons.

113

Guastaroba, G., Speranza, M. G., and Vigo, D. (2016). Intermediate facilities in

freight transportation planning: a survey. Transportation Science, 50(3):763–

789.

Gümüş, M. and Bookbinder, J. H. (2004). Cross-docking and its implications in

location-distribution systems. Journal of Business Logistics, 25(2):199–228.

Gupta, Y. P. and Bagchi, P. K. (1987). Inbound freight consolidation under

just-in-time procuremen. Journal of Business Logistics, 8(2):74.

Hall, R. W. (1987a). Consolidation strategy: inventory, vehicles and terminals.

Journal of Business Logistics, 8(2):57.

Hall, R. W. (1987b). Direct versus terminal freight routing on a network with

concave costs. Transportation Research Part B: Methodological, 21(4):287–298.

Hansen, P. and Mladenović, N. (2001). Variable neighborhood search: Principles

and applications. European Journal of Operational Research, 130(3):449–467.

Harks, T., König, F. G., Matuschke, J., Richter, A. T., and Schulz, J. (2014). An

integrated approach to tactical transportation planning in logistics networks.

Transportation Science, 50(2):439–460.

Hemminki, J. (1994). Container loading with variable strategies in each layer.

Technical report, University of Turku, Institute of Applied Mathematics.

Hemminki, J., Leipala, T., and Nevalainen, O. (1998). On-line packing with boxes

of different sizes. International Journal of Production Research, 36(8):2225–

2245.

Higginson, J. K. and Bookbinder, J. H. (1994). Policy recommendations for a

shipment-consolidation program. Journal of Business Logistics, 15(1):86–113.

114

Higginson, J. K. and Bookbinder, J. H. (1995). Markovian decision processes in

shipment consolidation. Transportation Science, 29(3):242–255.

Higginson, J. K. and Bookbinder, J. H. (2005). Distribution centres in supply

chain operations. In Logistics Systems: Design and Optimization, pages 67–91.

Springer.

Irnich, S. (2002). Netzwerk-Design für zweistufige Transportsysteme und ein

Branch-and Price-Verfahren für das gemischte Direkt-und Hubflugproblem. PhD

thesis, Bibliothek der RWTH Aachen.

Jarrah, A. I., Johnson, E., and Neubert, L. C. (2009). Large-scale, less-than-

truckload service network design. Operations Research, 57(3):609–625.

Junqueira, L., Morabito, R., and Yamashita, D. S. (2011). Mip-based approaches

for the container loading problem with multi-drop constraints. Annals of Op-

erations Research, 199(1):51–75.

Junqueira, L., Morabito, R., and Yamashita, D. S. (2012). Three-dimensional con-

tainer loading models with cargo stability and load bearing constraints. Com-

puters & Operations Research, 39(1):74–85.

Khebbache-Hadji, S., Prins, C., Yalaoui, A., and Reghioui, M. (2013). Heuris-

tics and memetic algorithm for the two-dimensional loading capacitated vehicle

routing problem with time windows. Central European Journal of Operations

Research, 21(2):307–336.

Kim, D., Barnhart, C., Ware, K., and Reinhardt, G. (1999). Multimodal express

package delivery: A service network design application. Transportation Science,

33(4):391–407.

Koca, E. and Yıldırım, E. A. (2012). A hierarchical solution approach for a

115

multicommodity distribution problem under a special cost structure. Computers

& Operations Research, 39(11):2612–2624.

Kuo, Y. (2010). Using simulated annealing to minimize fuel consumption for the

time-dependent vehicle routing problem. Computers & Industrial Engineering,

59(1):157–165.

Lee, Y. H., Jung, J. W., and Lee, K. M. (2006). Vehicle routing scheduling

for cross-docking in the supply chain. Computers & Industrial Engineering,

51(2):247–256.

Lin, J.-L., Chang, C.-H., and Yang, J.-Y. (2006). A study of optimal system

for multiple-constraint multiple-container packing problems. In Advances in

Applied Artificial Intelligence, pages 1200–1210. Springer.

Liu, J., Yue, Y., Dong, Z., Maple, C., and Keech, M. (2011). A novel hybrid

tabu search approach to container loading. Computers & Operations Research,

38(4):797 – 807.

Liu, Z., Meng, Q., Wang, S., and Sun, Z. (2014). Global intermodal liner shipping

network design. Transportation Research Part E: Logistics and Transportation

Review, 61:28–39.

Lodi, A., Martello, S., and Vigo, D. (2002). Heuristic algorithms for the three-

dimensional bin packing problem. European Journal of Operational Research,

141(2):410 – 420.

Loh, T. and Nee, A. (1992). A packing algorithm for hexahedral boxes. In Pro-

ceedings of the Conference of Industrial Automation, Singapore, volume 115126,

pages 115–126.

Lübbecke, M. E. and Desrosiers, J. (2005). Selected topics in column generation.

Operations Research, 53(6):1007–1023.

116

Marin, A. and Salmerón, J. (1996). Tactical design of rail freight networks. part

i: Exact and heuristic methods. European Journal of Operational Research,

90(1):26–44.

Martello, S., Pisinger, D., and Vigo, D. (2000). The three-dimensional bin packing

problem. Operations Research, 48(2):256–267.

Min, H. (1996). Consolidation terminal location-allocation and consolidated rout-

ing problems. Journal of Business Logistics, 17(2):235.

Min, H. and Cooper, M. (1990). A comparative review of analytical studies on

freight consolidation and backhauling. Logistics and Transportation Review,

26(2):149.

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers

& Operations Research, 24(11):1097–1100.

Moura, A. and Oliveira, J. F. (2005). A grasp approach to the container-loading

problem. IEEE Intelligent Systems, 20(4):50–57.

Parreño, F., Alvarez-Valdes, R., Tamarit, J. M., and Oliveira, J. F. (2008). A

maximal-space algorithm for the container loading problem. INFORMS Journal

on Computing, 20(3):412–422.

Pisinger, D. (2002). Heuristics for the container loading problem. European Jour-

nal of Operational Research, 141(2):382 – 392.

Powell, W. B. (1986). A local improvement heuristic for the design of less-than-

truckload motor carrier networks. Transportation Science, 20(4):246–257.

Powell, W. B. and Sheffi, Y. (1983). The load planning problem of motor carriers:

Problem description and a proposed solution approach. Transportation Research

Part A: General, 17(6):471–480.

117

Powell, W. B. and Sheffi, Y. (1989). Design and implementation of an inter-

active optimization system for network design in the motor carrier industry.

Operations Research, 37(1):12–29.

Ratcliff, M. S. W. and Bischoff, E. E. (1998). Allowing for weight considerations

in container loading. Operations-Research-Spektrum, 20(1):65–71.

Santos, F. A., da Cunha, A. S., and Mateus, G. R. (2013). Branch-and-price algo-

rithms for the two-echelon capacitated vehicle routing problem. Optimization

Letters, pages 1–11.

Sariklis, D. and Powell, S. (2000). A heuristic method for the open vehicle routing

problem. Journal of the Operational Research Society, pages 564–573.

Savelsbergh, M. W. (1992). The vehicle routing problem with time windows:

Minimizing route duration. ORSA Journal on Computing, 4(2):146–154.

Sheffi, Y. (1986). Carrier shipper interactions in the transportation market: An

analytical framework. Journal of Business Logistics, 7(1).

Solomon, M. M. (1984). Vehicle routing and scheduling with time window con-

straints: Models and algorithms. Technical report, No. 84-17364 UMI.

Tokcaer, S., Özpeynirci, Ö., Demir, M. H., and Çelik, İ. (2016). Shipment consol-

idation and dispatching problem at Ekol Logistics.

Vanderbeck, F. (2000). On dantzig-wolfe decomposition in integer programming

and ways to perform branching in a branch-and-price algorithm. Operations

Research, 48(1):111–128.

Wang, Z., Li, K. W., and Levy, J. K. (2008). A heuristic for the container

loading problem: A tertiary-tree-based dynamic space decomposition approach.

European Journal of Operational Research, 191(1):86–99.

118

Wieberneit, N. (2008). Service network design for freight transportation: a review.

OR Spectrum, 30(1):77–112.

Wu, Y., Li, W., Goh, M., and de Souza, R. (2010). Three-dimensional bin packing

problem with variable bin height. European Journal of Operational Research,

202(2):347 – 355.

Zhao, X., Bennell, J. A., Bektaş, T., and Dowsland, K. (2016). A comparative

review of 3d container loading algorithms. International Transactions in Oper-

ational Research, 23(1-2):287–320.

119

CURRICULUM VITAE

Sinem Tokcaer was born in 1983, Izmir, and completed high school education

in Buca Anatolian High School. In 2005, she received her Bachelor’s Degree in

European Union from University of Bahcesehir, and afterwards, studied Logistics

and Maritime transportation in Dokuz Eylul University. In the meanwhile, she

worked at logistics service providers in İzmir. In October 2012, she enrolled to

Ph.D in Business Administration with a major of Logistics Management at Izmir

University of Economics, where she also began to work as research assistant at

the department of Logistics Management.

120

	Abstract
	Özet
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Problem Definition
	Motivation and Objectives
	Organisation of the Thesis

	Literature Review
	Shipment Consolidation
	Temporal Consolidation
	Spatial Consolidation

	Transportation Planning Problems
	Network Design Problems
	Vehicle Routing Problems
	Intermediate Facilities in Transportation Planning Problems

	Literature Gap

	Shipment Consolidation and Dispatching with Transshipment Terminals and Fixed Routes
	Introduction
	Problem Statement and Mathematical Model
	Mathematical Model
	Computational Complexity

	Lower Bound Algorithms
	Lower Bound 1: Relax Integrality Constraints
	Lower Bound 2: Relax Capacity Constraints

	Variable Neighborhood Search
	Experiments
	Randomly Generated Instances
	Preliminary Experiments
	Computational Results

	Conclusion and Further Research

	Shipment Consolidation and Dispatching with Transshipment Terminals and Spot Market Prices
	Introduction
	Literature Review
	Problem Formulation
	Assumptions
	Mathematical Model

	Solution Methodology
	Dantzig-Wolfe Decomposition
	Column Generation
	Branch-and-Price Algorithm

	Computational Experiments
	Performances of Original Formulation and Branch-and-Price
	Computational Performance of B&P

	Conclusion and Future Works

	Integrated Three Dimensional Bin Packing Problem and SCD-TT
	Introduction
	Literature Review
	Mathematical Model
	Heuristic Approach
	Computational Experiments
	Preliminary Experiment
	SCD-TTFR with Loading Constraints
	SCD-TTSM with Bin Packing

	Conclusion and Future works

	Conclusion and Future Research
	Bibliography
	Curriculum Vitae

