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1. Introduction and preliminaries

Let T be an arbitrary time scale that is unbounded above. This research considers the questions of stability and periodicity
of the completely delayed equation

X2 () = —a()x(8(1)8 (1), (1.1)
where § : [tg, 00) N T — [8(tg), o0) N T is a strictly increasing and A-differentiable delay function having the following
properties:

S(t) <t
(bo00)(t) = (o 0d)(t) (1.2)
84(t)] < o0

for all t € T. Throughout the paper, the time scale T should also be assumed to include §(t).

In the following table, we give some particular time scales with specific delay functions and show what Eq. (1.1) turns
into.

Time scale Delay function Eq.(1.1)

T, =R s()y=t—7,T €Ry  Sx(t) = —a(O)x(t — 1)
Th = hZ 8ty =t—ht,T €N Apx(t) = —a(O)x(t — 7)
Tq=q” ={q" : m € Z} U{0} §(t) =, TeN Dx(t) = —a()x()

Ti={t=k—q":ke€Z meNy} &t)=t—1,7€N  Ax(t) =—a(t)x(t — 1)
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Here, we let 0 < g < 1 and define
x(t + h) — x(t)

Apx(t) = — fort e hZ,h > 0
) — x(t
Dgx(t) = x(gt) —x(©) fort =q",
(g— Dt
k — m+1y k— g™
Aqp(t) = plk—q" ) — otk —q7) fort =k —q".
qn(1—q)

In [1], Raffoul investigated the stability and periodicity of the difference delay equation
Ax(t) = —a(t)x(t — 1),

where A indicates the forward difference operator.
The forward jump operator o : T — T is a mapping defined by

o(t) =inf{seT:s > t}.

The graininess function i : T — R is given by u(t) = o(t) — t. A point t € T is said to be right scattered if o (t) > t. An
isolated time scale T is a time scale consisting only of right scattered points. T = hZ, T = N, and T = g* are examples of
isolated time scales.

Stability of dynamic delay equation (1.1) has been studied in [2]. It was proven (see [2, Theorem 3.1]) that every solution
of (1.1) goes to zero at infinity if T = R or T is an isolated time scale. For an arbitrary time scale, sufficient conditions for
the functions fi(t, x(s)); i = 1, 2, ..., nand g(t, s) were given to deduce asymptotic stability of trivial solution of nonlinear
dynamic equation

t n
xA(t):—/ (Zﬁ(t,x(s)))gAs(t,s)As, t € [to,00) NT (1.3)
)

© \i=1

(see [2, Theorem 4.5]). It is natural to ask if (1.3) gives (1.1) in a special case. In [2], the authors gave an example (see [2,
Example 4.6]) to show that the Eq. (1.1) is a special case of (1.3) whenever the time scale is isolated. However, they were
not able to introduce convenient functions f;(t, x(s)); i = 1, 2, ..., nand g(t, s) to get the same result for an arbitrary time
scale. Hence, stability analysis of (1.1) on an arbitrary time scale is not covered by [2].

This paper not only overcomes this ambiguity, but also investigates the existence of periodic solutions of (1.1).

Notable contributions of this paper can be summarized as follows:

1. to analyze stability of trivial solution of the equation
xA(t) = b(t)x(t) — a(t)x(8(0)54(t),

by displaying a Lyapunov functional on an arbitrary time scale,
2. to analyze stability of the Eq. (1.1) for an arbitrary time scale,
. to study the periodicity of solutions of (1.1), and
4. to extend the work of [ 1] to time scales (it turns out that new results concerning Eq. (1.1) in the discrete case will emerge).

w

In preparation for our main results we list the following results from time scale calculus. For brevity we direct the reader
to [3] for an excellent theory regarding A-derivative and A-integral.

Theorem 1 (Substitution [3, Theorem 1.98]). Assume that v : T — R is strictly increasing and T := v(T) is a time scale. If
f : T — Risan rd-continuous function and v is differentiable with rd-continuous derivative, then for a, b € T,

b v(b) B
/f(t)vA(t)At:f (f o v™1)(s) As.

(@)
Lemma 1 (Integration by Parts [3, Theorem 1.77, (v)]).If a,b,c € T, € R, and f, g € C then

b b
/ flo g © At = (fg)(b) — (fg)(a) —/ fg?®At.

Theorem 2 (Chain Rule [3, Theorem 1.93]). Assume that v : T — R s strictly increasing and T := v(T) is a time scale. Let w :
T — R. If v2(t) and w? (v(t)) exist for t € T, then

(wov)? = (coZ o v)va.
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Theorem 3 (Existence of Antiderivative [3, Theorem 1.74]). Every rd-continuous function has an antiderivative. In particular if
to € T, then F defined by

t
F(t) = / f(s)As
to
is an antiderivative of f.

Definition 1. A function h : T — R is said to be regressive provided 1+ wu(t)h(t) # Oforallt € T*. The set of all regressive
rd-continuous functions h : T — R is denoted by R while the set R is given by " = {h € R : 1+ u(t)h(t) >
Oforallt € T}.

Leth € R and wu(t) # 0 for all t € T. The exponential function on T is defined by
‘1
en(t,s) = exp (/ ——Log(1+ wu(2)h(z)) AZ) ,
s 1(2)

Itis well known thatif p € R*, theney(t,s) > 0 forallt € T. Also, the exponential function y(t) = e,(t, s) is the solution
to the initial value problem y# = p(t)y, y(s) = 1. Other properties of the exponential function are given in the following
lemma [3, Theorem 2.36].
Lemma 2. Let p, q € R. Then

i. eg(t,s) = landey(t,t) =1;
ii. ep(0(t),s) = (14 wu(®)p(t))epy(t,s);
ii. ﬁ = egy(t, s), where ©p(t) = —

iv. ey(t,s) = epg—“) = egp(s, t);
V. ep(t, s)ep(s, 1) = ey(t, 1),

A
i 1 _ __p@®
Vil (e,,<.,s)) = - 4o
Theorem 4 ([3, Theorem 6.1]). Let y, f € C,qand p € R*. Then
yA(®) <p)y(t) +f(t) forallt €T

implies

p®) .
1+p(®)p(t)’

t

y(©) EY(to)ep(t,to)+f ep(t, o (0)f (1) AT

to
forallt € T.
Theorem 5 (Bernoulli’s Inequality [3, Theorem 6.2]). Let o € R witha € R™*. Then
eq(t,tg) =1+ a(t—s) forallt >s.

2. Stability

The aim of the next two subsections is to investigate the stability of delayed linear dynamic equations and to make a
comparative analysis between two methods: Lyapunov’s direct method and the method of fixed point theory.

2.1. Stability analysis using Lyapunov’s method

First, we discuss the stability of the linear delay dynamic equation
x4(t) = b(t)x(t) — a(t)x(8(t))82(t) (2.1)

by means of Lyapunov functional, where T is an arbitrary time scale, 7 is a positive integer, a,b : T — R are functions,
and b € R (positively regressive). The sole purpose is to show that, when using the Lyapunov method, many difficulties
arise and severe conditions will have to be imposed on the coefficients in order to arrive at the derivative of the Lyapunov
function to be less than or equal to zero along any solution. To see this we assume that for a positive real y

la(t)| <y and b(t) < —y forallt €T. (2.2)
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If (ty) # Oforany ty € T, thenb € R and (2.2) imply
[T+ pn(to)b(to)| < 1— pu(to)y, (23)

and therefore,

b(l’o) > —

+y. 24
u(to) 7 (24)

Note that stability of the delay difference equation
x(t +1) = b(O)x(t) —a(®)x(t —g(t)), teZ
has been studied in [4] by making use of Lyapunov’s method.
Hereafter, we develop a time scale analog of Lyapunov’s method used in [4, p. 3]. Let the Lyapunov functional V be defined
by
t

V(t, x(.) = Ix(t)|+y/5( [x(s)| As. (2.5)
t)

Evidently, the delay function § : [tp, 00) N T — [§(tp), 00) N T defined in the previous section satisfies the assumptions
made for the function v in Theorem 2. Taking

t
w(t) = / f(s)As
a
and using Theorems 2 and 3, it is straightforward to prove the following.

Corollary 1. Let f : T — R be an rd-continuous function. Then

8(t) A
[ f(S)AS] = f(8(1)84(t),

where a € T is fixed.

To differentiate the integral term in (2.5) we shall resort to the next result.

Lemma 3. Let f : T — R be an rd-continuous function. Then

fEAs =f() = f©)8(®),

8(t)
where § is as defined in the previous section.

Proof. Case 1.Let 0(8(t)) # t. Then o (8(t)) < t. Thus, there exists a constant 7y € [8(t), t) N T such that o (6(t)) = 0.
The result is immediate from

t T t
foac= [ foac+ f f(s)s
5(0) 3(6) 0

and Corollary 1.
Case 2. Let o(§(t)) = t. Hence, we arrive at

t A
[ i )f(S)AS} = [rBOfGON
(t

= [(a(8(t)) = 8(t)) f(8(t)]*
= (1=8%(O)F (1) + (o (t) = 8(a () [F(5(1))]*
= f(8(1)) = 82 (Of (3(D) + p(t) [f(3(1))]*
= f(8(1) = 82 (OF (3(D) +f(8(a (1)) — f(8(1))
= f(t) = 8*(OF (3(1)),
where we also used the formulas
1OF () = f(o () = ft)

and
o(t)

f()As = u(s)f (s)
t

(see [3, Theorem 1.16] and [3, Theorem 1.75]). O
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Therefore, Lemma 3 enables us to arrive at
VAL, x()) = X" + ¥ {IxO)] — [x@©)] |62 ()]} - (2.6)

Since the product rule is given by (fg)* = f%g° + fg? in time scale calculus, the derivative of |x(t)| is obtained by
differentiating both sides of the equation x2(t) = |x(t)|* as follows

X+ x°
X|4 = ———x* forx #0. (2.7)
x| + |x°|
So the derivative of |x| depends on % and % (which indicate signs of x and x?, respectively). Given x : T — R, let the

sets T, and T} be defined by

TF ={t € T : x(t)x° (t) > 0},
T, ={teT:x()x’(t) <0},

X

respectively. Note that the set T} consists only of right scattered points of T. Hence, if T = R, then T, = @ for all functions
x: R — Rand (2.7) turns into |x]* = Xx2. However, for an arbitrary time scale (e.g. T = Z) the set T, may not be empty.

I
For simplicity, we need to have a formula for |x| which does not include x”. The next result provides a relationship between
|x|4 and ﬁxA. Its proof can be found in [5, Lemma 5]. Also, for more on the use of Lyapunov method in dynamic equation
on time scales we refer the reader to [6].

Lemma 4 ([5, Lemma 5]). Let x # 0 be A-differentiable. Then

X(? xA(b) ifteTy
|X(t)|A = |X( y X(f) A ) B (28)
—m |x(t)| — Ix(t)lx (t) ifteT,.
As a consequence of (2.1)-(2.8) we get that
VA, x()) <¢(t) |x(t)] forallt T, (2.9)
where
b(t) +y ift e T
(=4 2 L
0 bit)y+y ifteT,.

Note that (2.2) and (2.4) imply
¢(t) <0 forallt €T.

This along with (2.9) shows the stability of zero solution of the Eq. (2.1) using [7, Theorem 2]. As a consequence of the
discussion above, we can give the following theorem:

Theorem 6. Let T be a time scale that is unbounded above. If (2.2) holds, then zero solution of Eq. (2.1) is stable.

Observe that for the Eq. (1.1) the condition (2.2) does not hold since b(t) = 0in (1.1). Hence, the use of fixed point theory
is justified.

2.2. Stability analysis using fixed point theory

Consider the Eq. (1.1). For the sake of inverting Eq. (1.1) we write it in the form

t A
XA() = pOX(D) — ( f p(s)x(s)As) (2.10)
§(t)
where
p(t) = —a(8~'(t)). (2.11)

Hereafter, we use the notation

I2(T) =[a,b) N'T
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and assume that
p(t) #0 forallt € I77(T). (2.12)

Multiplying both sides of (2.10) by eg, (o (£), to), using the product rule, and integrating by parts (Lemma 1), we find

t to

xa%=mmkﬂhm%—/

8(t)

p(s)x(s) As +/ ©pey(t, s) (/S p(u)x(u)Au) As.  (2.13)
s

(to) to (s)

P45 + eyt t0) [
s
Let € be the Banach space of bounded functions ¢ : I(;’("fo) (T) — R endowed with the norm

¢l = sup |@(®)].

o0
el (D

Let ¢ : Ig((’to)('ﬂ‘) — R be a given initial function.

Hereafter, we say that x(t) := x(t, to, ¥) is a solution of (1.1) if
x(6) =y (6)  only (T)

and x satisfies (2.13) on It°0° (T).
Let the subset S C € be defined by

S= {go ce:p(t) =y ift €9 (T)andg(t) > Oast — oo] .

Obviously, S is a complete metric space.
For the next theorem we employ the following conditions

ey(t,tp) >0 ast — oo (2.14)
and
t t S
/ Ip(s)l AS+/ |©p(s)] ey(t, s) (/ Ip(u)lAu> As <a < 1. (2.15)
3(t) to 5(s)

The next example shows that there may be a function p so that the condition (2.14) holds.

Example 1. If there exists a positive constant M such that —M € R+ and
Ip(t)| <M forallt €T, (2.16)
then the condition (2.14) holds.

Proof. If —M is positively regressive, from (2.16) p is positively regressive, and hence, e, (t, tp) > 0. Since

elf(t, to) = p()ep(t, to)
< Mep(t! to)

< ———e,(t, ¢t
= 1—M/L(t) p( 0)
= ©(—M)ep(t, to),
we get by Theorem 4 that
0 < ey(t, tp) < eg—m(t, to).

By Bernoulli’s inequality (Theorem 5) we know that

1
egm(t, tp) < — — 0 ast — oo.
o(—m)( O)_l—Mt

The proof is complete. O

Theorem 7. Suppose that (2.12), (2.14)-(2.15) hold. Then every solution x(t) := x(t, to, V) of (1.1) is bounded and
lim x(t) = 0.

t—o00
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Proof. For ¢ € S, define the mapping P by
t
Pp)(t) =y (t) fort e 15?[0)(’]1‘)

and

to

(Po)(t) = ¥ (to)ey(t, to) — /5( )P(S)w(S)ASJr ep(t, tO)[s p(s)¥(s)As
t

(to)
t s
+/ ©pey(t, s) (/ p(u)<p(u)Au> As
to 8(s)

fort € It? (T). Continuity of P on S is evident. From (2.14) we can find a constant Q such that
ep(t,tp) <Q forte I;;O('JI‘).

If ¢ € S, then there exists a K such that ||¢| < K. Let ¢ be a small given initial value function with |¢/| < y,y > 0. Then
by making use of (2.15) we arrive at

t t S
[Po(t)| < (v +ya)Q+/8 [p(s)| |¢(5)|A5+/ |©p(s)| ey(t, s) </ [p(w)] Iw(u)lAu> As
(t) to

5(s)
t

t S
s(y+ya)q+{f8()|p<s)ms+/ 10p(5)] ey(t. ) (/,; |p(u>|Au)As} ol
t

to ()
<(y+ye)Q+aK forte 1;0(11‘). (2.17)
Thus, Py is bounded. It remains to show that Po(t) — 0ast — oo. By (2.14) and (2.15), we know that the first and third

terms on the right-hand side of P¢(t) tends to zero as t — o0. Since ¢ € S, we have ¢(t) — 0ast — oo. From continuity
of norm we obtain

”(p”’E(r)(T) — 0 ast— oo,
where
= su t)].
||¢||’g(u)(T) p |¢( )|

b
tEIb‘(a) (T)

Hence, we get by (2.15) that

t

t
/ IPG)l () As < ||</’||1(§(t)(1r)/ Ip(s) = 0 ast — oo.
8(t) 50

That is, the second term in Pg(t) goes to zero. Let us denote by J(t, to) the last term of Po(t), i.e.,
t s
J(t, to) = / |©p(s)| ep(t, s) (/ [P lpw)] Au) As.
to 5(s)

Given ¢ € S and ¢ > 0, we can choose a sufficiently large t* € Ifo (T) such that

. £
allelley(t, t*) < 5
and

g
a ||<P||15°0(t*)(1r) <3
Therefore, we find

S

t*
J(t. to) < ep(t,t*)/ Ip(s)| ep(t*, o (s5)) (/ [p(w)] |</)(U)|Au> As
to §

(s)

t S
+[ |©p(s)] ey(t, s) (fs Ip(u)llqo(u)lAu>As
[*

O]

< alelley(t, t*) +a lellge, @ <&
This yields
(Pp)(t) > 0 ast — oo,
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and therefore, P : S — S. On the other hand, P is a contraction since

A

|(Pn)(t) — (PE)(D)] < {f [p(s)] AS+/ l©p(s)lep(t, s) </ Ip(w)] AU> AS} lln—&ll
) 8

(t) to (s)
alln =&l

for any ¢ and v in S. Thus, by the contraction mapping principle P has a unique fixed point in S which solves the Eq. (2.10),
bounded and tends to zeroast — co. O

IA

3. Periodicity
For clarity, we restate the following definitions and introductory examples which can be found in [8,9].

Definition 2. A time scale T is said to be periodic if there existsa A > Osuchthatt = A € Tforallt € T.If T # R, the
smallest positive A is called the period of the time scale.

Example 2. The following time scales are periodic.

. T = Zhas period A = 1,

T = hZ has period A = h,

T =R,

T = U?j_m[(Zi — 1)h, 2ih], h > 0 has period A = 2h,
.T={t=k—q™":keZ me Ny} where,0 < q < 1has period A = 1.

DA wN

Remark 1. All periodic time scales are unbounded above and below.

Definition 3. Let T # R be a periodic time scale with period A. We say that the function f: T — R is periodic with period
T if there exists a natural number n such that T = nX, f(t £ T) = f(t) forallt € T and T is the smallest number such
that f(t £ T) = f(t).If T = R, we say that f is periodic with period T > 0 if T is the smallest positive number such that
ft+£T)=f()forallt € T.

Let T be a periodic time scale. Suppose that there is a positive real T such that
a(t +T) = a(t) (3.1)
forallt € T. It follows from (2.11) and (3.1) that
p(t+T) = p().
In addition to assumptions in (1.2), we also assume that the delay function é : T — T satisfies

S(t+£T)=208()=£T. (3.2)
Hereafter, we suppose that
1—e,(t,t —T) #0. (3.3)

We multiply the Eq. (2.10) by egp (o (1), to), use the product rule, and integrate the obtained equation from t — T to ¢ to find

t—T t

mm®m—fp@mms

uo:(1—%a¢—rn*[%mt—rx/
8(t—T) 8(t)

+/ @@MM%/pMMMOm]
t—T 8(s)

For x € Pr define the mapping H by

t—T t

Hx(t) = (1 —ep(t, t — T)™! [ep(t, t— T)/ p(s)x(s)As — / p(s)x(s)As
8(t—T) 3(t)

t s
+ / op(s)ey(t, s) (/ p(r)x(r)Ar) As:| .
t—T 8(s)

It can be easily shown by making use of the substitution u = s + T, (2.11), Theorem 1, and the equalities
e (t+T,s+T)=¢e,(ts), ep(t+T,t)=¢e,(t,t —T)

that
(Hx)(t +T) = (Hx)(t).
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Let Pr be the set of all T-periodic bounded functions x : T — R. Then (Pr, ||.||) is a Banach space endowed with the norm

Il = max [x(t)] = max |x(t)].
teT te(0,TINT

Thus,
HZPT—>PT.

Similar to that of Theorem 7 we can prove the following theorem.

Theorem 8. Assume that (3.1)-(3.3) hold for all t € T. If there is an & > 0 such that

t t—T
|1 —ept,t —T)7| [/ |p(s)|As+ep(t,t—T)/ Ip(s)| As
8(t) ()T

t K
4 / 16p(5)] ey(t. ) / |p(r)|ArAs]5a<1,
t )

—-T (s)

then the Eq. (2.10) has a unique T-periodic solution.
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