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a b s t r a c t

Shortest hop or distance path is one of the most common methods used for relaying mes-
sages in a wide variety of networks. It provides an efficient message relaying to destina-
tion in terms of energy and time. There are many algorithms for constructing shortest
hop or distance path. However, according to our knowledge, no algorithm for construct-
ing a shortest hop multipath for wireless sensor networks (WSNs) has yet been proposed
in the literature. In this paper, we propose a novel distributed shortest hop multipath al-
gorithm for WSNs in order to generate energy efficient paths for data dissemination or
routing. The proposed algorithm generates shortest hop braided multipath to be used for
fault-tolerance or load-balancing. It guarantees the BFS tree and generates near optimal
paths in O(V .D + V ) message complexity and O(D2) time complexity regarding the com-
munication costs towards the sink after termination of algorithm.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Wireless sensor networks (WSNs) have gained worldwide attention in recent years due to many technological advances
and their military and commercial application potential [1]. These networks consist of individual nodes able to interact with
their environment by sensing or controlling physical parameters [2]. These sensor nodes are small, with limited processing
and computing resources, and they are inexpensive compared to traditional sensors. These sensor nodes can sense,measure,
and gather information from the environment and, based on local decision processes, can transmit the sensed data to the
user. Since the sensors operate on battery power, it is very important to use the energy of sensors efficiently to increase the
network lifetime. Most of the energy of sensors is consumed by transmission of the data packets generated by that sensor or
relaying the packets of the other sensors. Therefore, finding optimal transmission paths from each sensor to the destination
is an essential task [3].

1.1. Motivation

Shortest hop or distance path is one of the most common methods used for relaying messages in all kinds of networks.
It provides an efficient message relaying to destination in terms of energy and time. There are many algorithms for
constructing shortest distance paths including the algorithms of Dijkstra and Bellman–Ford. The distributed Bellman–Ford
(DBF) and the termination detection added version of DBF, Chandy–Misra [4], were proposed for distributed systems
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many years ago. It is obvious that the constructing shortest distance path has higher overhead than shortest hop path.
In particular, DBF was used in [5–7] and Chandy–Misra in [8] to generate shortest distance paths in WSNs due to the
distributed structure. However, their overheads are significantly high and the message complexity of these algorithms
is unbounded since the algorithms are asynchronous. In [9], the algorithm of Chandy–Misra was synchronized and the
message complexity is O(V .E). Thus, these algorithms are not suitable for WSNs due to energy problem. On the other
hand, shortest hop path algorithms are used instead of shortest distance path algorithms by many protocols for WSNs.
In [10,11], the shortest hop paths are constructed in the PEQ and ICE protocol respectively. Even themethod used for shortest
hop path construction is straightforward and easy; since the algorithm is asynchronous, the message complexity cannot
be calculated. Furthermore, due to lack of termination detection, the initiator node cannot know whether the algorithm
terminates.

Multipath routing techniques have been discussed in the literature for several years. There are two different approaches
to construct multipaths between two nodes. One is the classical node-disjoint multipath, where the alternate paths do not
intersect each other. Another approach builds many braided paths and there are typically no completely disjoint paths but
rather many partially disjoint alternate paths.

1.2. Contributions

In this paper, we propose a novel distributed shortest hop multipath algorithm for WSNs. As far as we are aware, no
algorithm for constructing a shortest hop multipath for WSNs has yet been proposed. The proposed algorithm generates
shortest hop braided multipath in order to be used for fault-tolerance or load-balancing. In order to obtain the BFS tree, the
Chang–Roberts distributed spanning tree (CRDST) algorithm is synchronized. While the synchronized algorithm is being
performed, the braided multipaths are constructed. Thus, every constructed path reaches the initiator node by the shortest
hop.

We use the β synchronizers in order to synchronize the asynchrony CRDST algorithm. β synchronizer is optimal in terms
of message complexity but it is inefficient in terms of time complexity. Since sending a message consumes a great deal of
energy, and energy efficiency is a major challenge in WSNs, we use the β synchronizer instead of other synchronization
techniques. In [12], the β synchronizer is described as a layer based synchronization method. There is only a single
synchronizer node responsible for producing the pulsemessages. The execution proceeds layer by layer. At the beginning of
a turn, all nodes in a layer begin their operations. When they finish, they send a message to inform the synchronizer node,
which then sends a new pulse message to pass the turn to the next layer. The algorithm has also termination detection.
Therefore, the initiator node can know whether the algorithm terminates.

2. Related works

In [11], routing protocols are categorized including data attribute based, flat, geographical, hierarchical, multipath and
QoS-based. Well known routing protocols in WSNs are SPIN [13], Directed Diffusion [14], LEACH [15], and GAF [11]. SPIN
and Directed Diffusion are data-centric protocols. SPIN labels the data with meta-data and this information is exchanged
among the neighbors. Directed diffusion is a query based protocol which uses interest messages. Sink sends interest
messages to the network and if the data of node matches with the interest message, it sends gradients towards the sink.
While the source is sending gradients, the path is formed during this process. LEACH is a hierarchical protocol which uses
clustering. In LEACH, the clusters and cluster heads of sensor networks are formed based on the receiving signal strength.
Data is routed to sink through the cluster heads. GAF is a location based protocol where location information is used for
energy efficiency. If the region to be sensed is known, the query is only diffused at that region. Thus, energy dissipation is
prevented.

Recent works include [16,11]. [16] is a data-centric routing protocol which is also fault tolerant. [11] is a hierarchical
protocol which is an event-driven, query based protocol.

Shortest hop or distance path is one of the most commonly used methods for relaying messages in a wide variety of
networks. It provides an efficientmessage relaying to destination in terms of energy and time. TheDBF andChandy–Misra [4]
were proposedmany years ago for distributed systems. DBF is used in [5–7] and Chandy–Misra in [8] for generating shortest
distance paths in WSNs. Shortest hop path algorithms are used instead of shortest distance path algorithms by many
protocols for WSNs. In [10,11], the shortest hop paths are constructed in the PEQ and ICE protocol respectively.

Multipath routing techniques have been discussed in the literature for several years. There are two different approaches
including disjoint and braided multipaths. Generally, the multipath is used in [17–20] for fault-tolerance, load-balancing
and security.

Very recently, in soliton theory, the linear superposition principle applies to Hirota bilinear equations to construct
soliton solutions [21]. As known, Hirota bilinear equations are linked to binary Bell polynomials. Ma and Fan [21] showed
that a linear superposition principle of exponential waves applied to Hirota bilinear equations, under some additional
condition on the exponential waves and possibly on the polynomial as well. This is an interesting mathematical problem
in the study of polynomials whose zeros form a vector space, and it determines one class of Hirota bilinear equations
possessing the linear superposition principle of exponential waves. They analyzed some such specific Hirota bilinear
equations.
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Fig. 1. Unit disk graph model.

3. Distributed shortest hop multipath algorithm (SHM)

3.1. Network modeling

The following assumptions are made about the network.

• Each node has distinct node_id.
• The nodes are stationary.
• The transmission range of a node is modeled with a circle.
• Links between nodes are symmetric. Thus if there is a link from u to v, there exists a reverse link from v to u.
• Nodes do not know their positions. They are not equipped with a position tracker like a GPS receiver.
• All nodes are equal in terms of processing capabilities, radio, battery and memory.

Based on these assumptions, wireless ad hoc and sensor networks are generally modeled as Unit Disk Graphs (UDG) [22].
In a UDG as depicted in Fig. 1 [23], there is an edge {u, v} if the maximum transmission radius of both u and v is at least
|uv|, their Euclidean distance. Each node in network can adjust its transmission power to any value between zero and its
maximum transmission power level. Only undirected (symmetric) edges are considered in order to send acknowledgment
over same link.

3.2. Overview

The Chang–Roberts distributed spanning tree (CRDST) algorithm is a starting point for our Shortest HopMultipath (SHM)
algorithm. The CRDST algorithm works asynchronously and does not guarantee Breadth-First-Search (BFS) tree formation
after termination. It uses two types ofmessages, probe and echo. The probemessage is used by all nodes tomakemembership
request. The echomessage is a reply of a received probemessage and it has an acknowledgment or negative acknowledgment
meaning. The algorithm is terminated by the initiator in case of receiving all echomessages fromneighbors.When the CRDST
algorithm terminates, it generally constructs an unbalanced spanning tree.

Our proposed SHM algorithm is a synchronized version of a CRDST algorithm and works synchronously. Synchronously
means that this algorithm runs step by step. In other words, sink node does not start the next step until it receives all
expected messages. The SHM algorithm generates a BFS tree after each execution. To guarantee the BFS tree formation, we
use the β synchronizer approach [12]. Figs. 2 and 3 display a sample execution of the SHM algorithm.
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Fig. 2. (a) probemessage (start of the SHM) (b) ackmessage (c) pulse message (sink gives the turn to first layer).

Fig. 3. (a) pulseAck and pulseNackmessages (b) pulseNackmessage (termination) (c) Generated shortest hop multipath.

3.3. Description of the algorithm

In this section, we introduce the SHM algorithm and how it works. There are two kinds of nodes in this algorithm,
initiator (sink), acting as the root, and non-initiator acting as an internal or a leaf node in the spanning tree. Initiator node
is responsible for initializing and finalizing of spanning tree construction. Also there are five types of messages that are
used in the algorithm. These are probe, ack, pulse, pulseAck and pulseNack. probemessage is used in order to notify the level
value of the receiver and solicit to be the parent of the receiver. ackmessage is a reply of a probemessage. If a node accepts
another node as a parent, it sends back an ackmessage. pulsemessage is generated by initiator node and it uses this message
in order to inform which layer has the turn of sending probe message. The last two messages, pulseAck and pulseNack, are
generally replies to a received pulsemessage, and are in fact used to determine the terminationdetection. probe, ack and pulse
messages are transmitted as broadcasting. However, only ackmessage includes the ID of receiver node because overhearing
technique is used for decreasing message complexity. On the other hand, pulseAck and pulseNackmessages are transmitted
as unicast. In the SHM algorithm, we have the following assumption, initiator(sink) node discards all the probe and pulse
messages.

The pseudocode of the algorithm for non-initiator and initiator node are shown in Algorithms 1 and 2 respectively.
We also use FSM diagram to show that the SHM algorithm is deadlock-free and works properly. Nodes which are in
topology have two roles: initiator and non-initiator. Fig. 4 displays the finite state machine of initiator and non-initiator
nodes.

4. Analysis

Theorem 1. Themessage and time complexities of the SHMalgorithm are O(V .D+V ) and O(D2) respectively where D is diameter
of the network from the sink to furthest leaf and V is the node count of the network.
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Algorithm 1 Non-initiator Node
1: upon node u receives probemessage from node v
2: if node u has not set its parent yet then
3: set node v as parent
4: set level as received level value in probemessage
5: else if level of node u == received level value in probemessage then
6: add node v as alternate parent
7: end if
8: end upon
9: upon node u receives pulsemessage from node v

10: if node v is the parent of node u then
11: if node u has no neighbor then unicast pulseNack to parent
12: else if level of node u == received level value in probemessage then
13: broadcast probe by the level value in message = level of node + 1
14: else if level of node u < received level value in probemessage then
15: broadcast the received pulsemessage for forwarding to children nodes
16: end if
17: end if
18: end upon
19: upon node u receives ack message from node v
20: if node v does not send ackmessage to node u then
21: remove node v from neighbors
22: end if
23: if sum of received ack == neighbor number then unicast pulseAck to parent
24: end upon
25: upon node u receives pulseAckmessage from node v
26: if sum of received pulseAck and pulseNack == children number then
27: unicast pulseAck to parent
28: end if
29: end upon
30: upon node u receives pulseNack message from node v
31: if sum of received pulseAck and pulseNack == children number then
32: if node v has not received any pulseAckmessage then
33: unicast pulseNack to parent
34: else
35: unicast pulseAck to parent
36: end if
37: end if
38: end upon

Fig. 4. (a) Initiator (sink) node (b) Non-initiator node.

Proof. For p ≥ 0, let Vp denote the set of vertices in layer p of the tree T constructed by the algorithm. Probe messages
of phase p are sent only on Vp and the vertices of Tp are traversed twice for broadcast (Pulse) and convergecast messages
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Algorithm 2 Initiator (sink) Node
1: broadcast probemessage
2: upon sink receives ack message
3: if sum of received ack messages == neighbor number then
4: broadcast pulse message in order to give the turn to first level
5: end if
6: end upon
7: upon sink receives pulseAck message
8: if sum of received pulseAck and pulseNack == neighbor number then
9: broadcast pulse message in order to give the turn to next level

10: end if
11: end upon
12: upon sink receives pulseNack message
13: if sum of received pulseAck and pulseNack == neighbor number then
14: if all received messages are pulseNack then
15: Terminate
16: else
17: broadcast pulse message in order to give the turn to next level
18: end if
19: end if
20: end upon

(PulseAck and PulseNack). In sum, we get;

Message(Phase p) := O(V + Vp).

For all the 1 ≤ p ≤ D;

Message(SHM) :=

p−
1

Message(Phase p)

:=

p−
1

O(V + Vp)

:= O(V .D + V ).

Clearly, broadcast (pulse) and convergecast (pulseAck and PulseNack) stages each take p time units and the probe and ack
message broadcasting stage takes additional two time units.

Time(Phase p) := 2p + 2

Time(SHM) :=

p−
1

Time(Phase p)

:=

p−
1

2p + 2

:= O(D2). �

In this paper, we use random networks to find the average hop of a constructed BFS tree after the SHM algorithm
terminates. Random networks have been studied for several decades. Paul Erdös and Alfréd Rényi introduced what are
known as ‘‘classical’’ random networks, or Erdös–Rényi networks. The basic idea is that we consider a simple, connected
graph on n vertices, and that every two vertices are adjacent with some probability p [24]. Erdös–Rényi networks are used
to simulate the SHM algorithm.

It can be seen in Fig. 5 that as the edge probability approaches one, the randomly constructed graph converges to a fully
connected graph. In a fully connected graph, every node has adjacency with every other node. In this case, it is expected that
the SHM algorithm terminates in one hop. However, as the edge probability decreases, node degrees of the graph reduces.
This results in an increase on the depth of the BFS tree produced by the SHM algorithm. Figs. 6–9 show that the depth
of constructed BFS tree is logarithmically increasing with node count. They also reveal that increase in p converges the
expected hop count of BFS tree to one. Thus the expected hop count of the BFS tree constructed by the SHM algorithm can
be asymptotically bounded by O(log(n)/(np)). We do not present here the mathematical proof of this bound for the sake of
conciseness; the reader could find this proof in [25].
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Fig. 5. Expected hop count of the SHM algorithm.
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Fig. 8. Expected BFS tree depth when p = 0.66.
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Fig. 9. Expected BFS tree depth when p = 1.0.

Table 1
Experimental study parameters.

Area Random

Sink position (0, 0)
Number of sensors 100–300
MAC Perfect MAC
Transmission power 0.395 W
Receiving power 0.360 W
Initial energy 10 J
Transmission range 75 m

5. Simulations

5.1. Simulation details

In order to evaluate our algorithm, to measure its performance and to find the overheads, we used ns-2 network
simulator. The metrics which we decided on were running time and energy dissipation of algorithm, average hop counts,
average path lengths, average delays of generated paths and network lifetime. We executed the algorithm for each metric
in 100, 150, 200, 250 and 300 nodes.

Network area is 1000×1000m. Randomly generated topologieswere used. The sinkwas located at (0,0) origin. The initial
energy of nodes were assigned to 10 J. Perfect MAC was used in the MAC layer. Table 1 displays the simulation parameters.
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Fig. 10. Average running times of SHM, CRDST and DBF algorithms.
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Fig. 11. Average energy dissipations of SHM, CRDST and DBF algorithms.

5.2. Simulation results

The running time and energy dissipationmetrics are related to execution of SHM, DBF and CRDST algorithms. Hop count,
path length, delay and network lifetime metrics are related to the properties of generated paths by these algorithms.

Fig. 10 displays the running time results of the SHM, DBF and CRDST algorithms for different node counts ranging from
100 to 300 nodes. Fig. 10 shows us that SHM and DBF algorithms take longer time than CRDST algorithm. In addition, the
DBF algorithm takes longer time than the SHM algorithm to finish its operation. The running time of the CRDST algorithm is
nearly 0.1 s at all node counts but, on the other hand the running time of SHM and DBF algorithms increase linearly ranging
from 0.2 to 0.6 s and 0.3 to 0.7 s, respectively. It is clear, therefore, that the SHM algorithm takes less time than the DBF
algorithm.

Fig. 11 displays the energy dissipation results of the SHM, DBF and CRDST algorithms for different node counts ranging
from 100 to 300 nodes. Fig. 11 shows that SHM and DBF algorithms consume more energy than the CRDST algorithm. The
energy dissipation of the CRDST algorithm is nearly 0.1 J at all densities but, on the other hand the energy dissipation of
SHM and DBF algorithms increase from 0.1 to 0.24 J and 0.2 to 0.4 J respectively for each density. It is clear that the SHM
algorithm consumes less energy than the DBF algorithm.
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Fig. 12. Average hop counts of generated paths by SHM, CRDST and DBF algorithms.
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Fig. 13. Average lengths of generated paths by SHM, CRDST and DBF algorithms.

The twometrics above are initial values for execution of SHM, DBF and CRDST algorithms. The two figures above indicate
that in order to construct a BFS tree, more time than the running time of CRDST is needed and more energy than the
energy dissipation of CRDST is dissipated, but since the generated paths through the spanning tree have near optimal paths
regarding lengths, low energy is dissipated and low delay is obtained while routing data towards sink. It is obvious that the
DBF algorithm dissipates more energy than the SHM algorithm.

Fig. 12 displays the average hop counts of the generated paths from SHM, DBF and CRDST algorithms for different node
counts ranging from 100 to 300 nodes. Hop count is an importantmetric for energy efficiency because sending and receiving
messages entails high cost. Thus, if a path has optimal hop count, it consumes less energy and this also affects the network
life time. Since the SHM algorithm guarantees the BFS tree, the SHM algorithm generates optimal hop count paths. Fig. 12
shows that the hop count of paths of SHM and DBF algorithms are nearly same.

Fig. 13 displays the average path lengths of the generated paths from SHM, DBF and CRDST algorithms for different node
counts ranging from 100 to 300 nodes. Another important metric for energy efficiency is path length because the energy
consumption is dependent on the distance the data has to travel in wireless communication. Thus, in order to save energy
during data transmission, distances must be as short as possible. Since the BFS tree is constructed by the SHM algorithm,
minimum hop is guaranteed towards sink. In addition, minimum length is also guaranteed among the layers. Fig. 13 shows
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Fig. 14. Average delay of generated paths by SHM, CRDST and DBF algorithms.
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Fig. 15. Network lifetime of generated paths by SHM, CRDST and DBF algorithms.

us that SHMgenerates shorter paths than the CRDST algorithmbut, since the DBF generates shortest distance paths, its paths
are shorter but the difference is reasonable.

Fig. 14 displays the average delay of the generated paths from SHM, DBF and CRDST algorithms for different densities
ranging from 100 to 300 nodes. Fig. 15 displays the average network lifetime (the time it takes for the first node to die) of
the generated paths from SHM, DBF and CRDST algorithms for different densities ranging from 100 to 300 nodes. Since the
time taken is affected by various metrics, we use the event numbers in order to compare the lifetimes of networks.

Fig. 15 shows that SHM and DBF algorithms increase the network lifetime because they generate more optimal paths
compared to the CRDST algorithm in terms of path length and hop count. The network lifetime of SHM and DBF are almost
identical. Network lifetime of SHM,DBF andCRDST algorithmsdecreaseswhile network density increases because the length
and delay of generated paths increase as intensity increases. Due to this, the delivered message count decreases as the node
count decreases.

6. Conclusion

In this paper, we propose a novel distributed shortest hop multipath algorithm for WSNs. As far as we are aware, no
one has yet proposed an algorithm which construct a shortest hop multipath for WSNs. The proposed algorithm generates
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shortest hop braided multipath for the purpose of fault-tolerance or load balance. Another contribution of this paper is that
the algorithm includes termination detection. None of the currently proposed shortest hop algorithms for WSNs feature
termination detection and therefore the sink cannot determine when/whether the entire network has finished determining
the paths. If sink wants to disseminate data to network, it has to wait an unknown time since it does not know whether the
paths have been constructed. In addition to contributions, the SHM algorithm has a bounded message and time complexity
compared to widely used shortest hop path algorithms in the literature.

The simulation results show that, although compared to the CRDST algorithm, more energy and time are consumed
by SHM and DBF algorithms, the paths they generate consume less energy and have less delay than the paths of the
CRDST algorithm. The SHM algorithm spends less time and consumes less energy than DBF because the message and time
complexity of DBF are very high. In addition, the SHM algorithm generates almost identical paths to DBF algorithm.
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