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Location discovery, especially in mobile environments, has recently become the key component of many
applications. Accurate location discovery, particularly in safety critical applications using autonomous
robots or unmanned vehicles, however, is still an open problem. Existing popular methods either heavily
rely on the use of global positioning systems (GPS) which do not readily lend themselves for use for the
majority of applications where precision is of primary concern or are not suitable for ad-hoc deploy-
ments. In this paper, we propose a novel directional localization algorithm, called dual wireless radio local-
ization (DWRL), which performs accurate node localizations in the plane using only distances between
nodes, without the use of a GPS or nodes with known positions (anchors). The main novelty of DWRL
is the use of an additional radio per node to support directional localization in static networks. To the best
of our knowledge, this is the first time dual radios are employed in a localization setting. Existence of the
dual radios on board enables DWRL algorithm to perform directional localization, which is not possible
with existing single radio systems in static networks. We present the practical and theoretical benefits
of the use of an additional radio per node in detail, test our algorithm under excessive synthetic and
real-world noise scenarios, and show that DWRL algorithm is robust enough to perform directional local-
ization even in high noise environments.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction states the limitations of the global positioning systems in safety
Location based systems focus on finding the locations of items,
cars, data, or people, and have been gaining a lot of interest in the
research community lately. The problem is widely known as the
localization problem in the wireless network community. Accurate
discovery of the real-time locations of objects is the key element to
the success of many applications ranging from tracking, surveil-
lance, search-and-rescue missions to traffic control, collision
avoidance, and smart cars. Traditionally, position information has
been gathered using global positioning systems (GPS). However,
these systems in general suffer from two major drawbacks. First
of all, the devices require a clear sight of at least four satellites in
order to work, which is not possible indoors, in downtown city
centers with tall buildings, or in geographically obstructed outdoor
areas, such as deep valleys. The second drawback is the impreci-
sion of the localization when nodes stay close to each other. If
the nodes are closely clustered in a small area, GPS based localiza-
tion schemes do not provide enough accuracy. Boukerche et al. [8]
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critical applications for vehicular ad-hoc networks, such as colli-
sion avoidance, in which sub-meter accuracy is needed.

Many applications depend on a level of accuracy for localization
that global positioning systems cannot provide, even in places
where the satellite signals are available. In search-and-rescue mis-
sions, for example, a crew of emergency personnel is deployed inside
a building, and real-time tracking of positions of the crew by mission
control personnel possibly outside the building is essential. In this
scenario, precise adhoc localization is required in both line-of-sight
(LOS) and non-line-of-sight (NLOS) conditions. In [20] a similar sce-
nario is presented in which localization is performed by radios wear-
able by the emergency crew. Another application area would be the
localization of unmanned vehicles to provide coordinated move-
ment of the vehicles among themselves, or among vehicles and per-
sonnel in the area. In this scenario, levels of sub-meter accuracy is
required to support mobility of multiple vehicles without collision,
while still preserving the connection among them.

The limitations of the global positioning systems has led the re-
search community to start looking into GPS-free localization meth-
ods [22]. As a result various probabilistic [23] or infrastructure
based methods [9] have been proposed. The probabilistic ap-
proaches do not guarantee the desired level of accuracy in localiza-
tion for the applications mentioned above. The infrastructure
based ones, on the other hand, require the existence of reference
nodes, or anchors, with known global positions on the field.
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Clearly, for applications such as emergency response, or collision
avoidance, infrastructure based approaches are costly to apply
due to long setup times. Such kind of applications require more
of an ad-hoc style localization approach, without the need for
any external infrastructure to operate and work only with local
data collected within the network.

A good alternative for localization that uses only local resources
is the ranging based localization algorithms [11,34]. In this meth-
od, nodes only use neighborhood graph and the ranges to their
immediate one-hop neighbors to perform localization. However,
the problem is harder than it looks and if only ranging is used,
turns into a graph realization problem [15], which has been shown
to be NP-Hard [46,49]. When the network has three beacons with
known positions and the underlying graph is a trilateration graph,
the problem can be solved in polynomial time using trilaterations
[15]. However, beacon based methods generally use GPS to obtain
the locations, or use pre-set locations, which makes the approach
less applicable to ad-hoc deployments. On the other hand, global
positions are not always necessary for most applications. In some
applications, such as collision avoidance, relative positions of the
neighbors in terms of the local coordinate system of each node is
sufficient enough. For scenarios where there are no beacons with
known global positions, C̆apkun et al. [11] and Moore et al. [30]
solve the problem in polynomial time using relative positioning.
In this case each node assumes itself as the origin, and assigns vir-
tual coordinates to one of its neighbors on the positive x-axis and
another third neighbor on the positive y-axis. This solves the prob-
lem in polynomial time, but virtual node positions do not overlap
with the real world positions, so this method is limited to only geo-
graphical routing scenarios.

In order to support critical applications, such as collision avoid-
ance, directional localization [1,2] methods are needed. For exam-
ple, two vehicles in a collision course should detect the real
world positions of each other to plan an accurate escape route to
avoid collisions. The main distinction between directional and rela-
tive localization is that the positions provided by the former sup-
port the above application, contrary to the virtual positions
provided by the latter. Directional localization specifies both the
relative positions of the nodes, and the relative direction as the pri-
mary means of being able to approach other nodes. This attribute
not only enhances capabilities of the localization towards mobility
but also increases the agility of the algorithms in reacting to sharp
and sudden changes. In this paper, we propose a novel directional
localization algorithm, which only uses the ranging information
between nodes to perform localization in polynomial time, for a
certain class of network topologies, without the use of a global
positioning system or infrastructure. Our novel contribution in this
paper is that in order to solve the problem in polynomial time we
introduce a second wireless radio on each node. We also assume
that the distance among the two radios on a single node is known
apriori. Given a set of n nodes, what this achieves is, essentially, a
set up of an initial configuration with 2n radios where as many as n
of the distances between radio pairs are already known. Such an
arrangement, in fact, directly follows from the observation made
in [6] that for a general network, if certain conditions such as the
underlying network being realizable by a trilateration graph are
satisfied, it is sufficient that O(n) pairs of nodes, among X(n2) pos-
sible pairs, know their distances to have a unique solution to the
localization.

Although using dual radios on each node seems to double the
cost at first, we propose to use n/2 nodes in the network with
known inter-radio distances, instead of n nodes with a single radio.
This in return allows us to perform accurate directional localization
in polynomial time, which is not possible by using single radios in
static networks. However, using dual radios on a single node has
some potential problems, such as interference, collision, energy
efficiency, and coverage. [29,37,48] address some of these prob-
lems for multi radio sensor networks. In this paper, on the other
hand, we restrict ourselves to analyzing the potential benefits of
using dual radios only in a localization setting, and do not pursue
communication related problems any further.

In order to achieve accurate ranging, we use the optional rang-
ing ability of the ultra-wideband radios [17,43], as part of the IEEE
802.15.4a standard.1

Our main contributions in this paper are:

� We introduce a novel directional localization algorithm for static
wireless networks by using dual wireless radios on each node.
We present the theoretical and practical benefits of the addi-
tional radio.
� We perform directional localization using only ranging informa-

tion, without the requirement of a global positioning system or
infrastructure, which is not possible by existing single radio sys-
tems in static networks.
� By introducing dual radios on a single node with a priori known

distances in between, we provide a mechanism through which
we study the effect of this distance value on the performance
of our localization algorithm.
� We test our localization algorithm in various synthetic and real-

world environmental noise scenarios, which causes errors on
distance measurements, conduct extensive experimental study
and simulations, and present methods to control and reduce the
effects of noise even in high-noise environments.
� We give answers to the questions of how the node density,

wireless range and inter-radio distance of wireless radios effect
the accuracy of our localization algorithm.

The rest of the paper is organized as follows. We describe our
novel localization algorithm in Section 2. In Section 3 we present
the results of our experiments, while in Section 4 we discuss the
related work. Finally, we present our concluding remarks in Sec-
tion 5.

2. Dual-radio localization

In this section, we present our directional localization algorithm,
named dual wireless radio localization (DWRL), for static wireless
networks. First, the terminology used throughout the rest of the
paper and the assumptions made about the DWRL algorithm are
presented in Section 2.1. The primary computational steps of the
DWRL algorithm, namely, semi-localization and rigid-localization
are introduced and described subsequently in Sections 2.2 and
2.3 respectively. Finally, the localization algorithm proposed is de-
scribed in Section 2.4.

2.1. Assumptions and preliminaries

In this section, all the assumptions made about the DWRL algo-
rithm for static wireless nodes are highlighted and basic terminol-
ogy and definitions that are essential to the understanding of the
paper are introduced.

We have made the following assumptions for the DWRL
algorithm:

� Each node will have two ultra-wideband (UWB) wireless radios
attached to a priori known positions aboard.
� Radios on each node are tagged as Radio1 and Radio2. Both

Radio1 and Radio2 can accordingly identify themselves as such.



Fig. 1. Semi-localization between nodes n1 and n2.
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� Nodes can measure the distance to other nodes within their
proximity by using the ranging feature of UWB radios [43]. A
measurement between any two nodes that are within range
involves figuring out all four distances between radios of both
nodes.
� Each node has a reasonably large size on board2 to allow for a

sufficient distance between the two radios, such that the individ-
ual radios aboard can be distinguished as required during the
localization process. The distance between the two radios on a
node is called inter-radio distance.
� One of the nodes is designated as the sink to initiate the locali-

zation process. The position of Radio1 on the sink node is chosen
to coincide with the origin of the coordinate system of the net-
work, and Radio2 is assumed to be positioned in the direction of
the positive x-axis. Thus, a line drawn from Radio1 to Radio2

points in the local East direction.
� Other than the UWB radio ranging, no additional positioning

device or infrastructure is used.
� We assume the presence of environmental noise, which causes

errors in the distance measurements performed by the radios.

Before we get into the details of the DWRL algorithm, we briefly
state some of the terminology used. Two nodes are said to be co-
linear if there exists a line passing through all four radios of the
nodes. The line which passes through the line segment joining
the points corresponding to the two radio positions of a node is
said to be the axis of the node.

A graph with nodes corresponding to a set of point labels in the
plane and edges denoting the Euclidean distance between points is
globally rigid [13,15] if for any two different mappings of nodes to
actual positions in the plane in such a way that the distances in the
graph are all preserved, then, the distances between every pair of
positions under these mappings are also preserved. If every suffi-
ciently small perturbation of the points in a mapping of a globally
rigid graph creates also a globally rigid graph obtained by updating
the existing distances in the graph in conformance with the per-
turbed mapping, then we say that the graph is generically globally
rigid [13,15].

We present the DWRL algorithm in three parts. We first present
the semi-localization step in Section 2.2. We discuss the rigid-
localization in Section 2.3, and finally we analyze the details of
the DWRL algorithm in Section 2.4.

2.2. Semi-localization

Semi-localization is defined to be the set of computations per-
formed to localize an unlocalized node with respect to an already
localized node. Fig. 1 depicts a configuration where node n2 is
semi-localized against n1. It should be noted at this point that a
localized node may be characterized by either a 2-tuple of the
coordinates of its both radio positions or a 3-tuple consisting of
Radio1 position, inter-radio distance, and the orientation given in
terms of the slope of the line passing through Radio1 and Radio2.
The two radios, Radio1 and Radio2, that each node has are shown
in blue and red respectively in Fig. 1. The position of Radio1 is, in
general, assumed to coincide with the origin of the local coordinate
system associated with each node. Node n1 which is assumed to
have already been localized has its Radio1 and Radio2 at positions
given by (x0,y0) and (x1,y1) respectively. The coordinates of Radio1

and Radio2 on node n2 to be calculated through semi-localization
are denoted by (x2,y2) and (x3,y3) respectively. The semi-localiza-
2 In Section 3.1, we empirically show that in a typical wireless network with range
set to 50 m inter-radio distance of 60 cm would be sufficient for successful
localization. We argue that it is feasible for radios of this size to be carried around
by humans or mounted on small vehicles such as unmanned vehicles.
tion of n2 against n1, hence, involves the computations of (x2,y2)
and (x3,y3). As the inter-radio distances d1 and d2, and the positions
of the two radios associated with n1 are already known, all that re-
mains is to measure the distances r1, r2, r3, and r4 shown in Fig. 1
between the corresponding radios using ultra-wideband ranging.
Having learned the values (x0,y0), (x1,y1) and d1 after a communi-
cation with n1, node n2 can now initiate the process of ranging to
carry out the measurements.

Once the measurements are finished, all the data required be-
come available at node n2. It may now locally perform the compu-
tations involved to derive the possible coordinates resolving the
relative position and orientation of node n2.

Using law of cosines (see Fig. 1) we can write:

r2
2 ¼ d2

1 þ r2
3 � 2d1r3 cos h1; ð1Þ

r2
4 ¼ d2

1 þ r2
1 � 2d1r1 cos h2 ð2Þ

from which h1 and h2, both assumed to be in the range [0,p], can be
solved for as:

h1 ¼ � arccos
d2

1 þ r2
3 � r2

2

2d1r3

 !
; ð3Þ

h2 ¼ � arccos
d2

1 þ r2
1 � r2

4

2d1r1

 !
ð4Þ

In order to simplify the computations, node n1 is, at this stage,
assumed to be translated and rotated so that the global positions
of its radios overlap with its local coordinate system, namely,
(0,0) and (d1,0) extending along the positive x-axis from Radio1

to Radio2. We can, now, easily calculate the radio positions of node
n2 relative to the new transformed position of node n1 to obtain:

x02 ¼ r1 cosðh2Þ; ð5Þ
y02 ¼ �r1 sinðh2Þ; ð6Þ
x03 ¼ r3 cos h1; ð7Þ
y03 ¼ �r3 sin h1: ð8Þ

It is finally possible to compare the four possible values of
x02 � x03
� �2 þ y02 � y03

� �2 corresponding to four possible combinations
of ±h1 and ±h2 with the square of inter-radio distance d2

2 to get rid
of the two unwanted combinations. After obtaining the two feasible
solution sets for h1 and h2, we can conclude the semi-localization
process by transforming back the radio positions x02; y

0
2

� �
and

x03; y
0
3

� �
of n2 to get the actual positions (x2,y2) and (x3,y3) respec-

tively by a suitable amount of translation and rotation which is
actually what is needed to rotate and translate n1 back to its original
position. The critical assumption made during the computations
that semi-localization of n2 with respect to n1 always yields at most
two solutions, apparently, needs to be verified. This is, thus, inves-
tigated next below.

As to the orientations h1 and h2 of the two radios of node n2 rel-
ative to n1, there are a total of four possible combinations which



Fig. 2. When localizing node n2 ([AB]) based on the position of node n1 ([CD]), there
exist at most two solutions.

Fig. 3. Two possible positions for node n2: one actual, the other located symmet-
rically on a flip around the axis of n1.
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depends on whether h1 and h2 are both positive, both negative, or
one positive and the other negative. These four combinations are
easily justified by the following observation (see Fig. 2): The possi-
ble positions for (x2,y2) denoted by A and A0 are simply those cor-
responding to at most two intersections between the two circles
centered around Radio1 (denoted by C) and Radio2 (D) of n1 with ra-
dii r1 and r4 respectively. The same holds also for (x3,y3) which
might be located at either B or B0 corresponding to the intersection
of circles of radius r3 and r2 each respectively this time. There are,
thus, a total of at most four possible configurations for (x2,y2) and
(x3,y3) which can be given as {(A,B), (A0,B), (A,B0), (A0,B0)}. Two of
these can be eliminated simply by enforcing the distance between
them to be d2. In order to see that, let’s choose A and B arbitrarily to
be the actual radio positions corresponding to Radio1 and Radio2 of
n2 respectively. jABj is, hence, d2. We need to show, then, that jA0Bj
cannot be of length d2. Let us assume, by contradiction, that
jA0Bj = d2 which in turn requires that the base angles \A0AB and
\AA0B of the isosceles triangle MABA0 to be equal. This is easily seen
to be impossible unless B is located at E which is the point formed
by the intersection of the axis of node n1 and the line segment [AB].
If B and E are not co-located, \A0AB is strictly less than \AA0B since
\AA0B is \A0AB + \EA0B. If B and E are co-located, however, there re-
mains a total of at most two candidate configurations given as
{(A,B), (A0,B)} with the position of at least one radio fixed on the
axis of symmetry. This confirms that any radio after a flip cannot
be at an equal distance to the other radio known not to be on
the axis of symmetry. This discussion justifies the assumption that
semi-localization always yields at most two solutions.

It can easily be observed also that the semi-localization process
can only produce (generically) globally rigid configurations be-
tween any two given nodes. Besides, the only solutions which
can be realized, once the position of the localized node is fixed,
are those that are mirror-reflexive around the axis of the already
localized node. The process, therefore, finds both the position
and the orientation of the semi-localized node up to a single flip
around the localized node. This is depicted in Fig. 3 and the reason-
ing leads to the following Lemma 2.1.

Lemma 2.1 (Semi-localization). The semi-localization of a node n2

with respect to an already localized node n1 will specify exactly two
(possibly equal) positions in the plane which are always symmetrical
with respect to the axis of node n1 so long as the distances r1, r2, r3, and
r4 between radios of the two nodes can be correctly measured and a
feasible solution with respect to Eq. (1) through (8) is known to exist.
Fig. 4. Rigid-localization of node n3 using localized nodes n1 and n2, based on the
distance measurements between radios of the nodes.
Proof. Eq. (1) through (8) and the accompanying reasoning above
leave us with two cases to consider: In the first case where there
are no solutions at all, the lemma is already correct. In the second
case where a feasible solution exists as to the final location of node
n2 being semi-localized, let one solution be denoted by a 2-tuple
P(n2 � Radio1,n2 � Radio2) of its radio positions. Let now P0 n02�

�

Radio1;n02 � Radio2Þbe the new location obtained by flipping P around
the axis of node n1. By the similarity of all the triangles involved,
then, the distances r1, r2, r3, and r4 measured are all preserved. P0

is, thus, qualified as another solution. If P and P0 are different, the
whole solution set must precisely be these two distinct solutions
corresponding to P and P0. If they, however, happen to be the same
which is only possible when node n2 is on the same line as the axis
of symmetry, namely, the axis of node n1, there exists just one
solution. h
2.3. Rigid-localization

In order to perform directional localization, we ensure that the
graph obtained is globally-rigid throughout localization. This is ad-
dressed by introducing an additional localized node into what we
call as the rigid-localization process. Each rigid-localization consists
of two semi-localization steps for an unlocalized node with respect
to two already localized nodes in an effort to come up with a un-
ique relative position. It is assumed throughout the process that
the localized nodes are not co-linear which guarantees that some
three out of four radios are always in general position. The rigid-
localization process is illustrated in Fig. 4. Let us initially assume
that the nodes n1 and n2 are somehow rigid-localized. The figure
shows the localized positions for n1 and n2 filled with solid colors.
Let a solid color once more denote the actual position of node n3

which is to be localized. In the first step of the rigid-localization,
unlocalized node n3 gets semi-localized against one of the localized
nodes, say n1. The two possible configurations after the computa-
tions performed locally are marked by n3 and nð1Þ3 in Fig. 4. In the
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second step, the semi-localization is carried out, this time, with re-
spect to the other localized node, n2, the outcome of which are
characterized by the possible positions marked n3 and nð2Þ3 in
Fig. 4. A simple comparison in the final step of possible configura-
tions obtained through these semi-localizations reveals a unique
solution, hence, rigid-localizing node n3. It should be noted that
the results of the two semi-localizations can uniquely localize n3

only when n1 and n2 are not co-linear. The preceding discussion
can be summarized in the following lemma.

Lemma 2.2 (Rigid-localization). Rigid-localization of a node i with
respect to two already localized nodes j and k – j whose radios are not
co-linearly located uniquely identifies the position of i relative to these
nodes.
Proof. Node i during a single rigid-localization gets semi-localized
twice, one for each of nodes j and k. Either radio of node i is, there-
fore, relatively positioned with respect to a total of four other
radios on j and k. By the non co-linearity assumption, some three
out of four radios on j and k are known to exist in general position.
Each radio on i is, hence, positioned with respect to at least three
known locations in general position which, in turn, implies global
rigidity. This establishes the proof of the lemma. h

It can easily be observed that a directional localization algorithm
making repeated use of rigid-localizations always constructs a glob-
ally-rigid graph of interconnected nodes. One nice property charac-
terizing such localizations is the fact that the presence of even a
single localized node in the network with known real-world radio
coordinates will suffice to produce a solution that will be as far to
the real-world coordinates as at most a single flip around the axis of
that specific node. In order to see this, the globally rigid graph can
be translated and rotated as necessary so that the two radios of the
sink overlap with the known coordinates. All the other nodes now
either are at their real-world coordinates or need to be flipped once
around the line passing through the known radio positions of sink
node (see Fig. 5). We discuss this issue more in the section below.
Fig. 5. Based on the initial selection of the closest node’s position, the positions of the res
of the sink node. Correcting the position information is a constant time operation per n
2.4. The DWRL algorithm

In designing a directional localization algorithm that tries to
minimize the overhead of communication in terms of the number
of rigid-localizations performed, one of the nodes is first desig-
nated as the sink node whose positions for Radio1 and Radio2 are
assumed to coincide with (0,0) and (d1,0) respectively. The sink,
next, picks within its wireless range a node to be semi-localized.
One of the two positions which is on the positive y direction is,
then, chosen for the semi-localized node and it is assumed to be
rigidly localized thereafter. The nodes, throughout the rest of the
algorithm, keeps listening until they hear from any two rigidly
localized nodes. This is exactly when they first become ready to
localize themselves through rigid-localization. We choose, in the
DWRL algorithm, to start the localization process with the node
closest to the sink. It should, however, be noted at this point that
selecting the closest node to the sink does not always lead to a
complete localization as the edge between them is not guaranteed
to belong to the set of edges that allow for the initiation of a se-
quence of rigid-localizations resulting in a complete localization.
The decision to use the closest node to the sink for the very initial
semi-localization, on the other hand, is reasonable in that it helps
minimize the error propagation in the network. If the distribution
of nodes and their respective wireless ranges allow a sequence of
rigid-localizations that span all the nodes, continuing iteratively,
the nodes in the network can be all directionally localized. Based
on which of the two possible positions of the semi-localized node
has initially been selected, and assuming that the sink node is posi-
tioned correctly, the positions of all the other nodes may be ad-
justed by at most a single flip around the sink node.

We leave the step to verify the correctness of the initial guess to
a third party outside of the network, for example to an operator of
the system. Once the inaccuracy of the initial guess is observed, the
actual positions of all the nodes in the network can subsequently
be adjusted by a single flip easily (see Fig. 5).

We can now highlight the important parts of the DWRL algo-
rithm shown in Fig. 6 as follows:
t of the nodes can either be the correct positions, or positions flipped around the axis
ode.



Fig. 6. The DWRL Algorithm.
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� All the nodes are initially unlocalized. Sink node initiates locali-
zation by using the InitialLocalization algorithm shown in Fig. 6.
After finding the closest neighbor ncl, the sink sends a message
so that ncl semi-localizes itself with respect to the sink. Both the
sink and the semi-localized node, then, declare themselves
rigid-localized, at that time, and start broadcasting their posi-
tions thereafter. We use the term broadcast in this paper to repre-
sent the local communication from a node to its immediate
neighbors within the wireless range, using the broadcast med-
ium of the wireless radios.
� Whenever a non-localized node receives positions of localized

neighbors, it performs rigid-localization with respect to two of
its already localized neighbors using the RigidLocalization algo-
rithm in Fig. 6.
� Each node looks for at least two rigid-localized nodes within its

range that are verified to be not co-linear for performing a rigid-
localization. Each rigid-localization issues two calls for the cor-
responding semi-localizations.
� Each node starts broadcasting its own position relative to the

sink node right after it gets localized.
� Localization process continues until all the nodes are localized.
Theorem 2.3 (Single flip theorem). The Localization algorithm pre-
sented in Fig. 6 localizes, if possible at all through a sequence of
rigid-localizations, all the n > 1 nodes up to a flip around the sink.

Proof. The proof is by induction on the number of nodes. The base
case when n = 2 is seen to be capable of performing only a single
semi-localization with respect to the other node, namely, the sink.
The theorem certainly holds in this case by Lemma 2.1. Let’s
assume by the inductive hypothesis that the theorem holds for
all instances with as many nodes as i less than some constant
n > 2. When the algorithm is run with n nodes this time, the first
n � 1 > 1 nodes must have been successfully localized by the
inductive hypothesis up to a single flip around the sink. Let b
denote the node that is considered the last by the algorithm. Node
b, then, gets rigid-localized with respect to two amongst the first
n � 1 that have already been localized. By Lemma 2.2, the position
of b is, thus, unique. But it is known by the inductive hypothesis
that those two nodes with respect to which b is rigid-localized
are both either at their correct positions or need to be flipped
around axis of the sink. In the former case, the unique position
found must correspond to the real-world coordinates of b as all
four radios of the localizing nodes are at known positions which
are non-co-linear. In the latter, b gets rigid-localized against two
nodes whose actual positions can be obtained by a flip around
the sink. If all the nodes including b in the network are flipped once
around the sink, it is known that the first n � 1 nodes are all cor-
rectly placed regarding their actual positions. Besides, the new
position of b after the flip has all the distances preserved with
the other two lying at their actual positions now since the rigid-
localization process always specifies a globally rigid position for
b relative to the others. This new position for b after a flip around
the axis of the sink must, then, certainly be the actual position. h

The DWRL algorithm presented is distributed in nature and the
total number of messages propagated in the network when the
sink node has already been chosen is proportional to only a low de-
gree polynomial in the number of nodes. More precisely, with the
assumption that receiving a single message is enough for the recei-
ver radio to measure the distance to the sender, the total commu-
nication cost of the DWRL algorithm can be calculated for the
broadcasting and the receiving components as follows: During
the course of localization, each node only broadcasts the {Local-
ized,Local Position} tuple, where the Local Position is composed of
the positions of the two radios. By repackaging the tuple to fit into
two exact messages, namely {Localized,Local Position of Radio1} sent
by Radio1 and {Local Position of Radio2} sent by Radio2, the localiza-
tion is performed by each radio sending a single message. The total
communication cost for the broadcasting component for n nodes is
then 2n messages, which asymptotically amounts to O(n) mes-
sages. The total communication cost incurred by the receiving
component is also linear in the number of edges. Therefore, the to-
tal communication cost of the DWRL algorithm is linear at most in
the number of edges in the network. It should, however, be noted
that the number of edges is O(n) since multi-hop wireless adhoc
networks are in general not dense.

Optionally, by taking advantage of the fully distributed nature
of the algorithm, running time can be traded for improved accu-
racy by performing multiple rigid-localizations in parallel. Since
the communication costs dominate the CPU runtime costs in wire-
less networks, the cost of the DWRL algorithm hereby is reported
only in terms of the communication costs. The CPU runtime cost
of the DWRL algorithm, on the other hand, is also low assuming
that a floating point unit is present within the CPU to perform
the trigonometric calculations. Otherwise, if there are no floating
point units available, it is safe to assume that the computations
could be efficiently performed using approximations. The follow-
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ing lemma states an upper bound on the running time of DWRL for
multiple parallel rigid-localizations.

Lemma 2.4. If the nodes in the network are all in realizable positions
through a sequence of rigid-localizations, then the algorithm depicted
in Fig. 6 localizes all nodes in polynomial number of semi-localization
steps.
Proof. The algorithm after executing an initial semi-localization
between the sink and another node (not necessarily the closest
node to it), performs two semi-localizations for each rigid-localiza-
tion step throughout the rest of the algorithm. Each of the remain-
ing n � 2 nodes will, thus, go through a single rigid-localization.
The total number of semi-localizations once an edge leading to a
complete localization is correctly identified will, therefore, be
given by 1 + 2(n � 2) = 2n � 3. Since this many semi-localizations
can be carried out with each choice of a different edge, the total

number of semi-localizations can be, at most, n
2

� �
� ð2n� 3Þ. h

In this section, we presented our DWRL algorithm that performs
directional localization using only ranging data with the help of
dual wireless radios. We presented the DWRL algorithm in three
parts; semi-localization, rigid-localization, and the detailed analy-
sis of the DWRL algorithm.

3. Experimental evaluation

In this section, we conduct experiments to analyze the effects of
various parameters, including the range measurement errors
caused by environmental noise, on the performance of the DWRL
algorithm. We evaluate the properties of the DWRL algorithm in
four main subsections. First, we discuss the experimental setup
in Section 3.1. In order to properly evaluate the features of the
DWRL algorithm, we conduct the experiments in Section 3.2 under
ideal conditions, without environmental noise. However, range
measurement errors due to environmental noise in the real world
operations are inevitable. The DWRL algorithm depends only on
range measurements performed among nodes to operate, therefore
the only external source of error for the DWRL algorithm is the
range measurement errors. As a result, in Section 3.3 we introduce
noise to range measurements and conduct experiments under var-
ious real-world and simulated noise scenarios to evaluate the
robustness of the DWRL algorithm in noisy environments. Finally
in Section 3.4, based on our observations from the experiments
conducted, we summarize the impact of the selected parameters
on reducing the negative effects of the environmental noise on
the performance of the DWRL algorithm.

3.1. Experimental setup

We developed an in-house simulator written in C++ to carry out
the simulations. We simulate static nodes placed with a uniform
random distribution in an 100 � 100 unit square area. The location
of the sink node is also selected randomly as other regular nodes.
Unless stated otherwise, each simulation is run for 100 times,
and the average values are reported. The parameters for simulated
values of the wireless range, node density, inter-radio distance, and
range measurement error are specified separately for each experi-
ment. We report two types of localization errors in our experi-
ments; (1) The precision error of the localization, which shows
the accuracy of the localization for each node, and is reported only
for nodes that are localized. (2) The recall of the localization, which
represents the percent of the nodes that are localized. When
reporting the recall value, we include the nodes that are localized
with 100% accuracy as well as the nodes localized with precision
errors. In our experiments without environmental noise (Section
3.2), the precision of the DWRL algorithm is always 100% as ex-
pected. Therefore for that section we only report the recall of the
DWRL algorithm. However, for the experiments with environmen-
tal noise (Section 3.3), we report both the precision error and the
recall of the DWRL algorithm.

In Section 3.3, we represent the magnitude of the environmen-
tal noise in the network as P, which varies between 1 � 10. In our
experiments we use two types of environmental noise based on the
P parameter:

� Synthetic noise: Up to ±P% of the wireless range R selected from
a uniform random distribution, which we call as synthetic noise.
Unless stated otherwise, we use P = 1 in our simulations.
� Real-world noise: Empirically gathered noise data based on the

real world characteristics of the UWB radios, as reported in
[3,34], which we call as the real-world noise. In line with [34],
the real-world noise is selected as the summation of a high
probability small noise and a low probability large noise. The
small noise is modeled as a Gaussian random process with
parameters N(f(R),P/100) where
f ðRÞ ¼ 0:022 lnð1þ RÞ � 0:038:
In our experiments we use R as the wireless range of the nodes. The
large noise value is selected with a uniform random process be-
tween 0 and 10 units with probability 0.05.

Among these two noise scenarios, the magnitude of the syn-
thetic noise is generally much larger than the real-world noise,
which is due to the fact that the wireless range contributes linearly
in the synthetic noise scenario, and logarithmically in the real-world
noise scenario. In order to better analyze the behaviour of the
DWRL algorithm in noisy environments, we choose to conduct
the experiments with both real-world and synthetic noise scenarios.

Before getting into the details of the experiments, we would like
to stress out a fact that some of the parameters in the experiments
might look impractical, such as inter-radio distances as large as
wireless ranges. This is due to the fact that the experiments in this
section are conducted to demonstrate the effects of various param-
eters on the localization accuracy of the DWRL algorithm. There-
fore, for the sake of completeness, the DWRL algorithm is
evaluated with all theoretically possible parameter sets (especially
in Section 3.3). On the other hand, in order to demonstrate the fea-
sibility of the DWRL algorithm for real-world applications, we con-
duct an experiment to evaluate the precision error of the DWRL
algorithm for various inter-radio distances, in real-world noise sce-
nario. We select the number of nodes as 100 and the wireless range
as 50 units. Fig. 7 shows the change of precision error for the inter-
radio distances from 0.2 to 1 units. The points below the dotted
line represents the inter-radio distances for which the precision er-
ror of the DWRL algorithm is less than the inter-radio distance it-
self. We argue that in order to distinguish individual radios of a
node, the precision error should be smaller than the inter-radio
distance. As we see from the figure, inter-radio distance close to
0.6 units is the lowerbound of the valid operational range for the
current setting. If we select the meter as our unit here, for a typical
wireless network with 50 m wireless range, the inter-radio dis-
tance can be selected as low as 60 cm. We argue that it is feasible
for radios of this size to be easily carried around by humans or
mounted on small unmanned vehicles.

3.2. Experiments without range measurement errors

In this experiment we assume that there are no range measure-
ment errors in the network due to environmental noise, thus all



Fig. 7. The mean of the precision error in units of the DWRL algorithm in the real-
world noise scenario for various inter-radio distances.

Fig. 8. The percentage of the localized nodes in the network for various node
densities.

Fig. 9. The percentage of recall in the DWRL algorithm for various settings of
wireless ranges and inter-radio distances in units. Scale is presented on the right
from 0% to 100% recall.
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range measurements are 100% accurate. We select the inter-radio
distance as 0.1 unit, the wireless range as 10 units and carry out
the simulation of the nodes for various node densities. Density
here represents the average number of nodes in an 1 � 1 unit
square area. Fig. 8 shows the percentage of the recall value in the
DWRL algorithm. As we have stated earlier, the precision of the
DWRL algorithm is 100% in this experiment, so we do not report
it separately. We can see in Fig. 8 that nodes perform 100% locali-
zation for node densities larger than 0.05, for the reported inter-
radio distance and wireless range parameters. In order to perform
rigid-localization, each node needs to talk to two of its localized
neighbors, which is the reason for observing low recall values in
lower node densities.

We have also conducted another experiment to observe the
effect of the relationship between inter-radio distance and wireless
range on the recall of the DWRL algorithm. We have selected the
node density as 0.1 (1000 nodes) for this experiment. Fig. 9 shows
that there is a linear relation between the inter-radio distance and
the wireless range in terms of localization errors. While the blue 3

areas (upper left) represent the case where 100% of the nodes are
localized, the red areas (lower right) represent that none of the nodes
(0%) are localized. There is a sharp and clear transition between
these two areas. When the inter-radio distance of nodes is increased
while keeping the wireless range at a fixed value, the nodes are un-
able to localize both radios of their neighbors. This, in turn, decreases
the ability of the DWRL algorithm to fulfill successful localization,
hence results in poor recall values.
3 For interpretation of color in Fig. 9, the reader is referred to the web version of
this article.
3.3. Experiments with range measurement errors

In this section, we perform our experiments with the assump-
tion that environmental noise that causes range measurement er-
rors is present in the network. Therefore, in each experiment that
we conduct we will investigate methods to limit the effects of
the environmental noise on the DWRL algorithm. We select the
wireless range as 10 units, the inter-radio distance as 1 unit, and
the magnitude of the environmental noise P as 1. Fig. 10 shows
the change of the mean and the standard deviation of the precision
errors of the DWRL algorithm for various node densities, in both
synthetic and real-world types of noise scenarios. Fig. 11 shows
the mean and the standard deviation of the recall of the DWRL
algorithm for the same experiment. As seen in Figs. 10 and 11
(left), the precision error increases with the recall of the DWRL
algorithm up until the node density reaches around 0.04. At this
point the recall reaches close to 100%, after which any further in-
crease in the density reduces the precision error, thus increases
the accuracy of the DWRL algorithm.

Based on the results of this experiment, we can argue that once
the recall value reaches close to 100%, any further increase in the
node density reduces the precision error of the DWRL algorithm.
Therefore, adjusting the node density is a way to control the local-
ization errors caused by environmental noise in the network. How-
ever, increasing node density has a downside in terms of the cost of
hardware and the communication overhead incurred.

We carry out an additional experiment to observe the effects of
the wireless range of the nodes on the localization performance of
the DWRL algorithm. We set the density to 0.01 (100 nodes), the
inter-radio distance to 10 units, and the magnitude of the environ-
mental noise P to 1. Figs. 12 and 13 show how the precision error
and the recall of the DWRL algorithm vary with the wireless range
of the nodes. The impact of the wireless range on the precision er-
ror is in particular more significant in the synthetic noise scenario.
For wireless ranges around 25 units, the precision error increases
with the recall value until almost 100% of the nodes are localized.
Further increase in the wireless range from 25 to 40 units increases
the number of neighbors each node has, and thus reduces the pre-
cision error. The more neighbors the nodes have, the more accurate
the localization becomes. The improved accuracy in localization
here, however, does not come for free. As the energy spent for
wireless communication increases with the square of the range
of the communication, nodes have to pay the cost of reducing pre-
cision error in extra units of valuable energy reserves.

One other interesting observation to make in Fig. 12 (left) for
synthetic noise scenario is the raise of the precision error for wire-
less range values of more than 40 units. Increasing the wireless
range increases the magnitude of the environmental noise in wire-
less range measurements due to the wireless range factor itself in



Fig. 10. The mean (left) and the standard deviation (right) of the precision error of the DWRL algorithm in units in synthetic and real-world noise scenarios for various node
densities.

Fig. 11. The mean (left) and the standard deviation (right) of the recall of the DWRL algorithm in synthetic and real-world noise scenarios for various node densities.

Fig. 12. The mean (left) and the standard deviation (right) of the precision error of the DWRL algorithm in units in synthetic and real-world noise scenarios for various
wireless ranges.
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the noise scenarios. In synthetic noise scenario for wireless range
values larger than 40 units the negative effects of the environmen-
tal noise kick in and increase the precision error of the DWRL algo-
rithm. While the net effect of noise is relatively easier to observe in
synthetic noise scenario, the same reasoning also holds for the real-
world noise scenario. Due to the logarithmic contribution of the
wireless range in the real-world noise, however, the overall effect
of the environmental noise is less dramatic for small wireless range
values. As a result of this experiment we can conclude that in every
environmental setting, while keeping all the other parameters
fixed, there is an optimum value for the wireless range of the nodes
that help reduce the error in our localization algorithm. Therefore,
if the characteristics of the environmental noise are known a priori,
the wireless range of the nodes can be adjusted to the optimum
value for that noise level and the consequences of the environmen-
tal noise can be reduced to a minimum.

In order to observe the effects of the magnitude of the environ-
mental noise and the inter-radio distances on the accuracy of the
DWRL algorithm, we set the density to 0.01 (100 nodes), the
wireless range of the nodes to 40 units and conducted another
experiment for both synthetic and real-world environmental noise
scenarios. Fig. 14 shows the precision error (left) and recall (right)
of the DWRL algorithm for various magnitudes of the synthetic
noise. Similarly, Fig. 15 shows the precision error and recall for dif-
ferent magnitudes of the real-world noise. The blue parts in the left
sub-figures represent the areas with the lowest precision errors,
and the blue parts in the right sub-figures represent the areas with
close to 100% recall value. Therefore, we can identify the correct



Fig. 13. The mean (left) and the standard deviation (right) of the recall of the DWRL algorithm in synthetic and real-world noise scenarios for various wireless ranges.

Fig. 14. The precision error (left) and the recall (right) of the DWRL algorithm in synthetic noise scenario for various noise magnitudes and inter-radio distance units. Scales
are given on the right of each figure: (left) 0 [low] to 25 [high] precision error, (right) from 0% to 100% recall.

Fig. 15. The precision error (left) and the recall (right) of the DWRL algorithm in real-world noise scenario for various noise magnitudes and inter-radio distance units. Scales
are given on the right of each figure: (left) 0 [low] to 6 [high] precision error, (right) from 0% to 100% recall.
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operating range of the DWRL algorithm by overlapping the blue
parts in the left and right subfigures, which brings the inter-radio
distances to arrange between 1 unit up to around 30 units. We
can derive two important results by analyzing these figures. First,
the precision error of the DWRL algorithm increases with the mag-
nitude of the environmental noise, for both synthetic and real-world
noise scenarios. Second and more interestingly, the precision error
of the DWRL algorithm depends on the inter-radio distance, again
for both types of noise scenarios. Figs. 14 and 15 show that preci-
sion errors for both types of noise scenarios are high for relatively
smaller inter-radio distances. A further increase in the inter-radio
distances, however, can only decrease the precision errors until
an optimum point is reached, which occurs around inter-radio dis-
tances of 15 units for the synthetic and 5 units for the real-world
noise scenarios. We observe high precision errors for low inter-
radio distances since accurately identifying and localizing the
two separate radios of each node in noisy environments is espe-
cially harder if the distance among the radios is smaller than the
average range measurement errors caused by the environmental
noise. Therefore, for small inter-radio distance values, the accuracy
of the localization increases with the inter-radio distance of the
nodes. The precision errors, on the other hand, start increasing
once again for values of inter-radio distances larger than the opti-
mum values reported above. Finally, once the inter-radio distance
reaches around 30 units, the recall reported drops sharply, which
practically renders the DWRL algorithm useless for inter-radio dis-
tances larger than 30 units. The reason for the sudden drop here is
the same as the one explained in Section 3.2 for Fig. 9. To recap,



Fig. 16. Snapshots from the real-world noise scenario simulations in Fig. 15. (Left) inter-radio distance is 1 unit, magnitude of noise is 1. (Middle) inter-radio distance is 1 unit,
magnitude of noise is 5. (Right) inter-radio distance is 1 unit, magnitude of noise is 10.
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setting the inter-radio distances to 30 units or more for nodes that
have wireless ranges set to 40 units prevents the nodes from local-
izing both radios of their neighbors at the same time, which inter-
rupts rigid-localization and causes the sudden drop in the recall
value.

Selecting the proper inter-radio distance can minimize the ef-
fects of the environmental noise on the localization performance
of the DWRL algorithm. As seen in Figs. 14 and 15, it is not the
magnitude but the characteristics of the environmental noise that
is driving the optimum value for the inter-radio distance. There-
fore, for suitable applications, proper inter-radio distances can be
set prior to deployment on the field based on the error character-
istics in the environment. By doing so, the unwanted effects of the
environmental noise can be reduced without any additional oper-
ational cost. This salient feature of the DWRL algorithm is consid-
ered as a more efficient tool in controlling the effects of the
environmental noise than adjusting the density or the wireless
range of the nodes.

In order to better visualize the outcomes of the precision error
and the recall value, we present three screenshots in Fig. 16. The
screenshots are taken during the simulations with real-world noise
having the characteristics as shown in Fig. 15, and help us visualize
the correlation of the error values with the ground truth in the net-
work. For ease of presentation, each node is represented as a single
dot in Fig. 16, where the position of the dot is the mid-point of the
radio positions of the node. The same convention is followed to
also represent the estimated positions of the nodes. The red4 dots
in the screenshots represent the real positions of the sink nodes.
The blue dots represent the real positions of the ordinary nodes.
Lines attached to blue dots represent the difference between the real
and the estimated positions of the nodes, with line sizes represent-
ing the precision error for each node. The circles represent the wire-
less range of each node, which in this case is presented only for the
sink node for comparison purposes. As we have already discussed in
Section 2, for each node there are two positions calculated due to the
flip ambiguity around the axis of the sink node. However, the screen-
shots show only a single case of the flip to ease the presentation. The
screenshot in Fig. 16 (left) is taken from a simulation with inter-
radio distance set to 1 unit, the magnitude of noise set to 1, and pre-
sents an accurate localization where the real and estimated positions
of each node almost match exactly, the precision error is 0.33 units,
and the recall is 99.9%. We can argue that the accuracy level in this
simulation is suitable enough for localization applications demand-
ing high accuracy. In Fig. 16 (middle), the inter-radio distance is
again set to 1 unit and the magnitude of noise is increased to 5,
which increases the precision error to 2.33 units while the recall
drops to 96.7%. Fig. 16 (right) presents a simulation with the
4 For interpretation of color in Fig. 16, the reader is referred to the web version of
this article.
magnitude of noise set to 10 and the inter-radio distance set to 1
unit. The precision error for this simulation is 5.32 units and the re-
call is 81.2%. The accuracy levels in the last two simulations are con-
sidered medium accurate based on the category given in [8]. We
present the screenshots here to visually demonstrate the practical
affect of the selected parameters on the ground truth localization
of the nodes. As we have clearly seen, the accuracy of the DWRL
algorithm varies greatly with a proper setting of the parameters.

3.4. Discussion of methods to reduce the localization errors

In real world, it is not possible to avoid the noise present in the
environment that affects the range measurements by the nodes.
However, for applications that permit adjusting the parameters
prior to deployment, the DWRL algorithm can be tuned to be more
robust even in noisy environments. Therefore in this section, based
on the experience from the previous experiments, the advantages
and disadvantages of all possible methods to reduce the unwanted
effects of the environmental noise on the performance of the DWRL
algorithm are summarized in Fig. 17. There is an engineering deci-
sion in choosing between robustness and cost when selecting the
node density and the wireless ranges. However, changing the in-
ter-radio distance do not introduce any additional operational cost
during localization, if done in an optimal way. Therefore, the best
option would be to engineer an optimal solution for the selection
of these three parameters based on the characteristics of the envi-
ronmental noise, budget, and the energy requirements of the
nodes.
4. Related work

In localization, if only the distances between nodes are known,
the problem turns into a graph embedding problem. In [46] testing
Fig. 17. Comparison of the effects of the parameters over the consequences of
environmental noise on the DWRL algorithm.
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the embeddability of weighted graphs in k-space is shown to be
strongly NP-hard. This result is reported for general graphs, but
wireless adhoc networks, where the neighborhood size is limited,
are better modeled as unit disk graphs [12]. A more precise formu-
lation of the localization problem using unit disk graphs is shown
in [5,6] to be also NP-hard. In [15], the problem is studied in terms
of graph rigidity and shown to be NP-hard even when the underly-
ing graph is known to be globally rigid. It is also known that the
localization problem has a unique solution only if the underlying
network graph is globally rigid. On the other hand, it is shown in
[15] that a subclass of graphs known as trilateration graphs can
be localized in time linear in the size of the nodes when the edge
weights are exactly realizable without errors.

Hightower and Borriello [22] have a survey on localization sys-
tems which covers a side by side comparison of the existing meth-
ods and their underlying techniques.

Although global positioning systems such as GPS are widely
popular in location discovery, the inability of the GPS system to
be used indoors, and low precision for close range applications
have led the researchers to investigate alternative localization
methods. Some of the existing work [9,14,28,31,44,45] on node
localization in static wireless sensor networks use known reference
points, called anchors or seed nodes to perform localization. The
position information of the anchors or seed nodes are usually
pre-set or gathered via GPS, therefore their use is not practical
for adhoc deployments of sensors. In some applications
[1,2,11,24,30,34,39,41] node positions in the local coordinate sys-
tem of the network is sufficient, therefore localization is possible
without an external positioning infrastructure. In order to perform
localization, only local information such as neighborhood data and
distances between nodes are used. The effects of environmental
noise on the ranging accuracy, and the cost of the ranging equip-
ment has led the researchers to propose range-free localization
methods [9,21,31,33]. Probabilistic methods are also used to find
the location of the nodes [23,42]. Comparison of various localiza-
tion methods for different settings can be found in [16,26]. Data
analysis techniques [18,47] are also used to analyze the neighbor-
hood data of the nodes to perform localization.

Recently, efficient uses of dual or multi wireless radios on sen-
sor nodes have already been considered for various applications
(e.g., routing) [29,37,48]. Contrary to our approach, one of the
radios in these work are short range low power radios, while the
other is a long range high power one.

In addition to static networks, localization is also studied in mo-
bile sensor networks with the assumption that only some [27,40]
or all the nodes [1,2,34,50] can be mobile. Localization systems is
also studied in vehicular ad-hoc networks [7,8,25,35].

Recently, [10,19,36,38] have surveyed the distance measure-
ment methods. Ultra-wideband radios have standardized optional
accurate ranging ability [17]. More information on the uses of Ul-
tra-wideband positioning systems in node localization is available
in [43].

Directional localization was introduced in [1,2], where the nodes
calculate the exact positions of their neighbors in their local coor-
dinate system, both in terms of distance and orientation. Our algo-
rithm also performs directional localization in static networks by
using only ranging, while [1,2] require additional hardware, and
work only on mobile networks. Localization using only ranging is
studied in [11,24,30], however, all these methods assume initial
virtual coordinates for the nodes, therefore do not perform direc-
tional localization. The locations obtained by these methods are
suitable for geographical routing purposes, and do not correspond
to true positions of the nodes.

In real world, the environmental noise is inevitable. Therefore
during the design of the localization algorithms the consequences
of the environmental noise should also be considered, and the
algorithms should be robust enough to work even in high noise
environments. Ni et al. [32] presents a tutorial on common errors
that affect sensors. [4,21,28,30,44] manage errors during localiza-
tion, where Moore et al. [30] presents a method to calculate the er-
ror bound theoretically. We also assume the presence of the noise
in the environment, therefore analyze and present methods to con-
trol the effects of the noise on proposed DWRL algorithm. The main
difference of our algorithm from the prior work is that we perform
directional localization using only ranging data, without the use of
any positioning device or infrastructure.
5. Conclusion

In this paper, we propose a novel directional localization algo-
rithm. To the best of our knowledge, this is the first time dual
radios are used to perform node localization. The proposed DWRL
algorithm performs the localization in a distributed way, using
only ranging information and without the use of any global posi-
tioning system or infrastructure. This property of DWRL algorithm
makes it a perfect candidate for ad-hoc deployments, such as col-
lision avoidance or emergency search-and-rescue systems. We de-
signed DWRL to be robust enough even in noisy environments,
tested in excessive real-world and synthetic simulated noise sce-
narios, and presented empirical evidence that DWRL is feasible to
be used in most real-world applications. Our experiments reveal
that for nodes of sizes with dimensions greater than the noise
granularity, directional localization is always possible with the
DWRL algorithm. The investigation of theoretical and empirical ef-
fects of using variable sized or dynamically changing (if possible)
inter-radio distances on the performance of localization is an open
research area.
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