
Computational Geometry 44 (2011) 409–417
Contents lists available at ScienceDirect

Computational Geometry: Theory and
Applications

www.elsevier.com/locate/comgeo

Reconstructing orthogonal polyhedra from putative vertex sets ✩

Therese Biedl b, Burkay Genç a,∗
a Faculty of Engineering and Computer Sciences, Izmir University of Economics, Sakarya Cad. No: 156, Balcova, Izmir, Turkey
b David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 August 2008
Accepted 19 April 2011
Available online 22 April 2011
Communicated by G. Toussaint

Keywords:
Reconstruction
Vertex set
Orthogonal polyhedra

In this paper we study the problem of reconstructing orthogonal polyhedra from a putative
vertex set, i.e., we are given a set of points and want to find an orthogonal polyhedron
for which this is the set of vertices. This is well-studied in 2D; we mostly focus on 3D,
and on the case where the given set of points may be rotated beforehand. We obtain fast
algorithms for reconstruction in the case where the answer must be orthogonally convex.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study the following problem: Given a set of points S in 3D, is there an orthogonal polyhedron for
which the set of vertices is exactly S? And if there is such a polyhedron, is it unique? (Precise definitions will be given in
Section 2.)

1.1. Motivation and our results

The problems studied in this paper are related to pattern and object recognition from point sets [1–3]. Given a point set
in three dimensions, it is possible to reconstruct a convex object that includes these points by finding the convex hull of the
points in the set. However, reconstructing a non-convex object from a point set is quite difficult and the resulting objects
are not necessarily unique. It is known that even reconstruction of orthogonal shapes from points in two dimensions is a
difficult problem [4]. Does it help to know that the given points are the vertices of the object to be reconstructed? This
is almost like the childhood game “connect-the-dots”, except that the points are not numbered. O’Rourke [5] provides an
algorithm for orthogonal polygons if the given point set is the exact set of vertices. Is it possible to extend this result to
three dimensions for orthogonal polyhedra? What if the points correspond to a “rotated” orthogonal polygon or polyhedron?

The second interest is succinct data structures for storing polyhedra. The “standard” boundary representation (storing
vertex coordinates and the graph of the polyhedron as doubly-connected edge list; see e.g. [6]) contains much redundancy
when applied to an orthogonal polyhedron. What information can be omitted while maintaining uniqueness of the poly-
hedron? This papers studies the vertex representation, where we store only the vertex coordinates, and the problem can be
re-phrased as follows: Is the vertex representation unambiguous, i.e., does it give rise to one unique orthogonal polyhedron?
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Fig. 1. Two polygons (one touching itself) that have the same set of vertices. From [7].

Fig. 2. Two orthogonal polyhedra that have the same vertex set.

Bournez et al. [7] gave an example where this representation is ambiguous, even in 2D (see Fig. 1). In this example, the
polygon boundary touches itself repeatedly. If (as is more common) this is not allowed, then O’Rourke’s algorithm [5] tests
whether a set of 2D points belongs to an orthogonal polygon.

In 3D the vertex representation is indeed ambiguous, see Fig. 2. But this example is not orthogonally convex, so what
is the situation if we restrict ourselves to orthogonally convex polyhedra? The precise problem studied in this paper is as
follows:

Problem 1. Given a set S of n points in 3D, is there an orthogonally convex polyhedron for which the set of vertices is
exactly S?

We give an O (n log n) algorithm to solve this problem. Also, there is a unique polyhedron, since the reconstructed poly-
hedron is in fact the orthogonally convex hull of P . We then study a generalization where we allow rotations, which is
significantly more difficult.

Problem 2. Given a set of n points S in 3D, is there a rotation S ′ of S and an orthogonally convex polyhedron P such that
the vertices of P are exactly S ′?

It is quite easy to show that this problem is solvable in O (n3 log n) time. We work on reducing this time complexity.
First, we consider the 2D problem, and provide an O (n log n) algorithm to find a suitable polygon. If such a polygon exists,
then at most one rotation can yield one (and the polygon is unique). Then we use this to reduce the time complexity for
3D to O (n2 log n).

1.2. Related results

Reconstructing polygons from a given point set was first proposed by Steinhaus [8]. Unless the points are collinear, there
always exists a polygon, and it can be found in many ways; Hurtado et al. [9] give a good overview on this topic. The three-
dimensional version (reconstruct a general polyhedron from a set of points) appears to first have been solved by Grünbaum
[10]; Hurtado et al. [9] mention many extensions and generalizations.

Noone appears to have studied reconstructing orthogonal polygons and polyhedra from point sets, but related results
appear in the literature on representations of orthogonal polyhedra via their vertices. Aguilera and Ayala [11,12] showed
how to reconstruct an orthogonal polyhedron from its vertices if we know which vertices are “extreme” (have degree 3).
From this information they can generate all edges of the polyhedra. Bournez, Maler and Pnueli [7] assume that with each
vertex we know whether a (pre-determined) octant is inside the polyhedron or outside. They do not reconstruct the edges
or faces, but give a test that determines in O (n log n) time whether a given point is inside the polyhedron or outside.
Contrasting our results with these papers, we demand less information (nothing except vertex coordinates), but in exchange
can reconstruct only orthogonally convex polyhedra. Furthermore, we also consider rotations of the point set.

2. Definitions

A polygon is a set P in a plane whose boundary ∂ P is a simple closed curve that consists of a finite number of line
segments. A vertex of a polygon P is a point on its boundary where ∂ P changes slope. An edge of a polygon is a line
segment on its boundary that connects two vertices.
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A set S ⊆ R3 is convex if for any two points in S the line segment between them is also in S . The convex hull CH(S) of
a set S is the intersection of all convex sets that contain S .

An orthogonal polygon (sometimes also called rectilinear polygon) is a polygon whose boundary is composed entirely of
axis-parallel segments. An orthogonal polygon P is orthogonally convex if any axis-parallel line intersects P in at most one
line segment.

A polyhedron is a subset of R3 whose boundary is a 2-manifold composed of finitely many interior-disjoint polygons.
A face of a polyhedron is a maximal interior-connected planar region of the boundary of a polyhedron. Note that a face
need not be a polygon, since its boundary may touch itself or have multiple components. A vertex of a polyhedron is a point
on the boundary incident to at least three faces. An edge of the polyhedron is a maximal line segment on the boundary of
a face that does not contain a vertex in its interior.

An orthogonal polyhedron is a polyhedron whose boundary is composed entirely of polygons that are lying within an
orthogonal plane, i.e., a plane whose normal is one of the coordinate axes. A set is orthogonally convex if every intersection
with an orthogonal plane is either empty or a single orthogonally convex polygon. Slightly abusing notation, we use the
term orthogonally convex polyhedron to mean a polyhedron that is orthogonally convex and also orthogonal. (The latter is not
required from prior definitions, but we will not study non-orthogonal polyhedra that are orthogonally convex.)

An orthogonally convex hull of a point set may be defined in different ways which are not all equivalent (see [13] for
details for 2D). We use the following definition. The orthogonally convex hull of a set S (denote OCH(S)) is the intersection of
all orthogonally convex sets that contain S . In general OCH(S) need not be a polygon/polyhedron (because it is not always
connected), but if S is a polygon/polyhedron, then OCH(S) is also a polygon/polyhedron [14].

3. Reconstructing without rotation

The 2D-reconstruction problem (“Given a set of points, find an orthogonal polygon for which this is the set of vertices”)
has been solved by O’Rourke [5]. By sorting points on any orthogonal line, and then adding an edge between every other
pair of points, the polygon (if it exists) can be reconstructed in O (n log n) time and is unique.

For 3D, the problem becomes harder. There may not be a unique answer as shown by O’Rourke [5]. In his example one
answer is not actually a polyhedron because it is disconnected; our Fig. 2 shows another example where both answers are
polyhedra. The complexity of finding some orthogonal polyhedron if one exists remains open. We study here orthogonally
convex polyhedra, and show how to test whether a set of points is the vertex set of an orthogonally convex polyhedron in
O (n log n) time.

So assume we are given a set of points S ⊆ R3. One can easily see that if any orthogonally convex polyhedron P has
vertex set S , then P must be the orthogonally convex hull of S (and in particular, is unique). However, there appears to be
little work done on efficiently computing the orthogonally convex hull of a point set in three dimensions.

Computing the maxima is the closest result in the literature. We say that point q dominates point p if each coordinate of
q is larger than the corresponding coordinate of p. A maximum of a point set S is then a point p ∈ S that is not dominated
by any point q ∈ S . The set of maxima of n points can be computed in O (n log n) time [15]. One can show easily that
every vertex of the orthogonally convex hull is a maximum in one of the eight possible directions defined by reversing
the dominance definition separately for each dimension, and vice versa, every maximal point of a point set S is on the
orthogonally convex hull of S .

However, some obstacles remain. While computing maxima will detect whether S has any additional points in the
interior of the orthogonally convex hull, it will not check that all vertices of the orthogonally convex hull are indeed in S .
To do so, we would have to reconstruct all faces of the orthogonally convex hull, and we are not aware of an algorithm in
the literature to do so.

We hence use a different approach to the problem of reconstructing an orthogonally convex polyhedron that does not
use the idea of computing maxima. Our algorithm requires O (n log n) time and O (n) space, where n is the number of points
in the input set. It can be outlined in two steps: In the first step, sweep through all six orthogonal directions and construct
the shadows (to be defined precisely later) of parts of the polyhedron. In the second step, reconstruct the edges and faces
of the polyhedron from these shadows.

To explain the first step in more detail, the following definitions are necessary. Let P be an orthogonally convex poly-
hedron. Let x1 < x2 < · · · < xt be the values for which some vertex of P has x-coordinate xi . Each of these xi determines
a vertex layer of the polyhedron, which is the set of all vertices V i with x-coordinate xi . Let Fi be the x−-faces with x-
coordinate xi , where an x−-face is a face with outward normal (−1,0,0). Let πi (the ith shadow) be the union of the faces
of F1 ∪ · · · ∪ Fi projected onto an x-plane (i.e., a plane perpendicular to the x-axis; y-planes and z-planes are defined anal-
ogously). One can easily see that πi is the same as the projection of the polyhedron Pi = P ∩ {x � (xi + xi+1)/2} onto an
x-plane; see Fig. 3. In what follows, we will use projection to mean projection onto an x-plane; no other projections will be
studied.

The crucial insight is that πi can be computed from the V i ’s alone, and from this the faces in Fi can be reconstructed.
We need the following lemmas:

Lemma 1. Let P be an orthogonally convex polyhedron. Then each shadow πi, i = 1, . . . , t, is an orthogonally convex polygon. More-
over, πi is the orthogonally convex hull of the projections of V 1, . . . , V i .
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Fig. 3. An orthogonally convex polyhedron and its shadows.

Proof. Let � be a horizontal or vertical line that intersects πi . This line is the projection of a y-plane or z-plane that
intersects Pi . The intersection of this plane with Pi is a connected set, since P (and hence Pi ) is orthogonally convex.
Therefore, � ∩ πi (which is the projection of this intersection) is connected, i.e., a single line segment. So πi is orthogonally
convex.

Now let p be a point of πi . Some x−-face f of Pi must contain a point that projects to p by definition of πi . Face f is
a subset of its orthogonally convex hull, so since p is in the projection of f , it is also in the orthogonally convex hull of
the projection of the vertices of f . These vertices belong to some V j , j � i, so p is in the orthogonally convex hull of the
projection of V 1 ∪ · · · ∪ V i .

To show the other direction, observe that the projection of any vertex of V 1 ∪ · · · ∪ V i belongs to πi . Since πi is orthog-
onally convex, it therefore is an orthogonally convex set containing all projections of these vertices, and as such, a superset
of their orthogonally convex hull. �
Lemma 2. Let U be the union of all faces in Fi , projected onto an x-plane. Then U is the closure of πi − πi−1 .

Proof. Directly from the definition of πi , we have πi = πi−1 ∪ U , so all that remains to show is that U ∩πi−1 is empty. This
actually is not always true, but we show that U ∩ πi−1 contains no points in its interior, which implies the result since we
take the closure.

So assume for contradiction that U ∩ πi−1 contains a point in its interior. Then a small open region around this point is
also in U ∩ πi−1, and in it we can find a point p such that the x-line � through p (i.e., the line parallel to the x-axis) does
not intersect any edge or vertex of P . It intersects at least one x−-face among F1, . . . , Fi−1 because p belongs to πi−1. It
intersects another x−-face in Fi because p belongs to U . But then line � intersects P in at least two line segments, because
it intersects these x−-faces in their interior. This contradicts that P is an orthogonally convex polyhedron. �

These lemmas naturally imply an algorithm to compute the x−-faces: Sort all points with respect to their x-coordinates
to obtain layers V 1, . . . , Vt . For i = 1, . . . , t , reconstruct the shadow πi by computing the orthogonally convex hull of the
projections of V 1 ∪ · · · ∪ V i . Then, compute the closure of πi − πi−1 and extract the maximal interior-connected regions,
which are the x−-faces in Fi .

Repeating this for all six directions obtains the only possible set of faces that could belong to an orthogonally convex
polyhedron P with vertex set S , and we can then easily check whether the set of vertices defined by these faces is exactly S .

This algorithm can easily be implemented in O (n2 logn) time, if each πi is reconstructed using the two-dimensional
orthogonally convex hull algorithm by Ottmann et al. [13], which takes O (n log n) time and is applied O (n) times (for each
layer in each of six directions).

The time complexity can be improved by dynamically updating the orthogonal convex hull as new points are added at
each layer, and immediately reconstructing the faces. Maintaining the orthogonally convex hull in 2D under additions of
points can be done in O (log n) time per point. (This is well-known for general convex hulls, see e.g. [6], and can easily be
modified to handle orthogonally convex hulls by maintaining four staircases that describe the orthogonally convex hull.)

To reconstruct the x−-faces in Fi quickly, observe that each connected components of πi − πi−1 is incident to at least
one point in layer i. Hence, exploring the boundary of πi from points in layer i, one can walk around each connected piece
of πi −πi−1, hence find each face and explicitly list all vertices and edges. The time to do this is proportional to the number
of vertices in the faces found; over all faces and all layers this is O (n) time. Once the ith layer is swept, πi−1 is no longer
necessary and can be discarded, hence the space complexity is O (n).

Theorem 3. The edges and faces of an orthogonally convex polyhedron P can be reconstructed from its vertex coordinates in O (n log n)

time.
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Note that this algorithm assumes that the input set of vertices is the exact set of vertices of the orthogonally convex
polyhedron. Therefore, it cannot be used as a means of computing the orthogonally convex hull of an arbitrary point set,
though whether it could be modified to do so is an interesting open problem.

4. Rotated point sets

In this section, we study Problem 2, i.e., we allow a rotation to be applied to the point set before searching for a
polyhedron. The following notation will be helpful: An α-orthogonal polygon (for 0 � α < π/2) is a polygon for which
all edges have slope tan(α) or − cot(α). A rotated orthogonal polygon is an α-orthogonal polygon for some 0 � α < π/2.
A rotated orthogonal polyhedron is a polyhedron obtained by applying some rotation matrix to an orthogonal polyhedron.
Similarly we define α-orthogonally convex polygon and rotated orthogonally convex polygon/polyhedron.

The operations involved in the following sections require multiplications of real numbers. Therefore, all operations are
assumed to be done under the real RAM model of computing.

4.1. Point sets in 2D

Problem 2 is far from trivial even in 2D, where it becomes the following: Given a set of points S in 2D, is there a rotated
orthogonal polygon whose vertices are S?

A straightforward approach consists of trying all possible angles α for rotation, and for each of them, running the
algorithm of O’Rourke [5]. To find the possible angles, compute the (conventional) convex hull CH(S) of S . For each of the
edges on the convex hull, try the rotation α that makes this edge horizontal or vertical. These rotations are the only possible
candidates for obtaining a rotated orthogonal polygon because of the following easy fact:

Observation 4. Let P be an orthogonal polygon, and let CH(P ) be the convex hull of its vertices. Then there are at least four
edges of P that are on the boundary of CH(P ). If P is orthogonally convex, then there are exactly four such edges (we will
call them extreme edges), and they are edges of CH(P ).

The time complexity of this algorithm is O (n2 log n) for an input set of n points, since the convex hull can be computed
in O (n log n) time, gives at most n rotations, and for each of them O’Rourke’s algorithm takes O (n log n) time.

One may wonder whether testing all rotations is really necessary. We posed this as an open problem at CCCG’07, and
Löffler and Mumford soon thereafter proved that only one rotation can possibly yield a polygon (or for that matter, a con-
nected graph) [16]. Moreover, they give an algorithm to find this rotation in O (n2) time. Applying O’Rourke’s algorithm to
this one rotation only hence decreases the running time of finding a rotated orthogonal polygon (if one exists) to O (n2).
This also shows that the answer, if one exists, is unique.

Theorem 5. The boundary of a rotated orthogonal polygon can be reconstructed from its vertex coordinates in O (n2) time.

The time complexity can be improved even more for rotated orthogonally convex polygons, because the only possible
rotation can be found faster. Hence the rest of this subsection deals with the following problem: Given a set S of points in
R2, construct a rotated orthogonally convex polygon with vertex set S if one exists. We solve this problem by proving that
only one rotation can possibly work, a result that immediately follows from the work by Löffler and Mumford [16], but for
which we give a separate proof that implies a simple fast algorithm to find it.

Given an edge e of a convex polygon C , let H(e) be the closed half-disk of e (one half of the disk whose diameter is e)
that intersects C . See also Fig. 4(a).

Lemma 6. Let P be an α-orthogonally convex polygon for some 0 � α < π/2, and let e = (v, w) be an edge of the convex hull CH(P ).
If e is not an edge of P , then H(e) contains at least one vertex u �= v, w of P .

Fig. 4. (a) H(e) must contain another vertex. In this picture, α ≈ π/6. Polygon P is dashed. (b) If e is the shortest extreme edge, then no vertex s can be in
H(e). Polygon P is dashed.
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Proof. Assume e is not an edge of P . Vertex v has two incident edges in P , one of slope tan(α) and the other of slope
− cot(α). Furthermore, these edges must be inside CH(P ), which (since the convex hull has angles less than π and the two
edges are at angle π/2) means that one of them must enter H(e). Call the other endpoint of this edge v ′ . Similarly one can
argue that one incident edge of w must enter H(e); call its other endpoint w ′ . See also Fig. 4(a).

Clearly, v ′ �= w and w ′ �= v since e is not an edge of P . If either one of v ′ and w ′ is inside H(e), then we are done. But
if both are outside H(e), then the edges (v, v ′) and (w, w ′) cross, because the two corresponding rays have perpendicular
slopes and hence meet exactly on H(e). But the boundary of a polygon must not cross itself, so one vertex is inside H(e). �

We need another observation. Let P be a rotated orthogonally convex polygon and let e0, . . . , e3 be the four edges of P
that are also edges of CH(P ), in order as encountered when walking along P (cf. Observation 4). These are the extreme edges
of P .

Lemma 7. Let P be a rotated orthogonal polygon and let e = (v, w) be the shortest of its extreme edges. Then H(e) contains no vertices
other than v and w.

Proof. After possible rotation, we may assume that e is horizontal with v left of w and P below e. See Fig. 4(b). Assume
for contradiction that s �= v, w is a vertex inside H(e) and consider the vertical line through s. This line intersects P at s
and somewhere along edge (v, w). It cannot intersect the boundary of P anywhere else by orthogonal convexity. So it splits
the boundary of P into two chains, one of which is monotone in y-direction since P is orthogonally convex. This monotone
chain contains a vertical extreme edge, which cannot be longer than the distance from s to (v, w), which is at most ‖e‖/2
since s is inside H(e). Therefore e was not the shortest extreme edge, a contradiction. �

These two lemmas imply uniqueness of the rotation:

Theorem 8. For a set S of points in plane, there exists at most one rotated orthogonally convex polygon whose set of vertices is exactly S.

Proof. Assume for contradiction that S is the set of vertices of both an α-orthogonally convex polygon P and an α′-
orthogonally convex polygon P ′ where 0 � α �= α′ < π/2. By Lemma 7, there exists an extreme edge e of P for which H(e)
contains no other point of S . Edge e is on CH(S) = CH(P ) = CH(P ′), but it is not an edge of P ′ , since P ′ has different slopes
than P . So by Lemma 6, H(e) contains some vertex of P ′ , which is a point of S , a contradiction. �

This result also helps to compute the edges of the polygon efficiently:

Theorem 9. The edges of a rotated orthogonally convex polygon can be reconstructed from its vertex coordinates in O (n log n) time.

Proof. First, compute the convex hull CH(S) of S in O (n log n) time. Then, for each edge e of S , test whether H(e) is empty.
This can be done by pre-computing the Voronoi diagram of S in O (n log n) time [6]. Here, the Voronoi diagram of n points
S is a partition of the plane into n regions associated to the points, such that the points in each region are closer to the
associated point than to any other point in S . For each edge, H(e) is empty if and only if the nearest points of the midpoint
of edge e are the endpoints of edge e and no other point of S . One query in the Voronoi diagram is necessary per edge,
and each such query takes O (log n) time. Therefore, for all edges this can be read from the Voronoi diagram in O (n log n)

total time.
By Lemma 7 there must exist an edge e with H(e) empty; otherwise S is not the vertex set of a rotated orthogonally

convex polygon. By Lemma 6, this edge e must be an edge of P in any solution P . So rotate S such that e becomes horizontal
or vertical, and then apply O’Rourke’s algorithm [5] to compute the edges of P . �
4.2. Point sets in 3D

In this section, we study Problem 2 in 3D, i.e., the following question: Given a set S of points in R3, construct a rotated
orthogonally convex polyhedron with vertex set S if one exists.

In order to reconstruct the edges and faces, a trivial algorithm is to compute the convex hull of the vertices of the
polyhedron, and then try all possible rotations that make two non-parallel convex hull faces lie in orthogonal planes. For
each rotation, one can apply the algorithm presented in Section 3 to reconstruct the edges and faces of the orthogonally
convex polyhedron. This approach takes O (n3 log n) time in the worst case, because there may be as many as O (n2) rotations
that must be tried for O (n) faces of the convex hull.

Unfortunately, it is not known whether there are multiple rotations that can allow an orthogonally convex polyhedron to
be realized by the given vertex coordinates. Löffler and Mumford’s result [16] almost seems to imply that this is the case,
but their proofs require connectivity of the reconstructed graphs, while an orthogonally convex polyhedron need not have a
connected graph.
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Fig. 5. An orthogonally convex polyhedron for which there exist no edges on the convex hull with empty balls.

But even without uniqueness, one can decrease the runtime and eliminate many of the rotations by applying the algo-
rithm of Section 4.1 to each face of the convex hull. More precisely, assume that F is a face of the convex hull, and S F is the
set of all input points that lie in the plane of F . Apply the algorithm of Section 4.1 to S F which takes O (|S F | log |S F |) time.
If it succeeds, then the resulting rotated orthogonally convex polygon P F can be a face of a rotated orthogonally convex
polyhedron P , but only if the rotation is such that the face normal of F and edges of P F become parallel to coordinate axes.
After rotating S with this rotation, apply the algorithm of Section 3 to compute the edges and faces of the orthogonally
convex polyhedron; this will reconstruct P if it exists. This takes O (n log n) time per face and O (n2 log n) overall for O (n)

faces.

Theorem 10. The edges and faces of a rotated orthogonally convex polyhedron can be reconstructed from its vertex coordinates in
O (n2 log n) time.

There are some heuristics to decrease the number of rotations to be tried, but none of them leads to an improvement in
the worst case. In particular, the three-dimensional equivalent of Lemma 6 holds for an edge e of CH(S), if H(e) is replaced
by a ball B(e) spanned by e. Thus if B(e) is empty for some edge e (which can be tested in O (n log n) time), then there is
only one possible rotation. Unfortunately, there are orthogonally convex polyhedra for which the 3D equivalent of Lemma 7
does not hold, so there need not always be an edge for which B(e) is empty (see Fig. 5). Also, since Lemma 7 need not
hold, it is not known whether the rotated orthogonally convex polyhedron in Theorem 10 is unique.

5. Reconstruction with additional points

In the paper thus far, we have studied an exact version of the problem, i.e., the given input set S must exactly be the
set of vertices of the polygon/polyhedron to be reconstructed. In this section, we briefly consider the case when additional
points are allowed. We do not have any ground-breaking results here, and mostly present a wealth of open problems.

Additional points could arise in a number of applications. In the object recognition application, it is possible that the
method that created the data had some errors. In this case, additional points may be anywhere. In the data structures
application, on the other hand, additional points would only be on the boundary or inside. Namely, it is common to describe
a polygon/polyhedron via the polygonal curve/polyhedral surface that is its boundary, and many applications allow that the
boundary is subdivided. This then creates additional points on the boundary. Furthermore, if the boundary of a polyhedron
is subdivided, then the polygons on the boundary obtain additional points inside. We hence studied also the problem of
additional points inside, both in 2D and 3D.

The problems to be studied hence are as follows: First, we need to clarify how the input set S is to be interpreted.
Should it be exact, i.e., all points in S must be vertices of the computed polygon/polyhedron? Or may S have points in
addition to the vertices? If the latter, must the additional points be on the boundary of the computed structure, or on the
inside (including the boundary)?

Secondly, what do we know about the resulting polygon/polyhedron? Is it orthogonally convex, or a general orthogonal
polygon/polyhedron? Is it in 2D (a polygon) or in 3D (a polyhedron)? Do we allow rotated polygons/polyhedra or not?
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Fig. 6. Two rotated orthogonally convex polygons constructed from same input coordinates: additional points inside the polygons are allowed.

This raises 24 problems. For each of them, we want to know whether it is possible to construct an orthogonal poly-
gon/polyhedron in polynomial time, and if so, what the fastest time complexity is. We are also interested in whether the
answer is unique.

For these many problems, we will only provide a selection of answers below:

• Rappaport [4] showed that it is NP-hard to reconstruct an orthogonal polygon from a set of 2D points if additional
points on the boundary are allowed. This NP-hardness transfers to rotated polygons, since there are only O (n) possible
rotations.

• Orthogonally convex polygons can be reconstructed even with additional points on the boundary and/or inside by
applying the orthogonally convex hull algorithm, which takes O (n log n) time [13] and the answer is unique.

• For rotated orthogonally convex polygons, the above can be applied to all O (n) possible rotations, so in O (n2 log n) time
we can find an answer for orthogonally convex polygons with additional points inside. The answer is not unique, see
Fig. 6.

• For rotated orthogonally convex polygons, if additional points are only on the boundary, then the answer is unique and
can be found in O (n log n) time.
Namely, the algorithm for Theorem 9 (reconstruct a rotated orthogonally convex polygon from the exact set of vertices)
works even if there are additional points on the boundary of the polygon. The only small modification needed is that
after the computation of the convex hull, one must merge all collinear convex hull edges. Then the correct rotation can
be computed as discussed in Section 4.1, and the answer can be found by computing the orthogonally convex hull after
rotating the point set.

• For orthogonally convex polyhedra, the algorithm presented in Section 3 for reconstruction from the exact set of vertices
works even if there are additional points inside or on the boundary of the polyhedron. This is because the additional
points do not affect the shadows created at each layer, except that each such point may be in a separate layer. The
overall runtime is still O (n log n): each additional point contributes O (log n) to shadow updates. Doing so the shadows
are not changed and the point is identified as an additional point.

• For rotated orthogonally convex polyhedra, the above can be applied to all possible O (n2) rotations and yields an
answer in O (n3 log n) time. The answer is again not unique, which can be seen by extruding the example of Fig. 6.

Table 1 summarizes the results in this paper.

6. Conclusion and further remarks

In this paper, we studied the problem of reconstructing a polygon or polyhedron given only its set of vertices. We
provided efficient algorithms for orthogonally convex polygons/polyhedra, both if points must be used as they are, and if
points are allowed to be rotated.

We briefly studied the case of additional points, which leaves many open problems already. Other interesting open
problems are as follows:

• Given a set S of points in 3D, is there a unique rotated orthogonally convex polyhedron with S as its vertices? This
holds if the graph of the polyhedron is required to be connected [16], but what is the situation in general?

• What are algorithms to reconstruct orthogonal polyhedra that are not orthogonally convex? Often the answer here
will not be unique, but how difficult is it to construct at least one? Can the NP-hardness proof by Rappaport [4] for
2D-reconstruction with additional points be used to prove NP-hardness of 3D-reconstruction with the exact point set?

Finally, the running time remains to be improved for many of the problems studied.
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Table 1
Summary of results. The first row in each cell shows the runtime of the fastest known algorithm that computes the edges (and faces), if an algorithm
exists. The second row is either a citation of an existing work that presented this algorithm, or a reference to a section in this paper. The third row shows
whether the computed edges (and faces) using this algorithm are unique or not.

Non-rotated Rotated

2D 3D 2D 3D

Orthogonal
Vertices of

polygon/
polyhedron

O (n logn) ? O (n2) ?
[5] Section 4.1
unique not unique unique [16] not unique

Additional
points on
boundary

NP-hard ? NP-hard ?
[4] [4]
not unique not unique not unique not unique

Additional
points
inside

? ? ? ?

not unique not unique not unique not unique

Orthogonally convex
Vertices of

polygon/
polyhedron

O (n logn) O (n logn) O (n logn) O (n log n)

[5] Section 3 Section 4.1 Section 4.2
unique unique unique ?

Additional
points on
boundary

O (n logn) O (n logn) O (n logn) O (n3 log n)

[13] Section 5 Section 5 Section 5
unique unique unique not unique

Additional
points
inside

O (n logn) O (n logn) O (n2 logn) O (n3 log n)

[13] Section 5 Section 5 Section 5
unique unique unique not unique
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