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a b s t r a c t

Nonparametric control charts do not require knowledge about the shape of the underlying
distribution and can thus be attractive in certain situations. Two new Shewhart-
type nonparametric control charts are proposed for monitoring the unknown location
parameter of a continuous population in Phase II (prospective) applications. The charts are
based on control limits given by two specified order statistics from a reference sample,
obtained from a Phase I (retrospective) analysis, and using some runs-type signaling rules.
The plotting statistic can be any order statistic in a Phase II sample; the median is used
here for simplicity and robustness. Exact run length distributions of the proposed charts are
derived using conditioning and some results from the theory of runs. Tables are provided
for practical implementation of the charts for a given in-control average run length (ARL0)
between 300 and 500. Comparisons of the average run length ARL, the standard deviation
of run length (SDRL) and some run length percentiles show that the charts have robust
in-control performance and are more efficient when the underlying distribution is t
(symmetric with heavier tails than the normal) or gamma (1, 1) (right-skewed). Even for
the normal distribution, the new charts are quite competitive. An illustrative numerical
example is given. An added advantage of these charts is that they can be applied before
all the data are collected which might lead to savings in time and resources in certain
applications.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Statistical process control (SPC) techniques strive to distinguish between two sources of variation in a process: those that
are random or natural and therefore cannot be identified and removed under reasonable economic constraints (so called
chance causes) and those that can be (so called assignable causes). When a process operates only under chance causes, at or
around an acceptable target, it is said to be in statistical control (hereafter in-control, denoted IC). Control charts help users
identify assignable causes so that corrective actions, if necessary, can be taken as soon as possible. In the process control
environment with variables data the output is typically assumed to follow a parametric distribution such as the normal. It is
well-known that if the underlying process is not as assumed, the performance of these parametric charts can be significantly
degraded. In this context, one key problem is the lack of IC robustness of some of thewell-known parametric charts (see, e.g.
Chakraborti et al. (2001, 2004)). This, for example, means that there could be too many false alarms than what is nominally
expected and obviously, this could mean considerable loss of time and resources. Thus, it is desirable, from a practical point

∗ Corresponding author.
E-mail addresses: schakrab@cba.ua.edu (S. Chakraborti), serkan.eryilmaz@ieu.edu.tr (S. Eryilmaz), schalk.human@up.ac.za (S.W. Human).

0167-9473/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2008.09.025

http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
mailto:schakrab@cba.ua.edu
mailto:serkan.eryilmaz@ieu.edu.tr
mailto:schalk.human@up.ac.za
http://dx.doi.org/10.1016/j.csda.2008.09.025


S. Chakraborti et al. / Computational Statistics and Data Analysis 53 (2009) 1054–1065 1055

of view, to develop and apply a set of control charts that are not designed under the assumption of normality (or any other
parametric distribution). Distribution-free or nonparametric control charts can serve this purpose.
Nonparametric control charts have much to offer in SPC and have received considerable attention during the recent

years. If the IC run length distribution of a control chart is the same for every continuous probability distribution the chart is
called distribution-free or nonparametric. A recent review of nonparametric control charts can be found in Chakraborti and
Graham (2007). Themain advantage of these charts is the flexibility that their applications do not require the assumption of
any specific probability distribution for the underlying process. In addition, nonparametric control charts are likely to share
the well-known robustness properties of nonparametric tests and confidence intervals and are therefore are expected to be
less impacted by outliers.
Chakraborti et al. (2004) considered a class of Phase II Shewhart-type nonparametric charts based on two order statistics

from the reference sample. This is called the (basic) 1-of -1 precedence chart or simply the precedence chart. It was shown
that compared to the classical Shewhart X chart the precedence chart was IC robust and was equally or more efficient in
detecting location shifts. However, the construction of a nonparametric control chart with better shift detection capabilities
remains an interesting possibility. Chakraborti and Eryilmaz (2007) adapted the signed rank (SR) charts of Bakir (2004)
using runs-type signaling rules. These charts can be used for the specified median of a continuous symmetric distribution.
They showed that (i) the new charts are nonparametric and, (ii) they have smaller andmore desirable false alarm rates (and
longer IC average run lengths) and better out-of-control (OOC) performance (shorter OOC average run lengths) for some
heavy-tailed distributions. These observations provide motivation for the present work. Our goal is to consider Phase II
Shewhart-type nonparametric precedence control charts with runs-type signaling rules to monitor the unknown IC process
median. It will be seen that the addition of these signaling rules can significantly enhance the performance of the precedence
charts and thus provide a new class of more powerful nonparametric charts in practice.
Note that in this paper we consider the case when the process measurement is univariate. There are some distribution-

free SPC procedures for the multivariate case; see, e.g., Liu (1995), Qiu and Hawkins (2001, 2003) and Qiu (2008).

2. Distribution-free control charts

2.1. Basic (1-of-1) precedence control charts

Suppose that a reference sample of size m is available from an IC process with an unknown continuous distribution
function F . A reference sample is typically obtained after a suitable Phase I analysis. Let X1:m < X2:m < · · · < Xm:m denote
the order statistics of the reference sample. The control limits for the 1-of -1 precedence chart are given by LCL = Xa:m
and UCL = Xb:m, 1 ≤ a < b ≤ m. In Phase II, the so-called monitoring phase, test samples, each of size n, are drawn
sequentially and independently of one another as well as of the reference sample, are monitored. The plotting statistic for
the hth test sample, in general, can be any order statistic Y hj:n, however the median is a popular choice in practice, since it
is easily interpretable and is known to be robust. Thus, for example, when the subgroup size n is equal to 5, which is fairly
common in SPC applications, the plotting statistic is the 3rd order statistic of the test sample. The process is declared OOC
when, for the first time, a test sample median falls on or outside of either of the control limits. Note that the precedence
charts can be applied as soon as the necessary order statistics are available and this can be a practical advantage in some
applications.
Define the indicator random variables for the hth test sample:

Zh =
{
1, Y hj:n 6∈ (LCL,UCL)
0, Y hj:n ∈ (LCL,UCL)

, h = 1, 2, 3 . . . . (1)

Thus, the Z ’s are signaling indicators; if Zh = 1, a signal is indicated and the process is declared to be OOC on the hth test
sample, whereas the opposite is true if Zh = 0. The event when Zh = 1, that is when Y hj:n 6∈ (LCL,UCL), is called a signaling
event and its probability, P(Zh = 1) = p, say, is called the (unconditional) signaling probability. It is assumed that the test
samples all come from a continuous distribution with c.d.f. G and hence the superscript h on Y hj:n is suppressed hereafter
until it’s necessary to avoid any confusion.
Because the control limits are order statistics from the same reference sample, the signaling events and therefore the

signaling indicators Z1, Z2, . . . are dependent binary random variables. So the implementation, analysis and interpretation
of the control charts must take account of this dependence. Note that given (or conditionally on) Xa:m = x1 and Xb:m = x2,
the probability of a no-signal is

P(x1 < Yj:n < x2|Xa:m = x1, Xb:m = x2) = Gj(x2)− Gj(x1) = 1− p(x1, x2, j,G) (2)

where Gj denotes the c.d.f. of the jth order statistic in a sample of size n from a distribution with c.d.f. G. Since Gj(x) =
IG(x)(j, n− j+ 1), where Ia(b, c) denotes the incomplete beta function, the probability in (2) can be expressed as IG(x2)(j, n−
j+ 1)− IG(x1)(j, n− j+ 1). The unconditional probability of a no-signal, denoted 1− p, can be found by averaging this over
the joint distribution of Xa:m and Xb:m. Thus, transforming results to (0,1), we get

1− p = P(Zh = 0) =
∫ 1

0

∫ y

0
[IGF−1(y)(j, n− j+ 1)− IGF−1(x)(j, n− j+ 1)] fa,b(x, y)dxdy, (3)
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where fa,b(x, y) denotes the well-known joint p.d.f. of the ath and the bth order statistics in a sample of size m from the
uniform (0, 1) distribution (see, e.g. Gibbons and Chakraborti (2003)). The unconditional probability of a signal, p, can be
obtained from (3).
Note that since the observations are assumed to be continuous, the probability of a plotting statistic falling on the control

limit equals 0, theoretically, yet this can happen in practice and thus as a convention we include this possibility in the
definition of a signal without altering the probability.

2.2. Precedence control charts with signaling rules

We consider generalizing the 1-of -1 precedence charts by incorporating signaling rules involving runs of the plotting
statistic above and/or below the control limits. Similar extensions have been considered in the literature for the parametric
Shewhart charts, see, e.g., Nelson (1984) and Klein (2000). Thus, the charts proposed here can be viewed as ‘‘runs rule
enhanced’’ Phase II nonparametric control charts. Note that only two-sided control charts are studied here, one-sided charts
can be considered along similar lines.
Three signaling rules: (a), (b), and (c) are considered that lead to control charts. According to these, a process is declared

OOC when

(a) a single point (plotting statistic: median) falls on or outside the control limits (the 1-of -1chart or the precedence chart)
(b) two consecutive points (plotting statistics: medians of consecutive test samples) (i) both fall on or above the UCL or, (ii)
both fall on or below the LCL or, (iii) one falls on or above the UCL and the next one falls on or below the LCL or, (iv) one
falls on or below the LCL and the next falls on or above the UCL (Derman and Ross, 1997; hereafter the 2-of -2 DR chart)

(c) two consecutive points (medians of consecutive test samples) both fall on or above the UCL or both fall on or below the
LCL (Klein, 2000; hereafter 2-of -2KL chart).

Rule (a) is the simplest andmost frequently used in the control charting literature. In the present setting, this corresponds
to the 1-of -1 precedence chart studied in Chakraborti et al. (2004), mentioned here for reference and comparison purposes.
It is clear that rule (a) is a special case of rules (b) and (c).
Performance of Phase II control charts is evaluated on the basis of its run length distribution. Note that the run length also

be viewed as thewaiting time until the first signal. These waiting times, which are positive integer valued random variables,
are defined as follows.
Case (a): The waiting time for chart (a) is

T1 = min{t : Zt = 1}. (4)

Case (b): For chart (b) the waiting time is defined as

T2 = min{t : Zt−1 = 1, Zt = 1} (5)

where the indicator random variables, Z ’s, are given by (1) and,
Case (c): For chart (c) the waiting time is defined as

T ′2 = min
{
T (1)2 , T (2)2

}
(6)

where

T (1)2 = min
{
t : Z ′t−1 = Z

′

t = 1
}
, T (2)2 = min

{
t : Z ′t−1 = Z

′

t = 2
}

and

Z ′h =

{0 if Yj:n ∈ (Xa:m, Xb:m)
1 if Yj:n ≥ Xb:m
2 if Yj:n ≤ Xa:m.

The three charts are illustrated in Fig. 1. It is seen that here the 1-of -1, the 2-of -2 DR and the 2-of -2 KL charts signal (for the
first time) at sample numbers 3, 6, and 7, respectively. Accordingly, the run lengths (or, the waiting times) corresponding to
these charts are 3, 6, and 7, respectively.
It may be noted that if the 2-of -2 KL chart signals so does the 2-of -2 DR chart but the reverse is not always true. In

addition, the 2-of -2 KL chart seems more suitable when detecting a shift in the process location, either up or down is of
interest, whereas the 2-of -2 DR rule can detect a possible swing.
The run length distributions for the proposed charts are studied in the following section.
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Fig. 1. An illustration of the 1-of -1, the 2-of -2 DR and the 2-of -2 KL charts.

3. Waiting time (run length) distributions

3.1. Distribution of T2: Run Length distribution for the 2-of-2 DR chart

Chakraborti et al. (2004) derived the distribution of T1 by conditioning on the order statistics Xa:m and Xb:m. However,
application of the same technique here leads to an expression for the conditional distribution of T2 that is too complex,
particularly for x ≥ 3, to attempt a direct derivation of a closed form expression for the unconditional distribution. Instead,
we find the distribution of T2 by first conditioning on the total number of successes Sn =

∑n
i=1 Zi in the sequence of random

variables Z1, Z2, . . .. To this end, first note that Z1, Z2, . . . is a sequence of dependent binary random variables, and in fact it
can be seen that they are exchangeable or symmetrically dependent (i.e., any permutation of any subset of these random
variables has the same distribution). Using this result, an exact expression for the probability distribution of T2 is now
derived.
George and Bowman (1995) derived the distribution of the total number of successes in a sequence of n exchangeable

binary trials. According to their result

P(Sn = s) =
(
n
s

) n−s∑
i=0

(−1)i
(
n− s
i

)
λs+i (7)

where λt = P(Z1 = 1, . . . , Zt = 1) for t = 1, 2, . . . , n. We use this result in deriving the unconditional run
length distribution of the 2-of -2 DR chart, given in Theorem 1. Note that since conditionally λt equals [p(x1, x2, j,G)]t ,
unconditionally

λt = P(Z1 = 1, . . . , Zt = 1) =
∫ 1

0

∫ y

0
[1− {IGF−1(y)(j, n− j+ 1)− IGF−1(x)(j, n− j+ 1)}]

t fa,b(x, y)dxdy. (8)

The unconditional distribution of T2 is given by

Theorem 1.

P(T2 = x) =
{
0 if 0 ≤ x < 2
λ2 if x = 2 (9)

and for x ≥ 3.

P(T2 = x) =
x−2∑
y=1

min
(
y,[ x−y−22 ]

)∑
j=0

y∑
i=0

(−1)j(−1)i
(
y
j

)(
y
i

)(
x− 2(j+ 1)− 1

y− 1

)
λx−y+i.

Proof. Given in the Appendix. �

Corollary 1. The IC (F = G) run length distribution of the 2-of-2 DR chart is given by Theorem 1 where λt =
∫ 1
0

∫ y
0 [1 −

(Iy(j, n− j+ 1)− Ix(j, n− j+ 1))]t fa,b(x, y)dxdy.

Thus, the IC run length distribution is free from either F or G and the chart is distribution-free.
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3.2. Distribution of T ′2: Run Length distribution for the 2-of-2 KL chart

Again, observe that conditionally on Xa:m and Xb:m, the random variables Z ′1, Z
′

2, . . . are i.i.d. with

pL = P
{
Yj:n ≤ Xa:m|Xa:m = x1

}
= IG(x1)(j, n− j+ 1) (10)

and

pU = P
{
Yj:n ≥ Xb:m|Xb:m = x2

}
= 1− IG(x2)(j, n− j+ 1). (11)

We obtain the distribution of T ′2 by applying some results in Fu and Lou (2003). Given Xa:m and Xb:m, let T
∗

2 denote the
waiting time for two consecutive 1’s or two consecutive 2’s in the sequence of i.i.d. trials Z ′1, Z

′

2, . . .. This is called a compound
pattern Λ = Λ1 ∪ Λ2, where Λ1 = {11} and Λ2 = {22}. Now applying Theorem 5.2 of Fu and Lou (2003, page 68), the
distribution of T ∗2 is obtained

P
{
T ∗2 = x|Xa:m, Xb:m

}
= ξNx−1 (I − N) 1′, x ≥ 2, (12)

where

N =

0 1− pL − pU pU pL
0 1− pL − pU pU pL
0 1− pL − pU 0 pL
0 1− pL − pU pU 0

 , ξ =
[
1 0 0 0

]
, 1 =

[
1 1 1 1

]
.

It may be noted that this result follows from more general results on the distribution of waiting time for the first
occurrence of a compound pattern in a sequence of i.i.d. or homogeneous Markov dependent m-state trials derived in Fu
and Lou (2003, Chapter 5). In our case (Case (c)), m equals 3 and the necessary imbedded Markov chain is defined on the
state space {φ, 0, 1, 2, α1, α2} where α1 = {11} and α2 = {22} are the two absorbing states (when the process is declared
to be OOC). The associated transition probability matrixM6×6 can be written asM =

[
N C
O I

]
where N4×4 is defined above,

C4×2 =

 0 0
0 0
pU 0
0 pL

 , O2×4 =
[
0 0 0 0
0 0 0 0

]
, I2×2 =

[
1 0
0 1

]

and the probabilities pL and pU are defined in (10) and (11), respectively.
The unconditional distribution of T ′2 is then obtained from the conditional distribution of T

∗

2 by averaging over the joint
distribution of Xa:m and Xb:m. This is given below.

Theorem 2.

P
{
T ′2 = x

}
=

∫
∞

−∞

∫ x2

−∞

P
{
T ∗2 = x|Xa:m = x1, Xb:m = x2

}
ha,b(x1, x2)dx1dx2 for x ≥ 2, (13)

where P
{
T ∗2 = x|Xa:m = x1, Xb:m = x2

}
is given by (12) and ha,b(x1, x2) is the joint p.d.f. of Xa:m and Xb:m from a continuous

c.d.f. F .

Corollary 2. The IC (F = G) run length distribution of the 2-of-2 KL chart is given by

P(T ′2 = x) =
∫ 1

0

∫ v

0
ξNx−10 (I − N0) 1′fa,b(u, v)dudv

where

N0 =

0 Iv(j, n− j+ 1)− Iu(j, n− j+ 1) 1− Iv(j, n− j+ 1) Iu(j, n− j+ 1)
0 Iv(j, n− j+ 1)− Iu(j, n− j+ 1) 1− Iv(j, n− j+ 1) Iu(j, n− j+ 1)
0 Iv(j, n− j+ 1)− Iu(j, n− j+ 1) 0 Iu(j, n− j+ 1)
0 Iv(j, n− j+ 1)− Iu(j, n− j+ 1) 1− Iv(j, n− j+ 1) 0

 . (14)

Once again the IC run length distribution is seen to be free from either F or G, so that the chart is distribution-free.

4. ARL, VAR and FAR calculations

In order to study the performance of a Phase II control chart, it is common to examine the average and the standard
deviation (or the variance) of the run length distribution. The false alarm rate (FAR) of the chart is also of interest. Expressions
for these can be obtained exactly and are shown below.
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4.1. ARL, VAR and FAR of 2-of-2 DR chart

The required quantities are most conveniently derived by conditioning, noting that given Xa:m and Xb:m, the random
variable T2 has a geometric distribution of order 2 (see Balakrishnan and Koutras (2002)). The conditional expected value
and the variance of T2 are known to be

E (T2 |Xa:m = x1, Xb:m = x2 ) =
1+ p
p2

,

and VAR (T2 |Xa:m = x1, Xb:m = x2 ) =
1− 5(1− p)p2 − p5

(1− p)2p4
,

(15)

where p = p(x1, x2, j,G) = 1− [Gj(x2)− Gj(x1)] = 1− [IG(x2)(j, n− j+ 1)− IG(x1)(j, n− j+ 1)].
So the unconditional ARL for the 2-of -2 DR chart is given by

ARLDR = EXa:m,Xb:mE (T2 |Xa:m, Xb:m )

=

∫ 1

0

∫ y

0

[
2− {Gj(F−1(y))− Gj(F−1(x))}
[1− {Gj(F−1(y))− Gj(F−1(x))}]2

]
fa,b(x, y)dxdy

=

∫ 1

0

∫ y

0

[
2− {IGF−1(y)(j, n− j+ 1)− IGF−1(x)(j, n− j+ 1)}
[1− {IGF−1(y)(j, n− j+ 1)− IGF−1(x)(j, n− j+ 1)}]2

]
fa,b(x, y)dxdy. (16)

The IC average run length (ARL0) is obtained by substituting F = G in (16).
The unconditional variance of the run length distribution for the 2-of -2 DR chart can be calculated by using the formula

VARLDR = EXa:m,Xb:mVAR(T2|Xa:m, Xb:m)+ VARXa:m,Xb:m(E(T2|Xa:m, Xb:m))

where the conditional expectation and the variance formulas are given in (15). The formula for the IC unconditional variance
can be obtained by substituting F = G in the resulting expression. The final expressions are much to complicated to be
presented here. We calculate and discuss these later.
The FAR of the 2-of -2 DR chart may be calculated as

FARDR = P
{
Y h−1j:n ≤ Xa:m, Y

h
j:n ≤ Xa:m |F = G

}
+ P

{
Y h−1j:n ≥ Xb:m, Y

h
j:n ≥ Xb:m |F = G

}
+ P

{
Y h−1j:n ≥ Xb:m, Y

h
j:n ≤ Xa:m |F = G

}
+ P

{
Y h−1j:n ≤ Xa:m, Y

h
j:n ≥ Xb:m |F = G

}
=

∫ 1

0

[
1− Iy(j, n− j+ 1)

]2 fb(y)dy+ ∫ 1

0
[Ix(j, n− j+ 1)]2 fa(x)dx

+ 2
∫ 1

0

∫ y

0

(
1− Iy(j, n− j+ 1)

)
Ix(j, n− j+ 1)fa,b(x, y)dxdy (17)

where fa(x) and fb(x) are the p.d.f.’s of the beta (a,m− a+ 1) and beta (b,m− b+ 1) distribution, respectively.

4.2. ARL, VAR and FAR of 2-of-2 KL chart

Again, given Xa:m and Xb:m, the conditional expected value of T ′2 is known to be (see Klein (2000))

E
(
T ′2 |Xa:m, Xb:m

)
=

1
p− pU

1+pU
−

pL
1+pL

=
1

p2U
1+pU
+

p2L
1+pL

(18)

where pL and pU are defined in (10) and (11), respectively, and p = pL + pU (note the slightly different notation in Klein; he
defines p to be the probability of no-signal whereas we define p to be the probability of a signal).
Now, averaging over the distribution of Xa:m and Xb:m, the ARL of the 2-of -2 KL chart is obtained

ARLKL =
∫ 1

0

∫ y

0

[ (
1+ (1− Gj(F−1(y)))

) (
1+ Gj(F−1(x))

)(
Gj(F−1(x))

)2 (1+ (1− Gj(F−1(y))))+ (1− Gj(F−1(y)))2 (1+ Gj(F−1(x)))
]
fa,b(x, y)dxdy. (19)

Noting that Gj(F−1(x)) = IGF−1(x)(j, n− j+ 1), the IC average run length can be obtained by substituting F = G in (19).
In order to calculate the variance of the run length distribution note that if the Z ’s are i.i.d., the second raw moment

of T ′2 is given by (Fu et al., 2002) ξ(I + N) (I − N)
−2 1′. Using this result conditionally on Xa:m and Xb:m and the formula

for the unconditional variance from the conditional expectation and variance formulas shown earlier, we can calculate the
unconditional variance of the run length distribution of the 2-of -2 KL chart. From this, the unconditional variance of the
IC run length distribution can be found by substituting F = G. Like in the case of the DR chart, the expression for the
unconditional variance is complicated and is not presented here; we calculate and discuss these later.
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Table 1
In-control average run length (ARL0), false alarm rate (FAR) and constants (a, b) (The three rows of each cell shows the achieved ARL0 , the FAR, and the
chart constants (a, b), respectively.) for the 2-of-2 DR nonparametric chart form = 50, 100, 200, 500 and (j, n) = (3, 5), (4, 7), (5, 9).

j = 3, n = 5 j = 4, n = 7 j = 5, n = 9
m = 50 100 200 500 m = 50 100 200 500 m = 50 100 200 500

605.44 548.99 537.62 536.72 597.80 509.54 597.72 526.08 976.53 739.47 558.51 528.95
0.0072 0.0040 0.0029 0.0023 0.0090 0.0048 0.0027 0.0024 0.0084 0.0040 0.0031 0.0024
(8, 43) (15, 86) (29, 172) (71, 430) (10, 41) (19, 82) (36, 165) (90, 411) (11, 40) (21, 80) (42, 159) (104, 397)

275.30 373.31 443.56 496.90 264.91 345.93 490.44 487.01 383.92 481.18 456.18 488.41
0.0121 0.0055 0.0034 0.0025 0.0150 0.0065 0.0033 0.0026 0.0144 0.0056 0.0037 0.0026
(9, 42) (16, 85) (30, 171) (72, 429) (11, 40) (20, 81) (37, 164) (91, 410) (12, 39) (22, 79) (43, 158) (105, 396)

261.69 368.80 460.60 241.21 405.20 451.33 172.47 322.26 375.04 451.43
0.0074 0.0040 0.0026 0.0088 0.0039 0.0028 0.0236 0.0077 0.0044 0.0028
(17, 84) (31, 170) (73, 428) (21, 80) (38, 163) (92, 409) (13, 38) (23, 78) (44, 157) (106, 395)

308.82 427.48 336.97 418.70 221.57 310.28 417.68
0.0047 0.0028 0.0046 0.0030 0.0104 0.0053 0.0030
(32, 169) (74, 427) (39, 162) (93, 408) (24, 77) (45, 156) (107, 394)

260.37 397.20 281.98 388.83 258.24 386.83
0.0056 0.0031 0.0054 0.0032 0.0062 0.0033
(33, 168) (75, 426) (40, 161) (94, 407) (46, 155) (108, 393)

369.50 361.45 358.60
0.0033 0.0034 0.0035
(76, 425) (95, 406) (109, 392)

344.12 336.33 332.75
0.0035 0.0037 0.0038
(77, 424) (96, 405) (110, 391)

320.83 313.25 309.06
0.0037 0.0039 0.0041
(78, 423) (97, 404) (111, 390)

The FAR for the KL chart is given by

FARKL = P
{
Y h−1j:n ≥ Xb:m, Y

h
j:n ≥ Xb:m |F = G

}
+ P

{
Y h−1j:n ≤ Xa:m, Y

h
j:n ≤ Xa:m |F = G

}
,

=

∫ 1

0

[
1− Iy(j, n− j+ 1)

]2 fb(y)dy+ ∫ 1

0
[Ix(j, n− j+ 1)]2 fa(x)dx. (20)

5. Implementation of charts

For practical implementation of the proposed charts we need the control limits, whichmeans we need to find the indices
a and b (1 ≤ a < b ≤ n), respectively, of the reference sample order statistics.

5.1. Determination of control limits

Typically, in Phase II applications, control limits are determined so that a specified IC average run length (say ARL∗0) is
obtained. Since 370 is a standard ARL0 value used in the industry, we need to solve, for example, ARL0,DR = 370 for the 2-
of -2 DR chart (and ARL0,KL = 370 for the 2-of -2 KL chart) for a and b. The ARL0 expressions are obtained from (16) and (19),
respectively, substituting F = G. Since the Phase II (test) sample median is used as the charting statistic and the sample size
is assumed odd, it seems reasonable to use symmetric limits (see, e.g., Chakraborti et al. (2004)) and we take b = m− a+ 1,
so that only the constant a needs to be determined. The solutions to the equations are obtained using the software package
Mathcad. In Tables 1 and 2 we display the various choices of the constants a and b for the 2-of -2 DR and the 2-of -2 KL chart,
for a given ARL∗0 in the neighborhood of 300 and 500, when reference samples of sizem = 50, 100, 200 and 500 are used to
estimate the control limits in Phase I and these limits are used in Phase II monitoring using medians of (test) samples of size
n = 5, 7, or 9, respectively. Thus, j equals 3, 4, and 5, respectively, in the tables. For each combination of values of n, j, and
m, the tables display (in each cell) a combination of the attained ARL0, the attained FAR and the (a, b) values, in that order,
where the ARL0 values are close to the specified values 300 and 500. Note that these values (in the neighborhood of 300 and
500, which can be considered reasonably large), are provided since it is rare to be able to achieve an ARL0 (or FAR) exactly as
specified with the nonparametric charts as the IC distribution of the charting statistic is discrete. For example, from Table 1,
for m = 500, n = 5 and j = 3, one set of constants for the DR chart are given by a = 72 and b = 500 − 72 + 1 = 429
so that LCL = X72:500 and UCL = X429:500. In this case the achieved ARL0 and the FAR are 496.90 and 0.0025, respectively.
We emphasize these are the exact values and the control limits can be used for all continuous distributions. For a more
moderate reference sample size, say m = 50, Table 1 shows that ARL0 values such as 275.30 or 605.44, which may be
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Table 2
In-control average run length (ARL0), false alarm rate (FAR) and chart constants (a, b) (The three rows of each cell shows the achieved ARL0 , the FAR, and
the chart constants (a, b), respectively.) for the 2-of-2 KL nonparametric chart form = 50, 100, 200, 500 and (j, n) = (3, 5), (4, 7), (5, 9).

j = 3, n = 5 j = 4, n = 7 j = 5, n = 9
m = 50 100 200 500 m = 50 100 200 500 m = 50 100 200 500

1010.37 650.75 559.01 524.39 985.39 594.56 504.01 506.61 1591.68 547.12 548.41 530.19
0.0048 0.0033 0.0026 0.0023 0.0063 0.0041 0.0031 0.0024 0.0062 0.0049 0.0031 0.0023
(8, 43) (16, 85) (32, 169) (80, 421) (10, 41) (20, 81) (40, 161) (99, 402) (11, 40) (23, 78) (45, 156) (112, 389)

460.89 456.52 471.18 490.21 437.32 414.67 424.10 472.95 626.67 376.11 456.29 493.12
0.0079 0.0044 0.0031 0.0024 0.0102 0.0054 0.0036 0.0026 0.0103 0.0066 0.0036 0.0025
(9, 42) (17, 84) (33, 168) (81, 420) (11, 40) (21, 80) (41, 160) (100, 401) (12, 39) (24, 77) (46, 155) (113, 388)

237.00 328.69 399.60 458.70 217.33 296.08 358.81 441.90 281.29 264.69 381.78 459.05
0.0123 0.0057 0.0036 0.0026 0.0160 0.0070 0.0042 0.0027 0.0165 0.0086 0.0042 0.0027
(10, 41) (18, 83) (34, 167) (82, 419) (12, 39) (22, 79) (42, 159) (101, 400) (13, 38) (25, 76) (47, 154) (114, 387)

242.15 340.87 429.62 305.16 413.24 321.15 427.69
0.0074 0.0041 0.0027 0.0048 0.0029 0.0049 0.0029
(19, 82) (35, 166) (83, 418) (43, 158) (102, 399) (48, 153) (115, 386)

292.37 402.76 260.82 386.77 271.54 398.81
0.0047 0.0029 0.0056 0.0031 0.0057 0.0031
(36, 165) (84, 417) (44, 157) (103, 398) (49, 152) (116, 385)

377.91 362.28 372.18
0.0031 0.0033 0.0033
(85, 416) (104, 397) (117, 384)

354.91 339.62 347.61
0.0033 0.0035 0.0035
(86, 415) (105, 396) (118, 383)

333.60 318.62 324.92
0.0035 0.0037 0.0038
(87, 414) (106, 395) (119, 382)

313.83 299.16 303.95
0.0037 0.0040 0.0040
(88, 413) (107, 394) (120, 381)

deemed reasonably large in practice, are achievable. Obviously as m and/or n increase, the available choices for the ARL0
values also increase.
Similar behavior is observed in the case of the 2-of -2 KL chart as can be seen from the entries in Table 2. For instance,

when m = 500, n = 5 and j = 3, and one uses LCL = X80:500 and UCL = X421:500, the ARL0 of the 2-of -2 KL chart is 524.39,
whereas the FAR is 0.0023. However, if instead one chooses to use LCL = X81:500 and UCL = X420:500, the ARL0 decreases to
490.21, whereas the FAR slightly increases to 0.0024.
It may be noted that when some order statistic other than the median is used as the Phase II charting statistic,

determination of the constants a and b is a more involved problem, since in this case setting b = m − a + 1 becomes
questionable due to a lack of symmetry of the IC distribution. We don’t discuss this any further in this paper.

5.2. Example

We illustrate the nonparametric charts using the data given in Tables 5.1 and 5.2 of Montgomery (2001). The goal of this
study was to establish statistical control of the inside diameter of the piston rings for an automotive engine manufactured
in a forging process. Twenty-five retrospective or Phase I samples, each of size five, were collected when the process was
thought to be IC. As shown in Montgomery (2001), the traditional Shewhart X̄ and R charts provide no indication of an OOC
condition, so these data are considered to be Phase I reference data and these ‘‘trial’’ limits were adopted for use in on-line
process control.
In order to obtain the control limits the constants a and b are needed. Possible symmetric control limits (a, b = m−a+1)

for the three charts are shown in Table 3, for m = 25 × 5 = 125, n = 5 and j = 3, along with the corresponding FAR and
ARL0 values.
Using Table 3, we take a = 7 so that b = 119, and the control limits for the 1-of -1 precedence chart are the 7th and the

119th ordered values of the reference sample: LCL = X7:125 = 73.984 and UCL = X119:125 = 74.017, which yield an exact
ARL0 of 413.80 and a FAR of 0.0044. A plot of the medians for the 1-of -1 chart is shown in Fig. 2 for all forty samples, the first
twenty five of which are from Phase I and the remaining are from Phase II. It is seen that while the Phase I samples are in
control, the 1-of -1 precedence chart signals on the 12th sample in the prospective phase (Phase II).
For the 2-of -2 DR chart, again using Table 3, we take a = 19 so that the resulting limits, LCL = X19:125 = 73.992 and

UCL = X107:125 = 74.012, yield an ARL0 and FAR of 464.38 and 0.0040, respectively. The 2-of -2 DR chart is shown in Fig. 3.
Finally, for the 2-of -2 KL chart we take a = 21 so that b = 125 − 21 + 1 = 105 and thus LCL = X21:125 = 73.992 and

UCL = X105:125 = 74.011. This yields an ARL0 of 460.54 and a FAR of 0.0038, respectively. This 2-of -2 KL chart is almost
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Fig. 2. 1-of -1 phase II precedence chart for the Montgomery (2001) piston-ring data.

Fig. 3. 2-of -2 phase II DR chart for the Montgomery (2001) piston-ring data.

Table 3
In-control average run length (ARL0), false alarm rate (FAR) and chart constants (a, b) for the 1-of -1, 2-of -2 DR and 2-of -2 KL precedence charts when
m = 125, n = 5 and j = 3.

1-of -1 2-of -2 DR 2-of -2 KL
a b ARL0 FAR a b ARL0 FAR a b ARL0 FAR

5 121 1315.98 0.0019 19 107 464.38 0.0040 19 107 819.47 0.0024
6 120 695.09 0.0029 20 106 344.73 0.0052 20 106 608.81 0.0030
7 119 413.80 0.0044 21 105 260.69 0.0066 21 105 460.54 0.0038
8 118 267.40 0.0062 22 104 200.46 0.0084 22 104 354.09 0.0048

identical to the chart shown in Fig. 3 and is thus omitted. Note that both the 2-of -2 DR and KL charts signal on the 10th
sample in the prospective phase, slightly earlier than the 1-of -1 chart.

6. Performance comparisons

The performance of Phase II charts is typically compared by first designing each chart to (roughly) have the same ARL0 and
then examining their ARL1 (OOC average run length) values at some OOC values of the parameter of interest. The control
chart with the shorter (or smaller) OOC average run length is usually preferred. Since the proposed Phase II charts are
nonparametric Shewhart-type charts, their main competitor is the basic 1-of -1 precedence control chart of Chakraborti
et al. (2004). The normal, the t and the gamma distribution were used in the performance comparisons. The t-distribution
was used to study the effects of heavier tails and the gamma distribution was used to study the effect of skewness. In order
for the results to be comparable, the distributions were scaled so that each had a mean of 0 and a variance of 1; thus, the
normal (0,1), the t(4) and the gamma (1, 1) distributions were used in the sequel. The parametric Shewhart X̄ chart was
included in the comparison for the normal distribution but not for the t and the gamma distribution since the X̄ chart is
well-known to be nonrobust under nonnormality; see, e.g., Chakraborti et al. (2004).
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Table 4
ARL and SDRL values for the 2-of -2 DR, 2-of -2 KL, and the basic (1-of -1) precedence chart and the Shewhart chart for the normal distribution when
m = 500, j = 3, n = 5.

Shift 2-of -2DR 2-of -2 KL Basic precedence (1-of -1) Shewhart X-bar
ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

0.00 496.90 573.05 536.72 621.20 490.21 554.18 524.39 594.55 460.22 538.61 520.27 613.67 500.00 571.14
0.25 233.82 278.56 250.23 299.59 170.07 203.00 180.06 215.88 233.27 290.26 261.60 329.17 184.12 216.66
0.50 58.22 66.10 61.33 69.99 39.37 43.17 41.11 45.28 70.42 85.43 77.73 95.38 43.38 48.51
0.75 17.55 17.85 18.23 18.64 12.99 12.60 13.39 13.06 23.74 27.01 25.79 29.64 13.12 13.71
1.00 7.36 6.41 7.56 6.63 5.99 4.90 6.12 5.04 9.58 10.11 10.26 10.93 5.19 4.93
1.50 2.88 1.52 2.91 1.55 2.67 1.26 2.69 1.29 2.66 2.21 2.76 2.34 1.67 1.08
2.00 2.13 0.49 2.14 0.50 2.10 0.41 2.10 0.42 1.36 0.72 1.39 0.75 1.09 0.32
2.50 2.01 0.14 2.01 0.15 2.01 0.12 2.01 0.12 1.06 0.26 1.07 0.27 1.01 0.08
3.00 2.00 0.03 2.00 0.03 2.00 0.02 2.00 0.02 1.01 0.08 1.01 0.09 1.00 0.01

Chart
constants

(a = 72,
b = 429)

(a = 71,
b = 430)

(a = 81,
b = 420)

(a = 80,
b = 421)

(a = 25,
b = 476)

(a = 24,
b = 477)

3.0845

Table 5
ARL and SDRL values for the 2-of -2 DR, 2-of -2 KL and the basic (1-of -1) precedence chart for the t(4) distribution whenm = 500, j = 3, n = 5.

Shift 2-of -2 DR 2-of -2 KL Basic precedence (1-of -1)
ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

0.00 496.90 573.05 536.72 621.20 490.21 554.18 524.39 594.55 460.22 538.61 520.27 613.67
0.25 200.92 248.00 215.95 268.18 138.19 170.25 146.90 182.03 288.43 370.47 328.18 426.13
0.50 38.68 45.31 40.98 48.41 25.09 27.66 26.28 29.19 102.82 143.88 117.63 167.75
0.75 10.01 9.77 10.41 10.26 7.43 6.66 7.65 6.92 32.84 45.71 37.43 53.44
1.00 4.26 3.11 4.35 3.22 3.61 2.36 3.67 2.43 11.19 14.51 12.58 16.84
1.50 2.23 0.67 2.24 0.68 2.17 0.55 2.17 0.56 2.25 1.97 2.40 2.20
2.00 2.02 0.19 2.02 0.20 2.02 0.16 2.02 0.16 1.16 0.46 1.18 0.49
2.50 2.00 0.06 2.00 0.06 2.00 0.05 2.00 0.05 1.02 0.13 1.02 0.14
3.00 2.00 0.02 2.00 0.02 2.00 0.02 2.00 0.02 1.00 0.04 1.00 0.04

Chart
constants

(a = 72, b = 429) (a = 71, b = 430) (a = 81, b = 420) (a = 80, b = 421) (a = 25, b = 476) (a = 24, b = 477)

Tables 4–6 display the results when a reference sample of size m = 500 is used to estimate the control limits and to
monitor the location with Phase II samples of size n = 5, using Y3:5, their median, as the plotting statistic. The charts were
designed so that an ARL0 close to 500 was achieved. Two combinations of chart constants are used for each nonparametric
chart for which the ARL0 was slightly below and slightly above the target value, 500. The tables show both the average (ARL)
and the standard deviation of run length (SDRL); the shift refers to a shift in the mean. From Table 4 it is seen that even
under the normal distribution, the nonparametric charts can be quite efficient. The 2-of -2 KL chart is almost as efficient as
the X̄ chart, with a shorter ARL but a slightly higher SDRL, especially for small shifts. When the distribution is t(4), that is
symmetric yet with heavier tails than the normal, Table 5 shows that both the 2-of -2 DR and the 2-of -2 KL charts perform
better than the basic precedence 1-of -1 chart in detecting small shifts, with the 2-of -2 KL chart being the best. Thus, the
two new nonparametric Shewhart-type charts with signaling rules provide better alternatives, especially for smaller shifts.
The same observation applies in the case of a right-skewed distribution such as the gamma (1, 1) as shown in Table 6.
Hence, the runs-type signaling rules enhance the nonparametric chart’s sensitivity to a location shift. The gain in

efficiency can be substantial; for example, for the t(4) distribution for a shift of 0.5, the ARL values of the 1-of -1, 2-of -2 DR
and the 2-of -2 KL charts are 117.63, 40.98 and 26.28, respectively, when the corresponding ARL0 values are very comparable,
520.27, 536.72 and 524.39, respectively. Note that in Table 6 for the gamma (1, 1) distribution the 2-of -2 DR and the basic
precedence chart display somewhat of a strange behavior in that both the ARL and SDRL values first increase from their
corresponding values for the IC case for a shift of 0.25; thereafter the ARL and SDRL values decrease for increasing shifts as it
might be expected. We have not been able to fully explain this phenomenon. A repeat of the simulations produced similar
results.
Because the run length distribution is highly right-skewed, percentiles, in addition to the ARL and the SDRL values,

should be examined (as recommended in the literature; see, e.g., Chakraborti (2007)). To this end, a number of percentiles of
the unconditional run length distribution were calculated, including the three quartiles for each of the three distributions,
respectively, both for the IC and the OOC cases. The results (not shown here) lead to the same general observation that the
newly proposed nonparametric charts are more efficient than the basic precedence chart, with the 2-of -2 KL chart having a
slight edge. For example, in the OOC case for a shift of 0.5 in the mean of a normal distribution, the quartiles for the 2-of -2
KL chart (with a = 81 and b = 420) are all shorter: 7, 16 and 33, respectively, compared to those of both the 2-of-2 DR chart
(with a = 72 and b = 429): 11, 24, and 50 and the 1-of -1 precedence chart (with a = 25 and b = 476): 23, 57, and 127.
This shows that the 2-of -2 KL chart is far superior, since shorter percentiles in the OOC case means quicker signals, to the
1-of -1 chart and is somewhat superior to the 2-of -2 DR chart.
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Table 6
ARL and SDRL values for the 2-of -2 DR, 2-of -2 KL and the basic (1-of -1) precedence chart for the gamma (1, 1) distribution whenm = 500, j = 3, n = 5.

Shift 2-of -2 DR 2-of -2 KL Basic precedence (1-of -1)
ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

0.00 496.90 573.05 536.72 621.20 490.21 554.18 524.39 594.55 460.22 538.61 520.27 613.67
0.25 233.82 815.92 250.23 887.98 310.12 405.49 331.64 436.02 527.27 730.48 600.16 844.59
0.50 58.22 216.59 61.33 234.84 88.52 111.41 94.24 119.33 255.49 351.96 290.46 406.50
0.75 17.55 61.43 18.23 66.27 28.03 33.05 29.65 35.23 124.76 170.53 141.61 196.68
1.00 7.36 18.96 7.56 20.33 10.26 10.74 10.75 11.39 61.56 83.20 69.72 95.80
1.50 2.88 2.30 2.91 2.45 2.61 1.34 2.66 1.42 15.70 20.35 17.67 23.33
2.00 2.13 0.13 2.14 0.15 2.00 0.03 2.00 0.04 4.47 5.19 4.96 5.92
2.50 2.01 0.00 2.01 0.00 2.00 0.00 2.00 0.00 1.63 1.32 1.75 1.52
3.00 2.00 0.00 2.00 0.00 2.00 0.00 2.00 0.00 1.03 0.23 1.05 0.29

Chart
constants

(a = 72, b = 429) (a = 71, b = 430) (a = 81, b = 420) (a = 80, b = 421) (a = 25, b = 476) (a = 24, b = 477)

7. Summary and recommendations

The key advantage of a nonparametric chart is its IC robustness, that is, the fact that the IC run length distribution
and hence all the associated properties (mean, standard deviation, percentiles, etc.) remain the same for all continuous
distributions. This allows the practitioners to have greater confidence in their charts. The newnonparametric Shewhart-type
control charts enhance the performance of the 1-of -1 precedence control chart. Because these charts (the control limits as
well as the charting statistic) are based on order statistics, they can be applied as soon as the required order statistics are
observed and this can be an advantage in certain applications. Charting constants are provided for the control limits along
with the achieved ARL0 and FAR values; these would help in practical implementation. The performance of the proposed
charts is seen to be either on per or better than the Shewhart X̄ chart and the 1-of -1 precedence chart. The new charts can
thus be useful for the quality practitioner and are recommended in practice. A choice between the two new charts would
depend on the kind of process change one expects to detect. The 2-of -2 KL chart is more suitable when the process shifts
either up or down (shift in one direction) while the 2-of -2 DR chart is appropriate if the process swings from one time point
to the other. Thus, in general, the chart that best matches the hypothesized or expected shift pattern should be chosen in
practice.
Finally, one can further consider enhancements of precedence charts using, say k-of-k rules, k ≥ 3. The run length random

variable associated with k-of-k DR chart is defined as Tk = min {t : Zt−k+1 = 1, . . . , Zt = 1}. Similarly, k-of-m, k ≤ m, rules
are also possible. Although, such rules may improve the sensitivity of the charts, the 2-of -2 charts studied here seem more
attractive from a practical point of view.
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Appendix

Proof of Theorem 1. The proof is straightforward for x ≤ 2, note that P(T2 = 2) = P(Z1 = 1, Z2 = 1) = λ2, as defined in
(8). For x ≥ 3,we write for the unconditional distribution of T2

P(T2 = x) =
x−2∑
y=1

P(T2 = x|Sx = x− y)P(Sx = x− y). (A.1)

First, consider the conditional probability P {T2 = x |Sx = x− y }. By de Finetti’s theorem, a sequence of exchangeable
random variables is conditionally i.i.d. Hence, the conditional distribution of T2 given the number of successes for
exchangeable binary random variables is the same as that for a sequence of i.i.d. binary variables. This latter distribution
has been worked out in the literature (see, e.g., Balakrishnan and Koutras (2002) page 56; note a typo) and is given by

P(T2 = x|Sx = x− y) =

[
x−y−2
2 ]∑
j=0

(−1)j
(
y
j

)(
x− 2(j+ 1)− 1

y− 1

)
(
x
y

) . (A.2)
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Now, using (7)

P(Sx = x− y) =
(
x
y

) y∑
i=0

(−1)i
(
y
i

)
λx−y+i. (A.3)

The proof is completed by substituting (A.2) and (A.3) in (A.1). �
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