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1. Introduction

Constructing orthogonal shapes and objects from limited geometric and topological information is a frequently visited
problem in computational geometry. For example Jackson and Wismath [6] use “stab visibilities” for reconstructing an
orthogonal polygon. Usually, coordinates of the vertices (corners) of an object are used for reconstructing it. O'Rourke [10]
provides an O(n log n) time algorithm for constructing orthogonal polygons from a given vertex set. Loffler and Mumford [8]
show that there is only one orientation for which a provided vertex set can be used to reconstruct a rectilinear graph.
Rappaport [12] shows that if straight angles are allowed, the problem becomes NP-hard. Other similar studies can be found
in [1-3,9]. In existing works, points are either assumed to be anywhere within the polygon boundary or exactly required to
be the vertices of the polygon. In this study, we require them to be exactly on polygon edges. We say that an edge covers a
point, if the point can be written as the convex combination of the two endpoints of the edge. A polygon covers a point set
if each polygon edge covers exactly one point and each point is covered exactly by one polygon edge.

An orthogonal polygon is a polygon whose edges are orthogonal. An orthogonal polygon is orthogonally convex if
its intersection with any orthogonal line segment is either empty or a single line segment. A well-known problem in
computational geometry is computing the orthogonal convex hull of a given point set [ 11] which treats the points as vertices
(endpoints of the edges). An important issue with orthogonally convex hulls is that they may be disconnected [ 11]. Moreover,
they do not even have to be orthogonal polygons. In [5], we proposed an alternative shape: the orthogonally convex polygon
cover of the point set which is always an orthogonally convex polygon, and we show that in polynomial time we can compute
an orthogonally convex polygon which covers a given point set or report that such a polygon does not exist. Moreover, if
more than one such orthogonally convex polygons exist, then we also provide a count of all the solutions in O(n log n) time
and construct all of them in time linearly proportional to this count.

* This article is an extended version of Evrendilek et al. (2010) [4] which was presented in ISCO’10.
* Corresponding author. Fax: +90 2324888475.
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Fig. 1. The complexity of covering points with orthogonal polygons.

In this paper, we provide new research output related to covering points with orthogonal but non-convex polygons and
extend our preliminary results in [4]. We show that covering points with orthogonal non-convex polygons is NP-complete.
This problem remains intractable even when the orientations of the edges covering the given points are specified as part of
the input. Thus, this paper along with the results in [5], closes the problem of covering points in the plane with orthogonal
polygons (see Fig. 1).

The rest of the paper is organized as follows: Some background information and required preliminaries are introduced
in the next section. Section 3 describes the transformation from a known NP-complete problem to covering points with
orthogonal polygons. Next, in Section 4, we provide some theoretical properties to facilitate the remaining steps of the NP-
completeness proof given in Section 5. Finally, in Section 6, the paper is concluded by pointing out future research directions.

2. Preliminaries and problem definitions

A polygonal chain is an ordered set of k > 1 line segments eq, e,, ..., e, such that for eachi € {1, ...,k — 1}, ¢; and e;j;4
intersect at one of their endpoints and no other intersections occur within the set. A closed polygonal chain is a polygonal
chain of length at least three for which the first and the last segments are the same. A polygon is a region on the plane
enclosed by a closed polygonal chain. The edges of a polygon are the maximal line segments on the boundary of the polygon.
The vertices of a polygon are the intersection points of its edges. A line segment is orthogonal if it is parallel to one of the
coordinate axes.

An orthogonal line segment is horizontal (resp. vertical) if it is parallel to the x-axis (y-axis). A line segment covers a point if
the point is on the line segment and is not one of its vertices. If a horizontal (resp. vertical) line segment covers a point, then
we say that the point is a horizontal point (resp. vertical point) and we define its orientation to be horizontal (resp. vertical).

Points with integer coordinates in the plane are called grid-points. Two points in the plane that have the same y-coordinate
(x-coordinate) value are said to be horizontally (vertically) aligned.

In this paper, we deal with covering points with orthogonal polygons where we relax the convexity condition as opposed
to [5]. We consider, however, an additional aspect of the problem: The issue of whether each point is covered by a horizontal
or vertical edge is specified in advance or not as part of the input. We accordingly define two problems COGOP and CGOP
each corresponding to a possible choice below.

Specifically, covering oriented grid-points with an orthogonal polygon (COGOP) is the problem of deciding whether a
given set P of n grid-points in the plane, each constrained to a previously specified orientation, can be covered with an
orthogonal polygon such that each edge of the polygon covers exactly one point and each point is covered by exactly one
edge.

Covering grid-points with orthogonal polygons (CGOP) is the problem of deciding whether a given set P of n grid-points
in the plane can be covered with an orthogonal polygon such that each edge of the polygon covers exactly one point and
each point is covered by exactly one edge.

It should be noted that COGOP and CGOP both require that there is a bijection between the points to be covered and the
edges of the covering polygon.

3. Transformation to covering points with orthogonal polygons

Any given solution to either CGOP or COGOP can quickly be verified in polynomial time simply by checking that
intersections do not exist between the polygonal edges and that there is a one-to-one mapping between points and edges
(and that the orientations match those specified in the instance, in case of COGOP). COGOP and CGOP € NP is, thus, easily
established.

First, the more restricted versions, namely COGOP and CGOP, where the points are constrained to grid-points are shown
to be NP-complete. This helps to simplify the presentation. Finally, the NP-completeness of the more general forms when
points have real-valued coordinates easily follows. As the points in a given instance of CGOP or COGOP are at grid-points,
the requirement for a bijection between the points to be covered and the edges of the covering polygon implies that the
vertices of any orthogonal polygon corresponding to a covering are also formed at grid-points.

We use a single reduction for CGOP and COGOP. We start with a problem already known to be NP-complete and then
transform it to either CGOP or COGOP through identical lines.
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Fig. 2. The gadget used in CFST to CGOP (respectively COGOP) transformation. Each ¢; is replaced by 24 new points. The edges of the gadget polygon are
purely indicative.

We will make use of the following problem (CFST) in our reduction: Given a set P of n grid-points in the plane, deciding
whether P admits a crossing-free spanning tree with only axes-parallel edges. This problem is shown to be NP-complete
in[7].

We are now in a position to describe the transformation from a given instance of CFST to the corresponding instance of
either COGOP or CGOP. First, in linear time we translate all points to the positive quadrant. Next, we scale the coordinates
of the points with a certain integer factor @ which we soon explain in detail. The scaling is so that when we replace each
scaled point with the gadget in Fig. 2, the x (resp. y) range spanned by a gadget overlaps with another gadget if and only if
the points corresponding to the gadgets before scaling had the same x (resp. y) coordinate.

After scaling, each obtained point t;(x;, y;) corresponding to the original grid-point p; of a particular CFST instance is
replaced by a gadget g; composed of 24 gadget points shown in Fig. 2. These transformed points, by construction, are all at
integer coordinates.

The orthogonal polygon (given in solid lines) in Fig. 2 which covers the gadget points is purely indicative. We call this the
gadget polygon. We use the terms gadget polygon and gadget interchangeably throughout the rest of the paper. In the next
section, we prove that the gadget polygon is unique, in that, it is the only orthogonal polygon that can cover the given set of
24 points associated with a single gadget even when the orientations of edges are not specified in the input.

Each gadget spreads a rectangular area of 13 by 9 units. This observation, accordingly, leads to the derivation of the
smallest possible value of « as max(13, 9) + 1 = 14 units.

Let t; - x; and t; - y; denote the x and y coordinates of the point t; respectively. Gadget points can be regarded as consisting
of two groups, namely, those in the upper right region (U) identified by x > t; - x; + 6 and y > t; - y; + 4 and the rest in the
lower left region (L) identified by x < t; - x; + 7andy < t; - y; + 5 (or points to the left and right respectively of the line
y = —Xx+t;-x;+ tj - y; + 11). All the points in one of U or L surrounded by dotted lines (in red) as shown in Fig. 2 can be
obtained through a rotation of the points in the other region by an angle of & radians around t; + (13/2, 9/2). There are,
hence, a total of 12 points in each of these regions and these are accordingly named to start with either U or L. The points
in each region, furthermore, come in pairs of two as: (A, A"), (B, B'), (C, C’), (D, D), (E, E’), and (F, F"). One point of each such
2-tuple essentially functions as an enforcer used to dictate an orientation. This is actually what makes it possible to use a
single reduction for both CGOP and COGOP.

We identify each gadget point by a two-letter label. While the first letter is used to specify the region U or L to which
the respective gadget point belongs, the second identifies one of the points that comes in pairs. Any one point in region
r € {U, L} designated by letter | € {A,A’, C, C’, E, E'} will thus be denoted by g".

Gadgets have been designed in such a way that when two gadget polygons are connected somehow, they are to form an
orthogonal polygon with a single boundary. To this end, the gadget includes a pair of sentinel points (A, A’) in each region
U and L to prevent the formation of holes in the orthogonal covering. A hole in this context means an orthogonal polygon
inside another.

While the reduction to CGOP requires that only the coordinates of the gadget points are specified, COGOP demands that
their orientations are also given. Indeed, they are all known in advance. The orientation of a point of some gadget g; is
basically the same as that of the corresponding edge of the gadget polygon associated with g; as will be demonstrated in the
next section. The total time spent in reducing an instance of CFST to the corresponding instance of either COGOP or CGOP
is O(n).

4. Theoretical properties

Some observations are now made below to facilitate the remaining steps of the NP-completeness proof.
Two gadgets are said to be horizontally (vertically) aligned if the same labeled points in the gadgets have the same
y-coordinate (x-coordinate) values. The x-range of a gadget g; is the range defined by the x-coordinates of giLC and gi”C.

Similarly, y-range is the range defined by the y-coordinates of g'® and g? (see Fig. 2).
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Fig. 3. Possible connections among gadget points.

Lemma 4.1. After an instance of CFST is transformed as described above to a corresponding instance of either COGOP or CGOP,
for any two given gadgets g; and g; with i # j, one and only one of the following three parts holds:

(i) they are horizontally aligned and their x-ranges do not overlap,
(ii) they are vertically aligned and their y-ranges do not overlap,
(iii) they are not aligned and neither their x-ranges nor their y-ranges overlap.

Proof. If g; and g; are not aligned, then the respective points in the gadgets having the same label are at least fourteen
units apart in both x and y directions as a result of the «-scaling performed during reduction. Since a gadget can extend in
any direction by as far as at most thirteen units, part (iii) in the lemma follows directly. When they are, on the other hand,
aligned along the direction of one of the axes, say x (¥), they cannot be within the x-range (y-range) of one another as the
corresponding gadget polygons cannot intersect again as a result of the a-scaling by construction. Parts (i) and (ii) of the
lemma are, thus, established. O

Avertex v of an orthogonal polygon is said to be implied by a pair of gadget points (p, q) if v is formed by an intersection of
the two edges covering p and q respectively. Each of the vertices of a gadget polygon implied by one of these pairs of gadget
points (g, g”), (g, g), (g7, g"P), and (g, g'°) (see Fig. 3) is unique in that they are the only vertices that suggest the
possibility of alternative vertices to form connections to other gadget polygons. As illustrated in Fig. 3, given two gadgets g;

and g; which are horizontally aligned, we may have either the two vertices implied by (g7, g”) and (g/, g/®) or the two
vertices implied respectively by (g7, g/°) and (g/’”, g/°) in a covering. Such a structure between aligned gadgets is called
a pathway. An example of a horizontal g;-g; pathway is shown in Fig. 3. Each bidirectional g;-g; pathway where g; and g;
are horizontally (resp. vertically) aligned is said to be identified by two vertices implied by the pairs (g, g/°) and (g, g/

(resp. (g%, g/") and (g, g*)). Two such vertices are alternatively said to be the identifying vertices of a pathway.
Some simple observations common to COGOP and CGOP are now made in the form of two structural lemmas below. They
are used repeatedly in the subsequent proofs.

Lemma 4.2. Given two horizontally (resp. vertically) aligned points p(x,, y,) and q(xq, yq) where x, < X4 (resp.y, < yq) among
a set P of n points, they must both have vertical (resp. horizontal) orientations in any possible covering by an orthogonal polygon
when it is known that there exists no vertical (resp. horizontal) points to cover in the region designated by x, < x < X4 (resp.

Yo <Y <Yq)

Proof. If p and q are horizontally aligned, then y, = y, by definition. Neither p nor ¢ in that case can have a horizontal
orientation since such a point would be covered by a horizontal edge which, by the given assumption, has no points with a
vertical orientation to cover next before hitting the other. On the other hand, hitting the other would be a violation of the
requirement for a bijection between the points to be covered and the edges of the covering polygon given in the problem
definitions. O
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Let us consider, for example, the gadget points giUC and giUC/ which are horizontally aligned as shown in Fig. 2. Both are

constrained to have vertical orientations by the above lemma. The points giUD/ and giUD which are vertically aligned, however,
are both seen to be vertical by a direct application of Lemma 4.2 as already depicted in Fig. 2.

Lemma 4.3. Given a horizontal point p(x,, yp) and a vertical point q(x,, yq) where x, # x, and y, # yq, the vertex implied by
(p, q) is always part of a solution (if any) when the edges covering p and q are both known to extend orthogonally in the direction
of the other a distance of no less than |x, — x,4| and |y, — yq| respectively.

Proof. This leads to a configuration where lines through p and q intersect at the point (x4, ¥,). Consequently, a vertex is
always formed at this point as part of a solution. O

Let us now consider the points gi”C/ and gi”D/ already known to have vertical and horizontal orientations respectively. By
assumption all the points are at integer coordinates, hence the edges covering both gadget points will extend at least one
unit in either possible direction as dictated by their respective orientations. This, in turn, leads to the formation of the vertex
implied by (g7, g*') as suggested by Lemma 4.3.

The lemma below now formalizes the type of connections among gadget points belonging either to the same or to
different gadgets. It should be noted at this point that one such lemma concerning only CGOP will be needed.

Lemma 4.4. If S is any orthogonal polygon covering (solution) of the corresponding CGOP instance obtained from a given CFST
instance, then the following two hold for all g;:

(i) Foranyr € {U,L}andl € {A, A", C, C', E, E'} the gadget points gir’ have all vertical orientations while the rest of the gadget
points have all horizontal orientations. In addition to that, all vertices but the four which are implied by the pair of gadget
points given as: (g%, g’F), ("¢, gP), (g'f, g'), and (g/“, /") always belong to the vertex set of S.

(ii) For every one of the remaining four vertices implied by the pair of gadget points (gi”E, gl'UF)a (giUC’ giUD), (giLE,g,»LF), and
(g,-LC, giLD), either it belongs to the vertex set of S or there exists a gadget g; aligned with g; such that they form a pathway
whose two identifying vertices belong to the vertex set of S.

Proof. (i) Let us consider a gadget g; as depicted in Fig. 3. Fora givenr € {U, L} and a 2-tuple (I, I') € {(A, A"), (C, C"), (E, E")},
points g/ "and g I are observed to be horizontally aligned by construction. Besides, by the grid-points assumption there can
be no other points in the region in between the vertical lines passing through g’ "and gl U as they are only 1 unit apart. It is

therefore deduced by a direct application of Lemma 4.2 that g[’ and g/ ' both have vertical orientations.

Having confirmed all six such pairs, and hence a total of 12 out of 24 gadget points as vertically oriented, we can now
proceed to verify the remaining orientations. Points g’ and g{'/ wherer € {U,L}and (I,I') € {(B,B), (D,D’), (F, F')} are
seen to be vertically aligned. At this time, either there are no gadget points or the gadget points have already been figured
out in the previous step to have vertical orientations in the designated region between the horizontal lines passing through
g and g/". As such, they are all horizontal by Lemma 4.2.

Ininvestigating the vertex set now, we draw on the orientations which have all been already resolved. It is easily observed
by the grid-points assumption that an edge covering a horizontal (resp. vertical) point has to extend at least one unit in
both directions to the left (resp. top) and to the right (resp. bottom) of that same point. This observation coupled with
Lemma 4.3 lets us easily locate the 14 vertices implied by (g, g), (g, g™), (g%, &™), (&, g™), &, &), & , g ),

1
and (g,-rc/, g{D’) where r € {U, L}. Once these vertices are formed, we leave the horizontal edge going through g{D/ with no
option but to extend four units until the vertical line through g/ E' 35 all the vertical points along the way have already been
covered by forming the vertices discovered so far. It is exactly when, by a direct application of Lemma 4.3, two more vertices,
namely, those implied by (g/”, gF') for r € {U, L}, are discovered. By the exact same lines, vertices implied by (g’°, g'f)
and (g/P, gF) are also seen to be part of a solution.

As the final step of the first part of the lemma, the vertex implied by (g{B, g[c) for some r € {U, L} is explored. The
horizontal and vertical lines through g{B and g € respectively are seen to form a vertex by Lemma 4.3 since none of them
can take a turn before they intersect at this point. With the addition of these 2 vertices each corresponding to a possible r,
all 20 vertices mentioned are shown to belong to S.

(i) There remains to investigate the remaining 4 pairs of open line segments. Among these (g, g”") and (g/t, g/) are
completely symmetrical and fall under a category which we call vertical pathways. (g°¢, g’) and (g/<, g°) can similarly
be classified together under the name of horizontal pathways. We do this part of the proof for only horizontal pathways
since the vertical pathways are similar.

As the two pairs associated with horizontal pathways are symmetrical, we pick (g,-UC, giUD (see Fig. 3) and do the proof for
only that pair. At this state of affairs where the orientations of all the gadget points and 20 out of 24 vertices associated with
each g; have already been determined, the vertical line, after passing all the way down through giUC, cannot extend beyond
the point implied by this pair. In order to see this, we can simply note that the horizontal line through giUD has to extend
right at least 2 units till the point implied by (giUC, gi”D). Before this point, it can neither turn up nor turn down to cover

any point. It cannot go up as the only vertically oriented point gl-UC/ has already been covered forming the vertex implied
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Fig. 4. The correspondence between CFST and COGOP (or CGOP).

by (giUD/ giUC/). It cannot certainly go down if there are no points in this direction which is exactly the case by construction,
when there does not exist another gadget aligned vertically with g;. Even when there is a gadget g, for some k 5 i vertically
aligned with g; (see Fig. 3), it cannot yet again go down or else it would be intersecting the horizontal edge through g,i’B
which has already been observed to form the vertex implied by (g%, g/©).

The vertical edge through gi“C then should make a turn at or before the point implied by (gl-UC, gi”D). If it extends as far as
that point, then from the above discussion, the vertex implied by this pair is necessarily formed. Otherwise when it has to
take a turn before the point implied by this pair, there is only one grid-point along the way where it can turn. It is shown by
a small circle filled in black right above the point implied by (g"”, g/') in Fig. 3. The only possibility there is to turn right
as gi”D/ which is the only horizontal point on the left has already been covered. A right turn, on the other hand, can only be
taken when there exists a g for some j # i horizontally aligned with g; as shown in Fig. 3. In this case, the gadget point gjLD
with a horizontal orientation is readily seen to be the only one which can be covered next. S must then contain the vertex
implied by (g,-”C, gjLD ) as depicted in Fig. 3. An application of Lemma 4.3 subsequently leads to the formation of the additional

vertex implied by (g/°, g”) as the vertical line through g/ and the horizontal line through g/’ are now known to extend
to this point without being able to take any turns along the way. Hence, it is concluded that the two defining vertices of the
gi—gj pathway are in the solution as the other possibility stated in this part of the lemma. O

An example of the type of connections described by Lemma 4.4 is shown in solid lines in Fig. 3. It is therefore established that
points belonging to different gadgets can only be connected via pathways as described by Lemma 4.4. Another consequence
of Lemma 4.4 is that the orientations of all the edges in any covering of the transformed instance corresponding to a given
instance of CFST are uniquely determined and known in advance. This allows for the same reduction used for CGOP to be
also employed for COGOP by simply feeding the known orientations to the latter.

The correspondence between a given instance of CFST and the instance of either COGOP or CGOP obtained by the
transformations described is shown in Fig. 4.

After the transformation, all 24 points associated with a single gadget act in unison atomically like the very point in CFST
instance they replace. Just like a point can be connected to other points through horizontal or vertical edges in CFST, a gadget
can be connected to other gadgets through horizontal and vertical pathways.

We will now define the operation of removing a pathway and make some observations to prepare for the final result.
Let us denote by S a solution to a corresponding CGOP or COGOP instance obtained from a CFST instance. S is obviously an
orthogonal polygon and contains (possibly zero or more) pathways. If we remove a pathway in S, this will effectively cut
the cycle corresponding to S into two. This operation can easily be illustrated by referring to Fig. 3. In case a gi-g; pathway
shown in this figure is removed, the two identifying vertices of the pathway implied by (g, g”) and (g{", g/), shown by

black dots, are removed from the vertex set of S while the vertices implied by (g, g’”) and (g/“, g/®), indicated by red
dots, are added to the vertex set of S. Thus, removing a pathway in S gives rise to the formation of two orthogonal polygons:
S1 and S,. One may wonder at that point whether the points associated with a single gadget may somehow, after removing
a pathway, be distributed between S; and S, which we call gadget splitting. As gadgets must still be connected only through
pathways in either S; or S,, gadget splitting is not possible. This discussion is summarized in the following lemma.

Lemma 4.5. In any solution S to a corresponding COGOP or CGOP instance obtained from a given CFST instance, when a g;-g;
pathway is removed, then two non-intersecting orthogonal polygons Sy and S, are created such that no gadgets are split between
51 and Sz.

Proof. When a g;-g; pathway is removed, we have effectively cut the cycle corresponding to S into two: S; and S;. Since no
additional pathways and gadget points are introduced, no intersections are possible between S; and S,. This is because the
corresponding COGOP or CGOP instances have been obtained from a CFST instance.
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Let us assume by contradiction that a gadget g, for some k is split between S; and S,. Then, there must be a path in
S1 leading to a point of g, and another path in S, leading to another point of g. The existence of these two disjoint paths
implies, by Lemma 4.4, the existence of two disjoint sequences of (zero or more) pathways in S before the removal. While
the sequence 7; ; denotes the pathways from g; to g, in S, the other from gj to g; is represented by 7 ;. The sequences 7; x and
myj are disjoint and neither contains in it the g;-g; pathway. Let us consider now another sequence 7 which is constructed
by appending my to m; and finally by adding the g;-g; pathway as the last element. The sequence 7 is certainly in S. If
we restrict our attention to the gadgets associated with the pathways only in 7, we realize that it contains two orthogonal
polygons after a connection through the last pathway g;-g; in 7 is performed. The additional orthogonal polygon is a by-
product of connecting an orthogonal polygon that was formed before by all the pathways but gi-g; in 7 to itself this time
through g;-g;. This contradicts the fact that S is an orthogonal polygon. 0O

Lemma 4.6. In any solution to a corresponding instance of COGOP (respectively CGOP) with n > 0 gadget polygons, there are
exactly n — 1 pathways.

Proof. The proofis by induction on the number of gadgets denoted by n. When n = 1, the only orthogonal polygon covering
all 24 points of a single gadget is, by Lemma 4.4, the one shown in Fig. 2. Assume by the inductive hypothesis that for any
instance with n gadgets with 1 < n < k for some constant k, if it has a solution, then the solution has exactly n — 1
pathways. Let S be any covering for n = k 4- 1 gadget polygons. We can now choose any g;-g; pathway and remove it. Note
that there is always such a pathway in S as we have now at least two gadget polygons that can only be connected through
pathways according to Lemma 4.4. Since the removal of one pathway cuts S through the pathway without changing the
number of gadgets, it definitely generates two new orthogonal polygons S; and S, covering all k + 1 gadgets. As no new
vertices other than the vertices of gadget polygons have been introduced and as no gadget can ever be split by Lemma 4.5
after the removal of the pathway, each of the two disjoint orthogonal polygons clearly still satisfies Lemma 4.4. Thus, we
can apply the inductive hypothesis to both S; and S, since they both contain k or fewer gadget polygons. Let |S{| and |S;|
denote the number of gadgets in each. The total number of pathways in S can then be given by the sum of the number of
pathways in each of S; and S, plus one pathway already removed which is equal to |S;| — 1+ |S;| — 1+ 1 = k by recalling
IS11+ 1Sl =n. O

5. Equivalence

We are now just a single step from concluding the proof. The following lemma is to take this last step. Let us use C(0)GOP
to refer to both COGOP and CGOP in the remainder of the paper.

Lemma 5.1. An instance of CFST has a solution if and only if the corresponding C(0)GOP instance has a solution.

Proof. First, the “only if” part (necessity) is proved. Let us assume that a given instance of CFST has a solution. This solution
then can be used to construct an orthogonal polygon covering all the (oriented) points in the corresponding C(0)GOP
instance. The construction scheme is such that while the given solution to a CFST instance is rebuilt from scratch by
incrementally adding the edges in the solution one at a time, the solution to the corresponding C(0)GOP instance is also built
incrementally. Initially, the points p; in the CFST instance are all disconnected forming a forest of n subtrees of size one each
while the corresponding configuration for C(O)GOP has n non-intersecting orthogonal polygons corresponding exactly to
the gadget polygons. Each of these polygons is obtained by an independent covering of a set of (oriented) points associated
with a single gadget g; corresponding to p; which, at the time, constitute the one and only node of some subtree. Therefore,
the gadget polygons in the C(O)GOP instance are initially in one-to-one correspondence with the single node subtrees of
CFST. It should be noted that the gadget polygons are guaranteed by Lemma 4.1 not to cross.

Next, the edges in the given solution to CFST are examined one at a time in some arbitrary order. When an edge (p;, p;)
is chosen in some iteration, it is used to modify the existing configurations of both CFST and C(0)GOP as follows: First, the
configuration of CFST instance is updated to reflect the addition of the edge (p;, p;) by merging two disjoint subtrees P and
Q where p; € P and p; € Q to form a new larger subtree. Last but not least, the configuration of the C(0)GOP instance is
also modified to form a pathway between the gadgets g; and g; as dictated by Lemma 4.4. Linking g; and g; with a pathway,
in turn, causes the formation of a single orthogonal polygon obtained from the two orthogonal polygons corresponding to
the two subtrees P and Q. The resulting orthogonal polygon is, consequently, an independent cover corresponding to the
newly formed subtree. Once the iteration is completed, thus, both the number of subtrees in the current configuration of
CFST and the number of orthogonal polygons in the corresponding configuration of C(O)GOP decrease by one. After n — 1
iterations, finally, a single orthogonal polygon corresponding to the solution tree is obtained. This concludes the proof for
this part, and hence the necessity.

Finally, we must establish the “if” part (sufficiency). Assume that we have a solution to an instance of C(0)GOP
corresponding to an instance of CFST. We know by Lemma 4.4 that a pathway is possible only when the corresponding
gadgets are aligned. A solution to CFST can then be constructed as follows: Let the solution be represented by the Hamiltonian
cycle u corresponding to a clockwise (or counter clockwise) traversal of the gadget points on the boundary of the orthogonal
polygon identified by the solution. The nodes corresponding to the gadget points in w are visited starting from any node
iteratively one node at a time until the cycle is completed. Whenever two gadget points that belong to two separate gadgets
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g and g; (i # j) are consecutively traversed (a gi-g; pathway is taken), the corresponding points p; and p; are basically joined
by an edge if they have not been already joined. Thus, the solution to CFST is constructed incrementally with the addition
of such edges. Let us prove immediately that the described scheme correctly builds a solution for the corresponding CFST
instance. We start by noting that all gadget points are included in the Hamiltonian cycle w. This, in turn, implies that there
exists a path between every pair of points in the solution constructed for CFST. It can, therefore, be concluded that the
obtained solution to CFST has, graph theoretically, a single connected component spanning all p;. By Lemma 4.4, points p; in
CFST are connected by the described scheme only through axis-parallel edges, hence orthogonal. The solution so-constructed
can also be easily shown to be crossing-free. Lastly, it needs to be shown that the corresponding solution to CFST is a tree. It
is already known that all the points are spanned by the corresponding solution and the number of pathways in a solution
with n gadgets is exactly n — 1 as specified by Lemma 4.6. This concludes the proof. O

It follows immediately from the previous results that COGOP and CGOP are both NP-complete.
Theorem 5.2. COGOP is NP-complete.

Theorem 5.3. CGOP is NP-complete.

Having established Theorems 5.2 and 5.3, we can relax the restriction to grid-points and readily obtain the problems
COROP and CROP corresponding to COGOP and CGOP respectively. Covering oriented points with an orthogonal polygon
(COROP) is formally introduced as the problem of deciding whether a given set P of n points in the plane, each constrained
to a previously specified orientation, can be covered with an orthogonal polygon such that each edge of the polygon covers
exactly one point and each point is covered by exactly one edge. Covering points with orthogonal polygons (CROP) is the
problem of deciding whether a given set P of n points in the plane can be covered with an orthogonal polygon such that
each edge of the polygon covers exactly one point and each point is covered by exactly one edge. It is evident from these
definitions that COGOP and CGOP are special cases of COROP and CROP respectively.

The following corollaries about the NP-completeness of COROP and CROP where points may have real-valued coordinates
can thus be stated without a proof.

Corollary 5.4. COROP is NP-complete.

Corollary 5.5. CROP is NP-complete.

6. Conclusions

In this paper, we study the problem of covering points with possibly non-convex orthogonal polygons where the
orientations of the edges covering the given points may be specified or not as part of the input. We show that both problems
are NP-complete using the same reduction.

In future work, we will study the optimization versions of CGOP and COGOP where we wish to minimize the number of
uncovered points by an orthogonal polygon. We plan to investigate the approximability of these optimization problems.
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