

BENEFITS OF CONTINUOUS MAINTENANCE

IN AGILE SOFTWARE DEVELOPMENT:

A CASE STUDY

GÖRKEM HONDOROĞLU

Master’s Thesis

Graduate School

Izmir University of Economics

Izmir

January 2020

BENEFITS OF CONTINUOUS MAINTENANCE

IN AGILE SOFTWARE DEVELOPMENT:

A CASE STUDY

GÖRKEM HONDOROĞLU

A Thesis Submitted to

The Graduate School of Izmir University of Economics

Computer Engineering Program in Graduate School

IZMIR

JANUARY 2020

iii

ABSTRACT

BENEFITS OF CONTINUOUS MAINTENANCE

IN AGILE SOFTWARE DEVELOPMENT:

A CASE STUDY

GÖRKEM HONDOROĞLU

M.S. in Computer Engineering

Graduate Program

Advisor: Asst. Prof. Dr. Kaan Kurtel

January 2020

Software maintenance is an integral part of the software life cycle, and from the

financial and quality perspective, it has a very high impact on a software product.

Software maintenance describes the activities after delivery. That means software

maintenance and development have many things in common, such as change of the

design, code, and testing the existing product. These and other reasons make software

maintenance a neglected area of software. Besides, Continuous Practices are getting

to be an emergent area in software engineering. The academy and industry are

increasingly paying attention to the practices; continuous integration, continuous

delivery, and continuous deployment. Unfortunately, maintenance isn’t the demanded

area in academy. In this thesis, focus is the Continuous Maintenance in agile software

development. In software, repositories usually refer to the main point to store data

iv

about a system or a code. Weak repository management may adversely affect the

success of maintenance. A badly managed software system can lead to a number of

problems, including wasted time and programmer force in development, and difficult

code tracking. The continuous software engineering practices are inherently more

sensitive to dealing with such problems in particular. However, usage of continuous

maintenance, can overcome these problems efficiently. We’ll focus on the benefits of

continuous maintenance in agile development and its challenges, analyze the effects

of code changings as part of the continuous maintenance process and will identify the

challenges such as impact analysis, failure tracking and etc., in continuous

maintenance process by conducting a case study.

Keywords: Continuous Practices; Continuous Maintenance; Repository Management,

Agile Development

v

ÖZET

ÇEVİK YAZILIM GELİŞTİRMEDE

SÜREKLİ BAKIMIN FAYDALARI:

VAKA ÇALIŞMASI

GÖRKEM HONDOROĞLU

Bilgisayar Mühendisliği, Yüksek Lisans

Lisansüstü Programlar Enstitüsü

Tez Danışmanı: Dr. Öğr. Üyesi Kaan Kurtel

Ocak 2020

Sürekli yazılım pratikleri, gelişmekte olan ve önemli bir yazılım mühendisliği alanıdır.

Akademik dünya ve yazılım endüstrisi de bu sürekli yazılım pratiklerine giderek artan

bir ilgi göstermektedir. Sürekli entegrasyon, sürekli dağıtım ve sürekli teslim bu ilgiyi

görürken sürekli bakım gözden kaçmaktadır. Bu tezimde vurgulamak istediğim nokta;

yazılım endüstrisin büyük ölçüde sürekli bakımın farkında olmamasıdır. Ancak,

sürekli bakım; yazılım hayat döngüsünün ayrılmaz bir parçasıdır. Finans ve kalite

bakış açısından bakarsak; yazılım ürününün üzerinde büyük etkisi vardır. Bu tezimde,

Sürekli Bakım konusunu çevik yazılım geliştirme içerisinde ele alacağım. Yazılım

mühendisliği açısında depo, genellikle verilerin saklandığı esas yerdir. Yazılım

depoları geliştirme ve bakım aşamalarında, veri saklanmasına yardımcı olduğu gibi,

sürüm kontrolleri ve çok kişilik ekiplerin kullanımına da yardımcı olur. Kötü yönetilen

bir yazılım sistemi birçok soruna sebebiyet verebilir. Bunların başında; vakit ve iş gücü

kaybı, kaynak kodu takibinin zorlaşması, deponun şişmesi ve sürüm kontrolünün

zorlaşması gelebilir. Bunlara ek olarak, zayıf bir depo yönetimi bakım ve yazılım

evriminin üzerinde olumsuz etki oluşturur. Sürekli yazılım mühendisliği pratikleri

vi

doğası gereği bu tarz problemlerle ilgilenmek konusunda hassastır. Ancak, sürekli

yazılım mühendisliği özellikle de depo arşivleme ve yönetimi bu problemlerin

üstesinden gelmek konusunda verimli bir çözüm sunabilir. Bu tezde, sürekli bakım

sürecinin, çevik yazılım geliştirme içerisinde kullanımıyla birlikte kazanılacak

kazançlar incelenip, sürekli bakım çalışmalarında olan sorunların bir parçası olan kod

değişikliklerinin etkisini analiz etmeye çalışıp karşılaşılan etki analizi, hata takibi gibi

zorlukları bir vaka çalışmasıyla belirlenecektir.

Anahtar Kelimeler: Sürekli yazılım pratikleri; sürekli bakım; yazılım depo yönetim,

Çevik Yazılım

vii

ACKNOWLEDGEMENT

I wish to acknowledge the help provided by Asst. Prof. Dr. Kaan Kurtel. He provided

me with valuable advice, and support while writing this thesis. He guided me about

how to approach problems and finding ways to resolve them. I am thankful to Asst.

Prof. Dr. Ufuk Çelikkan and Asst. Prof. Dr. Serap Şahin for their guidance’s.

I am thankful to Mustafa Tufan for providing me the case study project. Hakan

İnanç and Semih Ünaldı for their help and participation in the case study. Suzan

Özşimşek and Burcu Kocakurt for helping with the language.

In addition, I am thankful to my family; my mother Nihal, my father Adnan and my

brother Arda who always supported me. Their love and help encouraged me to do new

things in my life. Their presence, whenever I need, always made me feel strong against

any challenge. They helped me to become the person who I am. Thus, I am always

grateful to them. Finally, to my dear girlfriend Suzan for her inspiration.

viii

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZET.. v

ACKNOWLEDGEMENT ... vii

TABLE OF CONTENTS .. viii

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

LIST OF ABBREVIATIONS ... xiv

CHAPTER 1: THESIS STATEMENT .. 1

1.1 Purpose of the Study ... 1

1.2 Significance of the Study.. 1

1.3 Organization of the Study ... 1

CHAPTER 2: FUNDAMENTALS .. 3

2.1 Software Life Cycle .. 3

2.2 Software Maintenance .. 4

2.3 Continuous Practices .. 7

2.3.1 Continuous Integration .. 9

2.3.2 Continuous Delivery .. 9

2.3.3 Continuous Deployment .. 10

2.3.4 Continuous Release.. 10

2.4 Global Software Development for Small Teams ... 11

CHAPTER 3: MOTIVATION AND LITERATURE RESEARCH 12

3.1 Motivation .. 12

ix

3.2 Literature Research ... 13

3.2.1 Research questions ... 13

3.2.2 Data sources ... 13

3.2.3 Data retrieval.. 14

3.2.4 Data analysis .. 19

3.2.5 Results of literature research .. 21

CHAPTER 4: CONTINUOUS MAINTENANCE .. 23

4.1 Pre-Production Continuous Maintenance ... 24

4.2 Post-Production Continuous Maintenance ... 25

CHAPTER 5: REPOSITORY MANAGEMENT .. 27

5.1 Repository .. 27

5.1.1 Version Control.. 29

5.1.2 Centralized Version Control System ... 31

5.1.3 Distributed Version Control System .. 32

5.1.4 Advantages and disadvantages of version control system types 34

5.1.5 Benefits of version control systems ... 34

5.2 Repository Management ... 36

CHAPTER 6: THE CASE STUDY ... 38

6.1 The Company and Project Background .. 38

6.2 Development Phase .. 40

6.2.1 Project instructions .. 40

6.2.2 Project structure ... 41

6.2.3 Installations .. 42

6.2.4 Analysis and design ... 43

6.2.5 Code structure .. 47

6.3 Observations of the Case Study .. 53

6.4 Findings of the Case Study ... 59

x

CHAPTER 7: CONCLUSIONS AND FUTURE WORKS 61

REFERENCES ... 65

xi

LIST OF TABLES

Table 1: Search strings for selected data sources ... 15

Table 2: Selected number of papers obtained by searching the data repositories 15

Table 3: Publication type for 29 selected studies ... 16

Table 4: Selected studies sorting by their subject from SDLC to repository 17

Table 5: Papers and their touch points ... 18

Table 6: Software language and repository relationship .. 28

xii

LIST OF FIGURES

Figure 1: The Organization of the Thesis .. 2

Figure 2: Software Life Cycle .. 4

Figure 3: Maintenance Categories Identify by IEEE 14764 .. 6

Figure 4: Components of the Continuous Practices and Its Relations 9

Figure 5: Difference Between CD and CDE .. 10

Figure 6: Categorizations of the Selected Papers by Their Subjects 16

Figure 7: Remote and Local Repository Relationship ... 28

Figure 8: Version Control Workflow of Git .. 30

Figure 9: Centralized Version Control ... 32

Figure 10: Distributed Version Control ... 33

Figure 11: Popular Version Control Systems .. 35

Figure 12: Repository Management Visualization .. 36

Figure 13: Aliv.ee Back-end Structure... 41

Figure 14: Result Screen .. 42

Figure 15: Work Breakdown Structure .. 44

Figure 16: Use Case Diagram of Manual Link Creation Scenario 44

Figure 17: Use Case Diagram of Random Link Creation .. 45

Figure 18: Class Diagram of the Project .. 45

Figure 19: Modelling of Executables ... 46

Figure 20: Sequence Diagram of Manual Link Creation ... 46

Figure 21: Sequence Diagram of Random Link Creation .. 47

Figure 22: Dependencies of the Project Alivee.. 48

Figure 23: Entity Relationship Diagram .. 49

Figure 24: Repository Annotation JPA .. 49

Figure 25: Controller Class .. 50

Figure 26: Link Service Interface .. 51

Figure 27: Link Entity .. 51

Figure 28: Link Service Implementation ... 52

Figure 29: Continuous Maintenance Interaction .. 53

Figure 30: Configuration Error (Company info is hided) .. 54

xiii

Figure 31: Connection Error .. 56

Figure 32: Bitbucket Commit History.. 57

Figure 33: Maintenance-Testing Relation .. 58

Figure 34: Automated Unit Test System .. 59

Figure 35: Continuous Maintenance- Continuous Practices and SDLC Relation 60

xiv

LIST OF ABBREVIATIONS

CD Continuous Delivery

CDE Continuous Deployment

CI Continuous Integration

CM Continuous Maintenance

CR Continuous Release

CP Continuous Practices

DevOps Development & Operations

IT Information Technology

RM Repository Management

SDLC Software Development Life Cycle

SLC Software Life Cycle

VCS Version Control System

GSD Global Software Development

1

CHAPTER 1: THESIS STATEMENT

1.1 Purpose of the Study

In this study, we focused on software continuous maintenance in agile development,

and its challenges. We tried to increase the existing knowledge in Continuous

Maintenance especially the effects of code and environment changings as part of the

maintenance process in small development teams by designing and developing a

custom case study.

1.2 Significance of the Study

Software maintenance and continuous delivery studies are complemented by software

engineering concepts, both of which aim to encourage the efforts for both agile

development and software delivery improvement. There has been great interest in

continuous delivery in the last two decades; however, dealing with continuous

maintenance is also of the same importance.

The focus of this thesis is to increase the knowledge available for continuous

maintenance and repository management by conducting a case study to analyze the

impact of code and environmental changes. Furthermore, this thesis aims to contribute

to the continuous practices of small development teams especially in continuous

maintenance, which requires new developments and improvements.

1.3 Organization of the Study

This thesis is organized as two main parts: “Fundamentals” and “Research” that are

presented in Figure 1.

In Section 1, we explained the objective and significance of the thesis. Software life

cycle, global software development for small teams, software maintenance and

continuous practices have been explained respectively in Section 2.

2

In the second main part entitled “Research”, the activities concerning the research

process have been explained respectively. Section 3 begins with the clarification of the

research procedures, it is followed by interview and literature research, and the

obtained results presented at the end of this section. Sections 4 and 5, explained and

discussed the Continuous Maintenance and Repository. Preparation of the Case Study,

its structure and the outputs are presented in Section 6.

Finally, in Section 7, conclusion and future works will be gathered from the study.

Chapter 3: Motivation and Literature Research

Chapter 2: Fundamentals

Chapter 1: Thesis Statement

Chapter 4: Continuous Maintenance

Chapter 5: Repository

F
u

n
d

a
m

e
n

ta
ls

R
e

s
e

a
rc

h

Chapter 7: Conclusion

Chapter 6: The Case Study

Figure 1: The Organization of the Thesis

3

CHAPTER 2: FUNDAMENTALS

2.1 Software Life Cycle

John W. Tukey is the first person to use the term “software” in (Tukey, 1958);

“Today, the ‘software’ comprising the carefully planned interpretive

routines, compilers, and other aspects of automotive programing are

“at least as important” to the modern electronic calculator as its

‘hardware’ of tubes, transistors, wires, tapes and the like.”

Software and software engineering is defined by IEEE’s Software Engineering

Body of Knowledge (SWEBOK) (Bourque, and Fairley, 2014).

“Computer programs and their associated documentation is called

software.”

“Software Engineering (SE) is the application of a systematic,

disciplined, quantifiable approach to the development, operation, and

maintenance of software, and the study of these approaches; that is, the

application of engineering to software.”

Software development follows a process called Software Development Life Cycle

(SDLC). SDLC processes consist of a set of finite activities and contains a complete

plan for developing. SDLC has four phases and those are; requirement analysis,

design, implementation, and testing. Requirement analysis’s aim is to grab out all the

details of the project from the client. In Design phase; developers and technical

architects group up and determine the high-level design of the project. High-level

design determined by the collected requirements and will be the core part of the

implementation phase. After requirement collection and design, the third stage is

4

implementation. In this stage, developer starts coding in order to fulfill client’s

requirements and the design objectives. All the coding activities are organized in this

phase. The final phase is testing. Before delivery, testers check the software if it is

working as per user’s expectations or not. Maintenance is the following phase after the

SDLC process is completed. This means that; maintenance phase begins, after the

software is deployed. When Software development life cycle phases combine with

maintenance named Software Life Cycle (SLC). The relation between SDLC and SLC

is shown in Figure 2.

Figure 2: Software Life Cycle

2.2 Software Maintenance

Software maintenance is one of the fundamental topics in software engineering, and is

an inseparable part of software life cycle (IEEE-12207, 2008). All the financial sources

and expenses spent on software maintenance account for 40% to 70% of all the fiscal

sources and expenses allocated to software life cycle (Grubb, and Takang, 2003).

According to Boehm (Boehm, 1987), 50% to 90% of software life cycle expenditures

pertain to software maintenance. In other words, the money spent on maintenance

doubles the one spent on development. Jones (Jones, 2008) estimates that the total

number of software engineers to work for software maintenance towards the end of

21st century will reach approximately 4,000,000. He also adds that this number

constitutes 12% to 15% of the total workforce working in software industry.

Software maintenance is defined as providing technical support in a cost-effective

way. The need for software maintenance will not end as long as a specific software

program is used. Grubb and Takang (Grubb, and Takang, 2003) explains the reasons

for software maintenance as follows.

5

 To provide service availability: It includes all the efforts and activities required

to keep the system running and accessible.

 To provide compulsory updating support: It includes meeting changing needs

of customers about the software programs they have already purchased on

account of changing laws and technology.

 To keep up with the changing needs of customers: Users might want to use

these programs for other functions as well. So, their needs and expectations

might alter in time.

 The possibility for maintenance need in the future: The code or database

might have to be restructured, and documentation to be updated because of

commercial and financial reasons.

Software maintenance is one of the key phases/principles of SLC. Although

maintenance and evolution specify different things, they can be classified under the

same category. The term “evolution” was first introduced in the software domain by

Mark Halpern (Halpern, and Shaw, 1966) in 1965 as the growth characteristics of

software. Belady and Lehman (Belady, and Lehman, 1972) contribute the concept and

publicize a set of principles to determine the evolution of software systems. In 1976,

“Maintenance” term consists of “corrective”, “adaptive”, “perfective” maintenance

activities introduced by Swanson (Swanson, 1976). Software maintenance is

commonly defined to avoid software failure. On the other hand, software evolution

means, enhancing the software. Formally, Software Maintenance defined by IEEE Std.

610 (IEEE-Std610.12, 1990) Glossary of Software Engineering Terminology

Dictionary;

“The process of modifying a software system or component after

delivery to correct faults, improve performance or other attributes,

or adapt to a changed environment.”

Development process ends with the delivery. However, that is not the end of the

project. Platform updates, environments changes or user requirements change the

project. Software has to evolve or change to meet the new changes.

6

Maintenance refers to altering the system without changing its functionality. This

definition refers to adding new functions, updating the current system or, adding logs

or performance improvements but the working system is not affected by these changes.

To do that IEEE identifies activities for maintenance in IEEE Std. 14764 (IEEE-

Std.14764, 2006). Those activities are processed implementation, problem and

modification analysis, modification implementation, maintenance review/acceptance,

and retirement.

Maintenance activities are fulfilled by maintainer or in small developer teams.

There are five characteristics that maintainer has to follow and those are as follows:1)

Maintaining control over the software’s day-to-day functions, 2) maintaining control

over software modifications, 3) improving existing functions, 4) identifying security

threats, and fixing security vulnerabilities and 5) preventing software performance

from degrading to unacceptable levels. Types of software maintenance presented

(Figure 3) and described as follows (IEEE-Std.14764, 2006), (IEEE-Std.1219, 1998):

The types of software maintenance are shown in Figure 3.

 Correction Enhancement

Proactive Preventive Perfective

Reactive Corrective Adaptive

Figure 3: Maintenance Categories Identify by IEEE 14764

1. Corrective maintenance: In this type of maintenance, the software company

corrects the program failures notified by customers after having bought the

product. The maintainers must clear the fault to keep software product

operational.

2. Adaptive maintenance: If the working environment, operating system, or

hardware components change, then the old software program should be adapted

correspondingly.

3. Perfective maintenance: This kind of maintenance is done to increase the

performance of the program, or add some more functions.

7

4. Preventive maintenance: This sort of maintenance is conducted after delivery

of the software product as a precaution to thwart possible defects. This keeps the

performance and reliability of the system up to a certain extent.

2.3 Continuous Practices

Today’s technology and business trends and global competition force software product

to rapid change. Many of the foremost academician and industry authorities also

pointed which that change is an inevitable factor/attribute in the software domain

(Sommerville) (Sommerville, 2015). This critical attribute pushes a software product

toward to continuously change. It means that when a software product’s functionality,

constraints, architecture, and operational environment change, then making the

necessary changes in the software is inevitable.

Given all the above facts, the existing development approaches had to be changed

and this change has resulted to propose new methodologies and approaches. Agile

software development and its methodologies have emerged from one of those

methodologies and brought a new breath to software development. Since high-

functioning software project developments are frequent, Continuous Practices enable

the usage of Agile Methodologies. Continuous Practices (CP) refer to organize the

software development processes or phases such as requirement analysis, design,

implementation and testing continuously. It helps to deployment and also provides

quick feedback from software and customer in a very rapid cycle. It also monitors the

software life cycle processes in order to see what is going on or what is wrong with

the system.

With the spread of Continuous Practices; DevOps is getting popular. DevOps is an

agile relationship between development and IT operations and the word DevOps is

derived from the words development and operations. Continuous practices and

DevOps are support each other and work better together. Yet, these concepts are

different. DevOps emphasize the responsiveness and focus on the cultural structure.

On the other hand, CP emphasizes automation and focus on the software life cycle. A

way to identify a development life cycle in which operations and development worked

together throughout all stages from design to development, from testing to release.

8

Stahl and Bosch (Stahl, and Bosh, 2017) try to differentiate the terms of Continuous

Practices and DevOps in their study. The study found that; mostly DevOps believed to

be an enabler of continuous deployment. Since it encourages the rapid, continuous and

small deployments. Rather than finding the differences, they found out that continuous

practices are “DevOps practices”. This study implied that DevOps and continuous

practices work better together, and they are not two different concepts but concepts

that are interwoven.

Most of the technological companies in industry, implements the continuous

practices in papers mostly refers to continuous integration. The concept of continuous

integration was firstly introduced in the 1995, book of Microsoft Secrets (Cusumano,

and Selby, 1995), since that continuous practices are intermixed with each other. The

book describe it as; “do everything in parallel, with frequent synchronizations.”

Continuous practices are commonly categorized as below:

 Continuous Integration (CI),

 Continuous Delivery (CD),

 Continuous Deployment (CDE),

 Continuous Release (CR).

From then, continuous practices refer to continuous integration. In this definition

and usage, continuous integration is the combination of continuous integration,

continuous delivery, continuous deployment and continuous release. Even though

continuous maintenance is the extension of this defined continuous integration; it is

rarely discussed in publications or educational papers. Pang (Pang, and Hindle))told

in her conference paper Continuous Practices. Figure 4 (Shahin, Ali-Babar, and Zhu,

2017) shows the relations between continuous practices.

9

Figure 4: Components of the Continuous Practices and Its Relations

2.3.1 Continuous Integration

Continuous integration is a developer practice. Developers integrate their work

frequently. Each person usually integrates at least daily, which means multiple

integrations per day.

Since it’s a developer practice and not a development practice, it distinguishes it

from continuous delivery and deployment. That means, you may be using continuous

delivery but that does not guarantee that developers actually follow continuous

integration.

Continuous integration practices match with the agile methodologies. Agile

methodologies suggest short release cycles between two to four weeks. Continuous

integration is in alignment with agile in that. In addition to that, Continuous integration

follows daily integration. It helps with shorter and frequent release cycle. Software

quality and team’s productivity improved with shorter period releases and multiple

integrations.

2.3.2 Continuous Delivery

Continuous Delivery is a software development discipline unlike the CI, which is a

developer discipline. In CD, you build a software in such a way that the software can

be released to production at any time.

Performing a complete test and verification process is not possible for large-scale

developments. Instead of this, code is in a state that can always be deployable. Which

 Continuous Deployment

 Continuous Delivery Continuous Integration

Build

Test

Acceptance
Test

Acceptance
Test

Production

Production

Manual

Auto
Source

Repository

Developers

Commit

CI Server

Results

10

means, every commit goes through the pipeline then sampled. Those commits become

release candidates.

2.3.3 Continuous Deployment

As in the case of continuous delivery, continuous deployment is also developer

discipline. Unlike CD, in continuous deployment, release candidates frequently and

rapidly placed in a production environment. The nature of which may differ depending

on technological context.

It is important to note that CD practice implies CDE practice, but the converse is

not true. A continuous delivery pipeline automatically tests the applications but keeps

the deployment decision as a manual step. A continuous deployment pipeline, on the

other hand, will automatically deploy this working version. Differences between

continuous delivery and continuous deployments are shown in Figure 5.

Figure 5: Difference Between CD and CDE

2.3.4 Continuous Release

Continuous release is a business practice. In continuous delivery, release candidates

are deployed manually. Difference in continuous release is those deployed candidates

are frequently made utilizable to users.

For better understanding, in the case of user-installed software, continuous

deployment is not an applicable concept even though continuous release may very

well be.

11

2.4 Global Software Development for Small Teams

Global Software Development (GSD) is described by Aranda (Aranda, 2008) as

follows: when the distribution of the members of a distributed software development

team exceeds the frontiers of a country. It is increasing practice among all the large

companies with multiple teams and multiple locations. GSD’s benefits are; 1) reduced

development costs due to the salary savings, 2) reduced development duration due to

great time zone effectiveness. Global software development’s organization works with

multiple locations. Teams divided into small groups to carry on the tasks.

In maintenance, software is going to change day by day. These changes could be

code changes, environment changes or even developers can change as well.

Maintenance is a difficult process because of this reason, and it is even more difficult

in global software teams. In global software teams, communication is a problem.

Developers are in different locations and even different time zones. And yet, industry

giants usually work in different locations.

Wiredu (Wiredu, 2020) explain how global software engineering works. In order to

be efficient in global software engineering coordination theory has to be followed.

Coordination theory is a set of principles about how the software team work together

and be coordinated. The book categorized coordination theory into four dominant

perspectives which are technology, information, geography and organization. Those

four different areas has to be coordinated harmonically.

12

CHAPTER 3: MOTIVATION AND LITERATURE RESEARCH

This section aimed to find the existed researches for the thesis’ subject.

3.1 Motivation

Motivation of the study is based on my own experiences in business. I am currently

working in a company which uses Agile development as a main methodology and use

continuous development in each Agile sprint. Since a lot of people use the same

repositories, management of those repos are really difficult and that cause some

problems as well. In a discussion with my coworkers and managers we come to

conclusion that repository management is a problem and also another conclusion is

that, continuous maintenance is started to being used in business but in academy there

is not enough papers on it. Hence, with that motivation my literature review shaped.

This research begins with the determination of the objective and review of the

previous literature regarding the continuous practices and continuous maintenance.

For these two studies, we organized and performed informal interviews for a deeper

understanding of the existing issues of continuous maintenance and repository

management. These interviews made with people from the software industry

confirmed, that Continuous Maintenance is used for software development processes,

especially in the software development life cycle. Even though the industry integrates

the concept and the usage of continuous maintenance; in the academy not enough study

in consideration of the significance of the CM. After the interviews, we carried out a

detailed review of the existing literature. The primary focus of this review was to

determine how continuous maintenance and repository management is addressed in

the literature.

13

3.2 Literature Research

According to the motivation, we wanted to examine the position of Continuous

Maintenance in the literature. To achieve this goal, we designed a systematic literature

research by using the following methodology:

1. Research questions

2. Define the data sources

3. Data retrieval

4. Data analysis

5. Results

3.2.1 Research questions

To understand the position of the Continuous Maintenance in the literature, we

prepared three research questions that are presented below:

RQ1: What is reported in the research literature about Continuous Maintenance in

software engineering?

RQ2: What is reported in the research literature about the repository management that

related Continuous Management?

RQ3: What are the challenges in continuous maintenance?

3.2.2 Data sources

The following data sources were scanned to retrieve any publications from conference

papers, workshops, journal articles, books and theses.

 IEEE Xplore Digital Library (www.ieeexplore.ieee.org)

 Springer (www.link.springer.com)

 Google Academic (scholar.google.com)

 Elsevier (www.elsevier.com)

 ResearchGate (www.researchgate.net)

In some cases, papers were available both on IEEE and scholar.google so in that

case one duplicate were removed manually.

14

3.2.3 Data retrieval

We cover five different data sources basically that means; millions of publications. In

order to narrow it to our focus we need some search criteria. Table 1 shows the strategy

behind the search criteria. The Boolean operator “AND” and “OR” used to form a

string. Continuous Maintenance is relatively a new research area. Most of the studies

started after 2000s but mostly after 2010s. Within the 29 papers, that we scanned only

one of them was published before 1993 and that is the Tarek and Abdel-Hamid’s

(Abdel-Hamid, 1993) paper called Adapting, Correcting, and Perfecting Software

Estimates A maintenance Metaphor. It is not about continuous maintenance but its

main idea is about continuous estimation. All of the other studies are conducted after

the 2000s. Since, the research start date was established to be 2000 and the end date

was set to 2018.

The papers that selected for this study had a significant contribution in the field in

terms of new areas to research. The 29 studies were analyzed separately by each

author. The author selected as the first name in the paper. Publication type was also

analyzed for all selected papers. The types are conference, journal, workshop, thesis

and book. Also, the publication year is analyzed and from 29 studies, only one (Abdel-

Hamid, 1993) is before 2000s. Final analyze category is the publisher. Publishers

categorized as IEEE, Springer, Elsevier, ResearchGate and Others. In Table 2, total

selected studies listed according to their data source.

15

Table 1: Search strings for selected data sources

Data Source Search String

IEEE ((Repository OR Repository Management OR Repository Management Activities)

AND Software) OR

((Continuous Integration OR Continuous Delivery OR Continuous Deployment

OR Continuous Release OR Continuous Practices) AND Software)

OR

(Continuous Maintenance OR (Continuous Maintenance AND Software) OR

(Continuous Maintenance AND Agile)) OR Global Software Development OR

Agile)

Springer (Continuous Maintenance OR Continuous Software OR Maintenance)

Scholar Google ((Repository OR Repository Management OR Repository Management Activities)

AND Software) OR ((Continuous Integration OR Continuous Delivery OR

Continuous Deployment OR Continuous Release OR Continuous Practices) AND

Software) OR (Continuous Maintenance OR (Continuous Maintenance AND

Software) OR (Continuous Maintenance AND Agile)) OR Global Software

Development OR Agile)

Elsevier (Continuous maintenance OR Maintenance OR Software Continuous maintenance)

ResearchGate (Continuous Maintenance OR (Continuous Maintenance AND Software) OR

(Continuous Maintenance AND Agile) OR (Repository Management OR

(Repository AND Software))

Table 2: Selected number of papers obtained by searching the data repositories

Data Source Total Selected Relevant Irrelevant

IEEE 15 11 4

Springer 1 1 0

Scholar Google 7 7 0

Elsevier 1 1 0

ResearchGate 5 4 1

Total 29 24 5

16

Software development life cycle, agile, global software development, maintenance,

continuous practices, continuous maintenance and repository are the areas that are

scanned. After scanning period, 29 studies were filtered with search criteria and

selected for this paper. The categorization of the selected papers are shown in the

Figure 6.

Figure 6: Categorizations of the Selected Papers by Their Subjects

Table 3 list the publication types for the selected studies and Table 4 shows the

details of the selected studies. Also, Table 5 shows the 29 selected papers touch points.

Table 3: Publication type for 29 selected studies

Publication Type Number

Journal 15

Workshop 3

Conference 9

Thesis 1

Book 1

0

1

2

3

4

5

6

7

8

9

10

SDLC / Agile Global

Software

Development

Maintenance Continuous

Practices

Continuous

Maintenance

Repository

Paper / Subject

17

Table 4: Selected studies sorting by their subject from SDLC to repository

Study First Author Year Publisher Type

A detailed study of Software Development Life Cycle

(SDLC) Models (Usha-Rani, 2017)

S. Barjtya 2017 Others J

Agile processes for the maintenance cycle (Cardoso de Mello,

2012)

M. Cardoso 2012 Others (IBM) J

Enabling Agile Testing Through Continuous Integration

(Stolberg, 2009)

S. Stolberg 2009 IEEE C

Global software development: Where are the benefits? (O

Conchuir et al., 2009)

E. Ó Conchúir 2009 ResearchGate J

Global Software Development: Who Does It? (Begel, and

Nagappan, 2008)

A.Begel 2008 IEEE C

Impact of Agile Methodology on Software Development

Process (Kumar, and Bhatia, 2012)

G. Kumar 2012 ResearchGate J

Managing Software Risks in Maintenance Projects, from a

Vendor Perspective: A Case Study in Global Software

Development (Sundararajan, Bhasi, and Pramod, 2017)

S.

Sundararajan

2017 ResearchGate J

Challenges in Software Evolution (Mens et al., 2005) T. Mens 2005 IEEE W

Design for maintenance: An interview-based survey (Buinis,

2015)

M. Buinus 2015 Others T

Maintenance and Agile Development: Challenges,

Opportunities and Future Directions (Hanssen et al., 2009)

G.K. Hanssen 2009 IEEE J

Continuous Software Engineering (Bosch, 2014) J. Bosch 2014 Springer B

Continuous Integration (Fowler, 2006) M .Fowler 2006 Others J

Continuous Software Quality Control in Practice (Steidl et al.,

2014)

D. Steidl 2014 IEEE C

An empirical study on principles and practices of continuous

delivery and deployment (Schermann et al., 2016)

G. Schermann 2016 Others J

A Software Repository for Education and Research in

Information Visualization (Borner, and Zhou, 2001)

K. Börner 2001 IEEE C

Mining Software Repositories- A Comparative Analysis

(Olatunji Sunday et al., 2010)

S.O. Olatunji 2010 ResearchGate J

Continuous Integration, Delivery and Deployment: A

Systematic Review on Approaches, Tools, Challenges and

Practices (Shahin, Ali-Babar, and Zhu, 2017)

M. Shahin 2017 IEEE J

Continuous Delivery Practices in a Large Financial

Organization (Vassallo et al., 2016)

C. Vassallo 2016 IEEE J

Continuous Integration and Quality Assurance: A case Study

of Two Open Source Projects (Holck, and Jørgensen, 2003)

J. Holck 2004 Others J

Continuous Practices and DevOps: Beyond the Buzz, What

Does It All Mean? (Stahl, and, Bosch, 2017)

D. Stahl 2017 ResearchGate C

Implantation of continuous-Integration practices: An

experience report in a software development and research

laboratory (Pereira, Amorim, and Nunes, 2018)

I.M. Pereira 2016 Others J

Continuous maintenance And the future– Foundations and

technological challenges (Roy et al., 2016)

R. Roy 2016 Elsevier J

Continuous Maintenance (Pang, and Hindle, 2016) C. Pang 2016 IEEE C

Adapting, Correcting and Perfecting Software Estimates: A

Maintenance Metaphor (Abdel-Hamid, 1993)

T.K. Abdel-

Hamid

1993 IEEE J

Analysis of the ISBSG Software Repository from the ISO

9126 View of Software Product Quality (Cheikhi, Abran, and

Desharnais, 2012)

L. Cheikhi 2012 IEEE C

18

Table 4: (cont’d)

Type: C- Conference, W- Workshop, B- Book, J- Journal, T- Thesis

Table 5: Papers and their touch points

The Maven Repository Dataset of Metrics, Changes, and

Dependencies (Raemaekers, Deursen, and Visser, 2013)

S. Raemaekers 2013 IEEE C

Software Repository Analysis for Investigating Design-Code

Compliance (Ozbas-Caglayan, Dogru, 2013)

K.Ozbas

Caglayan

2013 IEEE W

Tool Demo: Browsing Software Repositories (Reiss, 2014) S.P. Reiss 2014 IEEE C

University-Industry Collaboration and Open Source Software

(OSS) Dataset in Mining Software Repositories (MSR)

Research (Tripathi, Dabral, and Sureka, 2015)

A.Tripathi 2015 IEEE W

Papers SDLC Agile GSD CI CD CDE CR M CM R

A detailed study of Software Development Life Cycle

(SDLC) Models
X X

Agile processes for the maintenance cycle X X X

Enabling Agile Testing Through Continuous

Integration
X X X

Global software development: Where are the benefits? X X X

Global Software Development: Who Does It? X X X

Impact of Agile Methodology on Software

Development Process
X X X

Managing Software Risks in Maintenance Projects,

from a Vendor Perspective: A Case Study in Global

Software Development

X X X X

Continuous maintenance and the future–Foundations

and technological challenges.
 X X

Continuous Maintenance X X X X X X X

Adapting, Correcting and Perfecting Software

Estimates: A Maintenance Metaphor
 X

Continuous Integration X X

An empirical study on principles and practices of

continuous delivery and deployment
 X X

Continuous Integration, Delivery and Deployment: A

Systematic Review on Approaches, Tools, Challenges

and Practices

 X X X X X

Continuous Delivery Practices in a Large Financial

Organization

 X X

Continuous Integration and Quality Assurance: A case

Study of Two OpenSource Projects

 X X

Continuous Practices and DevOps: Beyond the Buzz,

What Does It All Mean?
 X X X X X

Implantation of continuous integration practices: An

experience report in a software development and

research laboratory

 X X

Challenges in Software Evolution X X X

Design for maintenance: An interview-based survey X

Maintenance and Agile Development: Challenges,

Opportunities and Future Directions
X X X

A Software Repository for Education and Research in

Information Visualization
 X

Mining Software Repositories – A Comparative

Analysis
 X

19

Table 5: (cont’d)

SDLC: Software Development Life Cycle, GSD: Global Software Development,

CI: Continuous Integration, CD: Continuous Delivery, CDE: Continuous Deployment,

CR: Continuous Release, M: Maintenance, CM: Continuous Maintenance, R: Repository.

After the retrieval of the papers, we categorized to 29 papers based on their

importance. Importance of the papers decided by the research questions and their

relevance. Seven papers selected and these papers are; 1) (Pang, and Hindle, 2016) 2)

(Roy et al., 2016), 3) (Stahl, and Bosch, 2017), 4) (Shahin, Ali-Babar, and Zhu, 2017),

5) (Raemaekers, Deursen, and Visser, 2013), 6) (Mens et al., 2005), and 7) (Bosch,

2014).

3.2.4 Data analysis

In this section, we summarized the selected seven of the twenty nine papers/books that

identified the most crucial studies for our research.

Pang and Hindle’s conference paper is one of the limited number of articles in the

continuous maintenance area. They first introduced the idea that continuous

maintenance (CM) is not getting enough interest as the other continuous practices such

as continuous integration, continuous delivery, continuous deployment and continuous

release. They give a quick information about the continuous practices and describe

briefly that what continuous maintenance is. They categorize the CM and identify the

possible research areas on continuous maintenance.

Roy et al.’s Continuous maintenance and the future-foundations and technological

challenges focus on the business level of the continuous maintenance rather than the

software maintenance. They analyze high-value products such as high-tech machine

tools, aircraft engine, nuclear power station, train, defense equipment, high-end car,

Analysis of the ISBSG Software Repository from the

ISO 9126 View of Software Product Quality
 X

The Maven Repository Dataset of Metrics, Changes,

and Dependencies
 X X

Software Repository Analysis for Investigating

Design Code Compliance
 X

Tool Demo: Browsing Software Repositories X

University-Industry Collaboration and Open Source

Software (OSS) Dataset in Mining Software

Repositories (MSR) Research

 X

Continuous Software Engineering X X X X

Continuous Software Quality Control in Practice X

20

medical equipment and wind turbine. Level of continuous maintenance is growing

with respect to the products lifetime, deadliness and project’s scope. With the new

technologies and high usage rate of Additive Layer Manufacturing, Industry 4.0 and

Internet of Things, better maintenance and overall health of the projects is available.

They identify that CM process is changing due to the business model evolution.

Industry 4.0 and Internet of Things are major factor and helper in the process of

continuous maintenance.

Stahl et al.’s paper titled Continuous Practices and DevOps: Beyond the Buzz, What

Does It All Mean. Their focus is mainly uncluttering the term understandings on

DevOps and continuous practices. They follow a mapping study followed by in-depth

review of relevant papers. They explain the both concepts and give proper definitions

to them. Also, the differences between DevOps and Continuous Practices identified.

Addition to these definitions, they describe and discuss the terms such as Continuous

integration, continuous delivery, continuous deployment and continuous release. This

study’s importance for our research is; continuous maintenance is the extension of

continuous integration so that the best definitions for these terms are identified by Stahl

et al. Today, when we talk about these terms, we get a reference from this paper.

Shahin et al. research titled Continuous Integration, Delivery and Deployment: A

Systematic Review on Approaches, Tools, Challenges and Practices focus on the

subject continuous practices. The relationships between continuous integration,

delivery and deployment is specified. Their aim is the fill the knowledge gap about

these terms and their relationships. They identified the tools that are using to

implement continuous practices and in addition to that they identified to challenges as

well. In conclusion these areas gaining interest and also, they found statistical data

about the tools, challenges and practices.

Raenaejers et al.’s paper titled The Maven Repository Dataset of Metrics, Changes,

and Dependencies focus on the analyzing the maven dataset. The dataset they used

provided by Delft University of Technology. Maven Dependency Dataset has 148.253

jar files which contains files such as metrics, changes and dependencies. They analyze

to data with respect to database. They presented the schemas for three different kind

21

of databases. First one is relational database then the second database is key-value

database. Finally, last database is graph database.

Mens et al. paper titled Challenges in Software Evolution focus is as clear as its title

“Challenges in Software Evolution”. They proposed a list which contains 18 essential

challenges in the software evolution process. This proposition is a result of

concentrated effort of 20 European researchers that active in software evolution.

Bosch’s Continuous Software Engineering, actually it is a reference book, which

provides essential insights on the adoption of modern software engineering practices

at large companies producing software-intensive systems. Book mainly represent a

model called “Stairway to Heaven” and it is a unique collaboration between research

and industry. Book shows how big companies deal with challenges while using

continuous practices with case studies. Also, provides concrete models, frameworks.

3.2.5 Results of literature research

From selected 29 papers, we obtained that only two research papers have the scope

of continuous maintenance. Even in those two;

 Roy et al.’s paper focus on the business level of continuous maintenance rather

than software projects; It’s not even %10 of all the papers that are scanned in

this thesis. It is about 0.06 percent. Since the topic is nearly new to the

academic area even though it is being used in some business processes.

 Pang and Hindle’s paper is the main research paper about continuous

maintenance. They try to describe continuous maintenance and categorized it.

Also, they mentioned that, continuous maintenance is not getting enough

interest as other continuous practices.

Furthermore, another similar finding is that 7 out of 29 papers are about

repositories and they are not even on the subject of Repository Management. Five out

of seven study on repositories, which are selected for this study, is irrelevant to the

subject and their study focus is Data Mining in Repositories. Literature review

provides valuable information about repository and continuous maintenance. Main

https://www.seslisozluk.net/furthermore-nedir-ne-demek/

22

focus of the papers about repository is data mining. As it shown from the literature

review, thesis’s subject is not getting any attention. There are many studies in

continuous practices but unfortunately there are not so many in continuous

maintenance in the literature.

When the causes of these results are analyzed, it is possible to find an answer in the

well-known book of “Software Maintenance: Concepts and Practice by Grubb and

Takang” (Grubb, and Takang, 2003). This book mentions “The Nomenclature and

Image Problems” of software maintenance. The similar problem describes by Higgins

as well (Higgins, 1988):

“Software maintenance, on the other hand, entails very little new creation and is

therefore categorized as dull, unexciting detective work.”

They found out that, even though software maintenance is a significant work,

developers are not interested in software maintenance because of its lack of creativity.

In addition, another finding is that there is not consensus on the terminology and that

also affects the developer’s point of view on software maintenance. Our findings in

our literature review shows the similar result with the Grubb and Takang (Grubb, and

Takang, 2003) indicates.

Result 1

There are limited number of academic research papers in software

continuous maintenance, and repository management for CM areas.

Result 2

Continuous maintenance is one of the most crucial part of the

software but academic studies and developers are not interested in it

as much as it deserves.

Result 3

Maintenance is a really difficult and a costly job. Developers avoid

doing it. Since it is not a creative job, developers find it boring to do.

23

CHAPTER 4: CONTINUOUS MAINTENANCE

Maintenance and continuous maintenance comes from the same origin but with

differences. Maintenance of a software project has a timeline. It can be done in

monthly, yearly or daily. On the other hand, continuous maintenance is a continuous

process. Continuous maintenance can be classified as the extension of continuous

integration. This definition tells us that CM is not only interested in basic things like

server maintenance or time efficiency. It also collaborates with all processes. One other

difference is, continuous maintenance is automated unlike maintenance.

Automatization of the continuous maintenance identify the fact that the process is not

done manually. Instead, continuous maintenance has a specific time for when to trigger

the operations.

Continuous maintenance can be classified as Pre-Production and Post-Production.

Pre-Production CM refers to the activities happen before release, as it is understood

from its name. Post-Production maintenance activities practice after release period.

In software engineering, repositories usually refer to the main point to store data

about a system or code. Mostly repositories are used for version control during

development and maintenance. Version control means that a system records changes

to a file or a project in time so that developer can recall the specific version whenever

the developer wants. Whenever a change committed and deployed to the repository;

these changes are saved, and new version is created. It’s a cumulative process, which

means; with every version, size of the repository will be growing as well. A badly

managed software repositories can lead to a number of problems, including wasted

time and programmer force in development, low performance, and badly source code

tracking and version control in implementation.

24

Every project and especially continuous practices and applications highly depend

on repositories and artifacts such as; databases, servers, virtual machines, storage, data,

meta-data, various logs and reports.

Continuous maintenance seeks to maintain these repositories and artifacts properly

and consistently through automation, summarization, compaction, archival and

removal.

Continuous maintenance is an extension version of continuous integration instead

of being part of it. Because, continuous maintenance not only helping to improve

continuous integration processes but also, helps to maintain deployment level

processes as well. It aims to improve productivity, sustainability and efficiency

through automation. CM seeks to improve consistency and continuity within an IT

department. CM mainly automate many manual processes to reduce maintenance

costs.

CM processes can be classified into two phases based on the articles [16, 42].

4.1 Pre-Production Continuous Maintenance

Pre-production continuous maintenance is deals with the processes before the release

of the project to the public use. It includes continuous integration practices, IT

processes, test automations and so on. Even though maintenance’ definition refers the

“after product”, continuous maintenance is an all different concept. Since, continuous

maintenance activities carried out in the pre-production processes as well.

1. Repository Archival: Main essence of many continuous integration processes

is repository. It provides automated build and testing. Continuous maintenance

help with the monitoring content, size and the performance of the repositories.

CM will ensure that all types of repositories are maintained consistently.

2. Storage Cleanup: Software projects drain a lot of storage. Continuous

maintenance helps to manage metadata and artifacts. In addition to that, if

needed continuous maintenance can recreate executables from repository.CM

can deduplicate, compress, and/or archive large files to use less storage.

25

3. Management Systems Automation: Continuous Maintenance can help

tracking bugs and errors when automated tests fail. In addition, continuous

maintenance can report those bugs and errors on behalf of the programmers.

4.2 Post-Production Continuous Maintenance

Post-production continuous maintenance indicates the after-release period. Once the

projects are in public use and accessible to users post-production is start working. Post-

production makes the project’s sustainable. It includes data cleaning, loggings and

analytics.

1. Temporary Data Cleanup: Continuous Maintenance can automatically

monitor, summarize, archive and clean up the temporary data that created.

2. Logs Archival: Continuous Maintenance can analyze the system logs about

requests, exceptions and errors that kept in application. In addition, CM can

compress these logs to archive and eliminate the unnecessary ones.

3. Exception or Violation Analysis: Exception/Violation Analysis is similar to

Logs Archival. Continuous Maintenance analyze the execution and audit logs

then identified the wrong behaviors.

4. Data Elimination: Eliminating obsolete data about customers is a legal

obligation. Continuous maintenance can remove obsolete data for legal

compliance. For example, holding credit card, phone or mail information has to

be eliminated from the system after the retention period.

5. Data Warehousing and Analytics: Data warehousing is a must for lot of

businesses. But data can be too complicated. Continuous Maintenance can

employ Extract, Transform and Load (ETL) tools to provide a understandable

analysis of the databases. In addition, it can detect the sensitive data and mask it

before loading into the warehouse.

The focus of this thesis is post-production continuous maintenance. Even though

repository archival is pre-production maintenance activity, repository management is

all lot different. Since our goal is identify the repository management activities and

minimize the errors, we will look into the post-production continuous maintenance.

Data cleanups, logs and data analysis can be classified under the repository

26

management activities and addition to those we will look into repository archival in

our case study.

27

CHAPTER 5: REPOSITORY MANAGEMENT

5.1 Repository

The central place that the developers can software version pull from when needed is

called software repository. Easy storage, maintenance and backup of software modules

can be enabled with using repositories.

Main benefits of using software repositories are as follows:

 Its makes software management easy.

- Can be stored and grouped logically.

- Makes it easy to identify, deploy and manage.

 Avoid multiple copies of software applications.

 Minimize security risks (read-only permissions for folders).

 Enable easy backup.

Repository contains two main location/workspace: local and remote. Remote

repository is the main project location of the product. Selected repository tool keeps

all the deployments. Local repository is the developer’s repository which is held in

their machines. Developers pull the project from the online repository and create a

local one once they started to work with the project. Developer’s work on their local

repository since that, code changes happen in the local repository.

Once the changes pass the developer tests (unit test), changes commit and push to

the remote repository to get into use from every developer. Repository relations shown

in Figure 7.

28

Figure 7: Remote and Local Repository Relationship

Programming languages also vary according to the repositories they used. Table 6

shows the relationships between software languages and their used repositories. Those

repositories are generally accepted mechanisms in programming world.

Table 6: Software language and repository relationship

Language Repository

Java Maven

C# NuGet

Python PyPI

PHP PECL, Packagist

Node.js NPM

29

Repositories are mainly used for version control. Version control means that a

system records changes to a file or a project in time so that developer can recall the

specific version whenever developer want. For example, a software team updates the

working system to perform better. By doing that, team changes some of the code parts.

This could end up affecting the working system and make it unusable. In this case,

team recall the changes that recently added and convert the system in a state which

works. Whenever a change committed and deployed to the repository; these changes

saved, and new version is created. Repository size increases cumulatively after each

deployment. Which means; with every version, size of the repository will be grow as

well. This may cause low performance and management problems.

5.1.1 Version Control

A version control system (VCS) is a software system, which tracks and manages

changes in a file system in a repository over time. Modifications in software such us

additions, removals and changes can be tracked using VCS. VCS can detect

modifications file based and even the changes in a single line of code. Popular software

industry VCS options are Git, Mercurial, SVN and perforce. In this thesis, our scope

will be Git only. Because, Git is very commonly used in industry and it’s a free and

open source. Also, my current company and case study’s company are using Git as

well.

Version control systems have a special database to keep a record for every

modification. If anything goes wrong, VCS offers a chance to turn back to previous

working version. Thanks to this, other team members will not be affected that much.

Only time they are affected and cannot work is the time between the error and going

back to previous version. This way, you minimize the off-hours due to the error. Since

software teams has parallel workflows that might affect each other, minimizing the

losses is really important. Source code is the core of all software projects therefore

human errors can be devastating. To prevent such errors version control protects the

source code.

30

Version control systems manage these kinds of problems. To avoid that, version

control systems can be used. VCS helps software teams to work without failing one

another by tracking every single change by each developer.

Another important point is the relationship between VCS and testing. Code changes

cannot be trusted until it is tested. Therefore, testing and development proceed

together. Therefore, untested versions only increase the number of errors and

difficulties in findings.

Version control software’s works on any platform and supports a preferred

workflow rather than dictating a single workflow to follow. Without version control

systems, teams can’t find out which code changes cause the error easily. This is an

effort and time cost. With the version control, these problems can be inhibitable.

Master Develop Feature

v0.1 v0.2 v1.0

Master

branch

Testing

Features

Figure 8: Version Control Workflow of Git

Figure 8 identifies the fundamental process of the version control system. There are

many workflows for different kind of projects, but we choose this one since its most

suitable for our case study. We have three different lines here. Lines are identified as

branches. Version control system are actually tree structures. First line is called master;

sometimes it is called prod or origin as well. Master line is the product’s working

version in real life. When developer wants to work on something or has to change/add

some functions developer pulls from master branch to his/her local branches. The

second line is called features. Feature branches where the coding actually happens.

31

Every developer or every task has its own feature branch. Feature branches are created

from master/origin branch. That means when a new task comes to developer, developer

pulls from the master branch into his/her feature branch and starts coding. When the

developer is done with the task, again he/she pushes its changes to the feature branch

first. After the developer tests are done, there is one last step before going to live. The

changes are pushed to test branch. The third line is called develop/test, or we can say

that this line is basically where the user tests happen. The developments from feature

branches are pushed to the develop/test branch. Where the testers see if it is okay to

put these changes in the working product. Develop is the exact same product as the

working product in real life. Before tasks go live, they double check to see if the code

changes affect anything. Usually this branch has automated updates to be able to

exactly same with the product. When changes come into develop branch and tested it

has to be return to the live version. Since that, twice a week, this branch is recreated

with the live version/origin. There are two type of version control: Centralized and

Distributed.

5.1.2 Centralized Version Control System

Centralized version control system has a single server and only works on client-server

model. In this model, all version of code is in the master repository. When developer

once to work with a significant part of the code, developer has to check out that part

of the code from the central place and only that developer is allowed to work which

means other developers cannot access that part of the code. CVS and Subversion are

the best-known examples of centralized VCS systems. Centralized version control

system shown in Figure 9.

The upside of this system is that every developer’s working files are known. It

provides a simple way to keep track of changes. However, it has some disadvantages

as well. Since, even if there is only one server failure, it affects everyone. If someone

fails to deploy or cannot figure out how to solve their bugs, no one can work on the

server until it is fixed. Since entire history of the project is in a single place/server;

failure can risk to the lose everything.

32

Central VCS Server

Version repository

Version 3

Version 2

Version 1

Computer A

Working copy

Computer B

Working copy

Figure 9: Centralized Version Control

5.1.3 Distributed Version Control System

Distributed version control work on a peer-to-peer model. Instead of single main

repository, every developer has their own repository on their machines. Instead of

checking out the central repository, every developer has a copy of the main repository.

In distributed version control, since server is not centralized, if any server fails, any

developer’s copy can be used as a backup.

Every developer works on their local copy of the repository. There is no locking the

working parts like centralized version control. When developer’s task is finished and

it’s tested, they send a request to merge their changes into the master copy. Git and

Mercurial are the best-known examples. Distributed version control system shown in

Figure 10.

Every software team works different. In order to match that, distributed systems

enable to work with different types of workflows. This feature is not supported in

centralized systems.

33

Main VCS Server

Version repository

Version 3

Version 2

Version 1

Computer A Computer B

Version repository

Version 3

Version 2

Version 1

Working copy

Version repository

Version 3

Version 2

Version 1

Working copy

Figure 10: Distributed Version Control

34

5.1.4 Advantages and disadvantages of version control system types

Contrast of version control systems is going to show us why industry giants commonly

use distributed version control systems over centralized and the comparison also guide

us to choose a version control system for our case study.

Advantages of distributed systems. Since there is no lock mechanism,

performance and time effectiveness is better. Branching and merging is easier. Finally,

on account of every developer has a local repository, there is no need to connect to

network all the time.

Advantages of centralized system. Easier to understand. Access mechanism is

easier since it’s controlled from one server. Since only one developer can work at a

single time, there is no need for merge mechanism.

Contrast represent the lock mechanism is an inhibitor for software development

process. Especially in agile development, teams meant to work parallel. Because of

this, distributed version control systems are commonly used by industry giants. In our

case study we will use Git which is a distributed version control system.

5.1.5 Benefits of version control systems

Version control systems ensure that no data is lost and backups existed in the

repository.

Benefits of version control systems:

1. History: Every change including creation and deletion is logged. History also

detect every author/developer date and any written description to the changes.

This helps the identify the cause of any error. Also, it shows the efficiency of the

team as well.

2. Branching and merging: Having branches for each developer or each task help

to distinguish the workspaces and having an individual workspace can increase

the performance of the developers. It also, keep multiple people to work at the

same time without affecting from other developer’s changes. And merging helps

to detect any bugs that can cause system failure. When developer finish what

35

they are doing, they merge it to the master branch which facilitate to identify

possible failures that the changes can cause.

3. Traceability: Every change is kept in the system with description and author

can increase the analysis reports. Every chance is kept like this; id, author, code

changes and description. Since this kind of information is kept, tracing

something is much more efficient. Every code change and their purposes are

logged in the system. Understanding the code, finding some function or fixing

bug is faster and effective.

4. Troubleshooting: When something goes wrong, developer can easily compare

the failed version with the latest version to see the error. This way developer

spends less time identifying the issue.

The Figure 11 shows the popular version control system options based on the

popularity rating based on a research made by a software company called g2 (G2,

2019). There are several version control systems in the industry but Git is the one that

commonly used.

Figure 11: Popular Version Control Systems

0

50

100

150

200

250

300

Git Microsoft Team

Foundation

Helix Core Subversion AWS Code

Commit

Mercurial

Popularity

Popularity

36

 5.2 Repository Management

Managing the repository files and interacting with the repository means repository

management (RM). These tools interact with the repository to search artifacts, files

and models. When developers download repository and install it their local machine’s,

repository management is identified the dependency without any customization. RM

makes configurations more easily.

Repository management deals with:

 Interact and manage with artifacts and meta-data

 Dependency, library and version control

 Configuration

 Automated deployment

 Deployment management

 Failure reports

Continuous

Process

Build ToolSource

Control

IDE

Server

Repository

User

Central

Repository

Other Repo

Developer

Git - version control system

Figure 12: Repository Management Visualization

37

Figure 12 in the above shows the interactions of repository management. In the

right hand, we have the repositories, which hold in the cloud. Central Repository

represent the main projects’ repository. Other repositories are the interacted repos for

your main repository. Customer represent the live version that the customer is using.

In the left hand, we have the SDLC process. Projects is pulling from the central

repository to the developer’s selected IDE. For example; eclipse, IntelliJ or NetBeans.

Source control is referred to GIT. GIT is integrated into IDE. Once developer wants to

push its changes, GIT integration come into use. Pushing starts the continuous process.

Bamboo, Jenkins or Gitlab are the examples for the continuous process. Process that

goes through continuous process is built in build tool. In java, this is referred to Maven.

Build tool (maven) controls the dependencies, projects and their version. After all of

these processes done and succeed, repository management push it to the main

repository which is central repository. When central repository is updated, customer

can see and use the latest version.

Using repository management has significant advantages. Advantages listed in

below;

 Reduced bandwidth rate

 Reduced number of downloads from repository

 Less time spends

 Increased performance for SNAPSHOT repositories

 Integrate with other repositories

 Reduced build times

 Improved collaboration by providing a central location.

 Easier access to components for developers

 Simplified development environment

 Flexibility to us

38

CHAPTER 6: THE CASE STUDY

The aim of the case study is to contribute to existing literature by identifying and

finding solutions to the challenges such as impact analysis, failure tracking and version

controlling. In this case study, the small development team has added some new

features to an existing product by mimicking continuous practices, continuous

maintenance and repository management, and also behaving like global software

development team. Also, continuous maintenance biggest strength is atomization, and

in order to be beneficial, continuous maintenance has to be applied to repositories as

well. In this case study; we are using Git as a repository management tool and we try

to observe the lacking parts of the repository management in the name of continuous

maintenance.

6.1 The Company and Project Background

Case organization is a software development company located in Tallinn, Estonia since

2016. IoniaOU is a start-up organization, founded by Mr. Mustafa Tufan. Their main

focus is to ensure end user’s satisfaction. They are developing web and mobile

applications. IoniaOU currently running three projects: one mobile application and two

web applications. Mobile application is actually a mobile game called Roll’n Break.

Roll’n Break have 500 active users daily. Game is available for both App Store and

Google Play. The two web applications are called Btckit.io and Alivee. Btckit.io as a

web application that aims to server Bitcoin tools to everyone for free. It’s also an open

source project. Btckit will be an open portal all about bitcoin. Currently, they have

only one application on Btckit and its wallet generator. Basically, what it does is

randomly generating a wallet key and checking if there is a bitcoin wallet for that key.

It’s only for educational and experimental use right now. All operations are logged and

provide a safety for all of it’s generated keys.

39

The third application is our focus in the case study, titled as Alivee. Alivee is a web

application for internet link shortener. Company’s motto is “your link is going to be

Aliv.ee”. Any link located in internet can be transferred here and replaced by the

desired short version. It is a basic application and easy to use. IoniaOU wants to update

its project to a new version. They want to add a feature, which helps user to shorten

their link randomly instead of manually entering. That is where our case study jumps

into.

The plan of case study described in Figure 13 according to the objectives of the case

study and company’s principles. The crucial first stage in the planning process is

defined as the description of the development environment and the technologies, and

languages that are going to be used. The next stage addresses the information needs of

the company. After articulating the environment and information needs, design of the

project occurred. The implementation phase begins after the planning period. In the

final stage we focus on the evaluations and the lessons learned that are collected from

the case study. The plan of the case study summarized as follows:

1. Define development environment and technologies

2. Gathering requirements

3. Designing the project

4. Implementation

5. Evaluation

In our case study, the developer team consists of three developers who are deployed

in different locations, and they bring together on the internet for this case study.

However, one developer is located in İstanbul and two are located in İzmir. This

feature provides some evidence, the project represents the global software

development features and also the development team is a small team.

However, this team is responsible to add new features to the current version

applying agile software development methodology and continuous practices. So that

this work is mimicking the maintenance and repository management. Due to these

features, the characteristics of the project are best suited to perfective continuous

maintenance, including repository management for a small development team.

40

In this case study, the company used the following languages, tools, and

frameworks: 1) Java, 2) Spring Boot, 3) JPA, 4) JavaScript, 5) PostgreSQL, 6) Maven,

7) HTML & CSS, 8) Rest Api Services

6.2 Development Phase

In this section, gathering requirements, designing the project, implementation is

grouped as a development phase. Development phase described as follows.

6.2.1 Project instructions

Take into account the company’s main objective and the problems mentioned in the

previous section, we organized our case study as:

To generate new version that leads to new ideas with potential improvements of the

current system and in the process finding major and minor bugs and making the project

more efficient with the usage of the best practices. In addition, to investigate the

research question 3 to identified challenges in continuous maintenance process.

The project selection for the case study practice based on the criteria: 1) simple, 2)

easy to test, 3) familiarity with code and software languages, and 4) fitting

requirements with the case study.

In addition to these criteria, project can be categorized as a continuous maintenance

project. Since project is already working, additional features fits under the perfective

category. Case study team members locations strictly suggest to follow global software

development. With the usage of global software development, using a version control

system is essential. That brings the repository management. So, in summary following

categorizations provided for the case study:

1. Continuous maintenance

2. Perfective maintenance

3. Global software development

4. Repository management

41

6.2.2 Project structure

Aliv.ee is a Spring-boot project and its structure is shown in Figure 13. Project has a

simple structure. Its main component is Link object. Link object is used with the

RestApi which contains LinkService, LinkServiceException and LinkServiceImp.

When the link conversion operation happen DataBlock is updated. PostgreSql is used

for data storage. Link objects and their shortened versions are kept in PostgreSql.

Figure 13: Aliv.ee Back-end Structure

Once the link converted the result screen is shown in Figure 14.

42

Figure 14: Result Screen

6.2.3 Installations

First step of the installation is getting the project from Git and clone it to the computer.

In order to do that, following steps are implemented:

1. Download Git (https://git-scm.com/book/en/v2/Getting-Started-Installing-Git)

2. Install Git

3. Check that Git is recognized by open command line and write git.

4. Create a folder for the project

5. Open command line and go the project’s path that created.

6. Go to project’s page on github and clone it.

7. Write the following command on command line git clone “project path on

github”

43

6.2.4 Analysis and design

In this case study, we used UML tools to design general concepts and structures. UML

diagrams help us to see the general structure of the project. It helps us to see the

connections between packages and classes so much easier. In case study, we are trying

to add new features to the existing structure. To compare the existing functionality to

the new features; use case diagrams and sequence diagrams draw. Use case diagram,

Class diagram, Sequence diagram, modeling of executables, work breakdown diagram

used or this project.

1) Work Breakdown Structure: In work breakdown diagram, alive case study’s

work structure can be seen. From background works such as analysis, getting

requirements, identifying team members to release phase shown. Diagram

shown in Figure 15

2) Use Case Diagram: High level use case diagram is shown in Figure 16. The

main scenario of user’s signing up and usage of link shortener manually can be

seen in the diagram. It’s a high-level use-case as well. Every part can be seen

as different use cases. Random link creation’s user case can be shown in Figure

17.

3) Class Diagram: Alivee project structure from link models to controllers

described in class diagram. Every class functionalities can be seen as well. The

class diagram is shown in Figure 18.

4) Modelling of Executables: Main components that Alivee application uses

shown in the diagram. The diagram shown in Figure 19.

5) Sequence Diagram: The sequence diagram shows the current working system

which is manually changes the given link into shorter one. It represents the

objects and classes used in the scenario and the sequence of messages

exchanged between the objects needed to carry out the functionality of the

scenario. Operators in sequence diagrams are user, Alivee System and the

Alivee database. The sequence diagram is shown in Figure 20. New added

feature is random link creation and its sequence diagram can be shown in

Figure 21.

44

Figure 15: Work Breakdown Structure

Signup

Login

Choose Link &

Shortener Method

Run

Check validations

Return new link

User Alivee

Figure 16: Use Case Diagram of Manual Link Creation Scenario

45

Figure 17: Use Case Diagram of Random Link Creation

Figure 18: Class Diagram of the Project

46

Figure 19: Modelling of Executables

Figure 20: Sequence Diagram of Manual Link Creation

47

Figure 21: Sequence Diagram of Random Link Creation

6.2.5 Code structure

Project code based is developed with Spring framework. Spring framework created for

Java enterprise projects and make it so much easier to develop such projects. It consists

of modules such as Security, Web, Servlet etc. Our project Alivee is a web application

so in our project we used Web, Security, maven, devtools, data-jpa and spring boot

modules. Spring dependencies in pom file is shown in Figure 22.

48

Figure 22: Dependencies of the Project Alivee

<dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-

web</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-

thymeleaf</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-devtools</artifactId>

 <optional>true</optional>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-data-

jpa</artifactId>

 </dependency>

 <dependency>

 <groupId>org.postgresql</groupId>

<artifactId>postgresql</artifactId>

 </dependency>

 <dependency>

 <groupId>commons-validator</groupId>

 <artifactId>commons-validator</artifactId>

 <version>${commons-validator}</version>

 </dependency>

 <dependency>

 <groupId>oro</groupId>

 <artifactId>oro</artifactId>

 <version>${oro}</version>

 </dependency>

 <dependency>

 <groupId>javax.mail</groupId>

 <artifactId>javax.mail-api</artifactId>

 <version>1.6.2</version>

 </dependency>

 <dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-web</artifactId>

 <version>${spring-security.version}</version>

 </dependency>

</dependencies>

49

We needed a relation database management tool to do our database works. Since

that; postgreSql is selected. Alivee application is not a complex app since that we

didn’t need high complex queries or procedure structures and mainly used for read and

write executions. In addition to that, PostgreSql is an open source system. Entity

Relationship diagram of our project is shown in Figure 23.

Figure 23: Entity Relationship Diagram

Database Connection operated with JPA. JPA helps with object persistence. In our

relational database we have tables, attributes, constraints and keys. However, in Java

we can’t address that constraints, keys efficiently. In order to connect to database and

operate some SQL queries we needed to write large number of line codes. With the

help of JPA, this is not necessary. JPA is handled those methods and function with an

easy annotation structure. In our project we used Repository annotation. Example of

the usage is shown in Figure 24. Repository annotation provides us storage, retrieval,

search, update and delete operation by itself.

Figure 24: Repository Annotation JPA

@Repository("linkRepository")

public interface LinkRepository extends JpaRepository<Link,

String>

50

Controller pattern is used to handle all request handling between our service and

users. Annotations used for controller pattern too. In order to tell spring that the class

is in fact controller class; annotation @controller must be used. Also, request functions

handled with annotations as well. One of the controllers class’ is shown in Figure 25.

Figure 25: Controller Class

@Controller

@RequestMapping("/api")

public class LinkController {

 private LinkService linkService;

@RequestMapping(value = "/createLink", method =

RequestMethod.GET, produces = { "application/json" })

 public @ResponseBody Link

createLink(@RequestParam(value = "linkId", required =

true) String linkId,

 @RequestParam(value = "url", required = true)

String url) {

 if (URLUtil.isURLValid(url)) {

 return null;

 }

 if (linkService.doesLinkExist(linkId)) {

 return null;

 }

 return linkService.saveLink(new Link(linkId, url));

 }

 @RequestMapping(value = "/createRandomLink", method =

RequestMethod.GET, produces = { "application/json" })

 public @ResponseBody Link

createRandomLink(@RequestParam(value = "linkLenght",

required = true) Integer length,

 @RequestParam(value =

"url", required = true) String url) {

 Link link = new Link();

 if (URLUtil.isURLValid(url)) {

 return null;

 }

 link = linkService.randomLink(length, url);

 return linkService.saveLink(link);

 }

 @RequestMapping(value = "/doesLinkExist", method =

RequestMethod.GET)

 public @ResponseBody boolean

doesLinkExist(@RequestParam(value = "linkId", required =

true) String linkId) {

 return linkService.doesLinkExist(linkId);

 }

51

Remaining operations perform with service and spring structures. Examples of

Service Interfaces and Implementations can be found in Figures 26 to 28.

Figure 26: Link Service Interface

Figure 27: Link Entity

public interface LinkService {

public Link saveLink(Link link);

 public String getUrl(String linkId) throws

LinkServiceException;

 public boolean doesLinkExist(String linkId);

 public Link randomLink(Integer length, String url);

@Entity

@Table(name = "link")

public class Link {

 @Id

 @Column(name = "linkId")

 private String linkId;

 @Column(name = "url", nullable = false)

 private String url;

 @CreationTimestamp

 @Temporal(TemporalType.TIMESTAMP)

 @Column(name = "create_at")

 private Date createAt;

public Link(String linkId, String url) {

 setLinkId(linkId);

 setUrl(url);

 }

 public String getLinkId() {

 return linkId;}

 public void setLinkId(String linkId) {

 this.linkId = linkId;}

 public String getUrl() {

 return url;}

 public void setUrl(String url) {

 this.url = url;}

52

Figure 28: Link Service Implementation

 @Override

 public Link saveLink(Link link) {

 return linkRepository.save(link);

 }

@Override

 public String getUrl(String linkId) throws

LinkServiceException {

 try {

 Link link = linkRepository.getOne(linkId);

 return link.getUrl();

 } catch (EntityNotFoundException ex) {

 throw new LinkServiceException();

 }

 }

@Override

 public boolean doesLinkExist(String linkId) {

 return linkRepository.existsById(linkId);

 }

 @Autowired

 @Qualifier("linkRepository")

 public void setLinkRepository(LinkRepository

linkRepository) {

 this.linkRepository = linkRepository;

 }

 @Override

 public Link randomLink(Integer length, String url) {

 if (length < 1) throw new IllegalArgumentException();

 StringBuilder sb = new StringBuilder(length);

 for (int i = 0; i < length; i++) {

 // 0-62 (exclusive), random returns 0-61

 int rndCharAt =

random.nextInt(DATA_FOR_RANDOM_STRING.length());

 char rndChar =

DATA_FOR_RANDOM_STRING.charAt(rndCharAt);

 // debug

 //System.out.format("%d\t:\t%c%n", rndCharAt,

rndChar);

 sb.append(rndChar);

 }

 if (doesLinkExist(sb.toString())) {

 return randomLink(length, url);

 }

 else {

 Link link = new Link(sb.toString(), url);

 return link;

 }

 }

53

6.3 Observations of the Case Study

The project lasted two weeks. Our development team consists of three people located

in Izmir and Istanbul. Because of the location differences and to follow best practices,

we used version control system. Bitbucket is used for version control. Version control

systems used git-flows which explained in Section 5 and we used feature branch git-

flow with three branches. Our branches are feature, testing, and master. Everybody in

the development team has to follow the same procedure to push code. The master

branch is the main branch which is in use. When the developer started coding, he/she

has to create a feature branch from the master branch. This created feature branch is

the working copy of our machines. When the development finished, a developer has

to open a pull request to copy these changes into the testing branch. Testing branch is

a stabile version of the working copy with new features so if the developer’s request

to the testing branch is successful, then the other two developers start testing these

features in the testing environment. Since the project is already in use and we have to

add new features, continuous maintenance practices used in the case study. CM and

testing goes hand to hand, but the lack of team members pushed us to do all phases

together. Figure 29 shows the interaction of continuous maintenance. In better

development teams, usually testers, analyst or even people from business test these

kinds of changes. Since we were only three people, we had to test as well. Even though

the developer team consist of three people, encountered problems are generic. Case

study’ findings can be generalized for every developer teams. Code based and

repository-based problems can be minimized with continuous maintenance.

Figure 29: Continuous Maintenance Interaction

54

Repository activities practiced during the case study as well. Repository

management is mainly done with version control. Every developer has the mirror

version of the master code. This helps us to close the knowledge gap about the domain

since we were all at the same page with the same exact copy of the master code. Since

we used feature branch git flow; at the start of each task feature branches created. This

way we minimize the impact of parallel development. But again, not everything was

perfect. The location difference affected us. We did have communication issues and

that leads us to miscoordination problems. Every developer in our team had a different

understanding of the of the software development process, usage of git and testing.

The main issue was the lack of development standards in the project.

Because of the location difference, in the development phase we did had

communication issues. One of the developers, try to dockerize the application in order

to perform better in local machines. However, to achieve that property file has to be

updated, in fact, a second property file has to be created in order to separate application

properties between dockerized and normal versions. But instead of creating individual

property file specialized for docker, he updated the property file which used by all of

the developers. When we pull the changes and try to run the application, the application

did not run at all. Configuration files were updated but in our local machines, it did not

configure to look new containers that docker created for the application. This problem

could simply be avoided with communication. If we could communicate better and in

line with coding decisions, we could have solved this kind of problem beforehand.

Error example shown in Figure 30.

Figure 30: Configuration Error (Company info is hided)

The first thing that version control couldn’t help is the used libraries. In every

project, libraries are used for numerous subjects. In our case, in spring application we

have to identify the libraries that we used as a dependency to the project. Dependency

55

is a keyword for spring to understand and read the library. These configurations made

in pom.xml file. Pom file can be seen in Figure 20. Identifying dependencies requires

the library’s version. In our case study, we needed to send mail after every link

creation. In order to do that, we add a dependency for the mail library. The version

was set to 1.6.1 in the addition phase. Once we finished coding, we started to test the

new features. Whenever we create a new link, mail should send to the user’s mail

address but instead of sending, the application crashed. We tracked the history in repo,

we double check the code, but everything seemed fine. After hours of research, we

found out that the library’s version is changed from 1.6.1 to 1.6.2. Since there was no

documentation in the library’s maven page or anything, we could not find it that simple

one-line code change.

Another big problem that we encountered during the case study is impact analysis.

In every software project, code parts, methods, functions or even a simple variable

could be used or called from different places. Thus, changing a function requires to do

changes to its workspace as well. In our case study, three different modules used mail

functions. Those are for mailing the user for their link creation, informing the admin

about the new link and a daily log information mail to admin. One of the developers

changed the main mail method. But he forgot to update its touchpoints/hierarchy.

Without noticing the hierarchy, he commits the changes to the test branch. When we

try to test our developments, we could not due to the incompatibility of the mail

functions. Daily log mail works with the scheduler and runs every day at the same

time, 23:00. Since the scheduler’ functionality is different from the other mail

methods, scheduler has to be updated as well. When the scheduler’s time comes, the

scheduler could not call the mail function and that returns a connection error. Skipping

impact analysis, also damage the repository as well. Since the codebase in the main

repository is incorrect, the repository’s reliability decrease. Figure 31 shows the

example of an error.

56

Figure 31: Connection Error

Another problem in repository management is failure tracking. For development

teams that use some version control program--in our case it is bitbucket--, there are

best practices to follow. Those best practices show you how to handle commits, merge,

archive, etc. One of the best practices suggests that feature branches should be created

for every task or in some development teams that case is every release. In addition to

that, every task should be committed with the minimum number of commits. Every

commit has a particular identification number and tracking is easier with minimum

commits. In our development process, one of the developer’s habit was committing

every single part of the task independently instead of using one or two commits. In

first, this habit did not seem harmful. However, when the app is crashed, it gets harder

to find the main cause by analyzing the commits. If every task could have committed

with the minimum number of commits, we could have easily detected the error.

Because in one commit, each change made in a single class can be seen. The difference

between the last version also available in commits. But he did use a lot of commits for

one single task. For this reason, when the failure happens, we needed to check every

commit and compare each commit in between too to understand what changed made.

An example of a commit history can be seen in Figure 32.

57

Figure 32: Bitbucket Commit History

Coordination issues are another problem for teams that used version control

systems. Since it allows parallel programming, developers could work on the same

class or even on the same method as well. But that does not mean they are doing the

same thing. One developer could change the method’s structure, and another could add

logging mechanism to the same method. Because of this conflict happens a lot.

Changes have to be pushed on the main repository but since both developers’ changes

happen to be on the same class, the second developer gets a conflict. Conflict happens

because the first developer changes the class and its not the same as the second

developer’s class. When the second developer tries to push it gets the conflict since

class mismatch. This also can be categorized as a communication issue as well.

In summary, location difference caused a communication issue, which leads to fail

repository and make it hard to maintenance. While doing continuous maintenance

library issues may be occurred. While project firstly developed, libraries may be used

and after a while those may be outdated. In maintenance, libraries must be controlled

and updated due to the library or environment changes. Another big problem is impact

analysis. In maintenance, while updating a method to better performance or adding

new features etc., that methods workspace needs to be updated as well. Forgetting that

can cause big problems and a fail repository as well. To failure track, minimum number

of commits has to be push to the repository in order to perform better and used less

time to figure the errors. In order to prevent that, version control systems especially

Git, may have to add new features to its current versions. This feature can prevent

developers from unnecessary commits by not allowing them if commits only consist

of spacing, indentions or etc. Lastly, communication issues also cause coordination

issues. In order to avoid conflict, developers have to be coordinated while using

repositories. In order to do an efficient maintenance project, testing has to be integrated

58

throughout the entire process. Testing and maintenance are unified, and Figure 33

shows the relations between maintenance and testing. Continuous practices propose

the “atomization” of the processes. Hence, in continuous maintenance, automated

testing has to be integrated. Version control systems usually has a testing branch where

testers and developers test the code changes manually. However, testing branches

should be automated. Developers or testers prepare a set of unit tests that examine the

entire project. These unit tests place on the testing branch and when a developer try to

push to the testing branch, those tests will run automatically. If the code passes all the

defined unit tests, then the code is set to be push to the master branch. Otherwise,

developer has to update the code in order to fix. Figure 34 shows the automated unit

test systems. There are a few automated test tools in the industry. Most known are;

Jenkins, Travis and Bamboo. These tools are not specifically for continuous

maintenance and automated tests, but they cover all the aspects of continuous

integration phases. Even in those tools, continuous maintenance is ignored. There is

no exclusive tool for automated unit test in version control systems.

Figure 33: Maintenance-Testing Relation

59

Figure 34: Automated Unit Test System

6.4 Findings of the Case Study

After the case study and literature research, we find out that continuous

maintenance has no significant place to put in development processes. But in Agile

world where almost every software development conducted with Agile standards.

Which means that, software development happen rapidly, continuously. For this

reason, continuous maintenance should be integrated into Agile development

processes as well. We can say that, continuous maintenance is not only a part of

continuous practices but also encapsulate. Figure 35 shows the continuous

maintenance place in software development especially continuous software

development processes. The figure also shows the defined tests on specific branches

in order to automate the testing processes. Testing processes will return the build

results of the tests to the developer whether it is successful or not.

60

Figure 35: Continuous Maintenance- Continuous Practices and SDLC Relation

Result 4

After the case study, we find out the following problems:

1. Missing Documentation for libraries or projects

2.Impact Analysis

3.Failure Tracking

4.Coordination and Communication Issues

Usage of continuous maintenance tools/practices can minimize these

problems. Impact analysis, documentation and failure tracking can be

overcome with automated continuous maintenance. In addition, CM can help

with the performance and security problems as well.

61

CHAPTER 7: CONCLUSIONS AND FUTURE WORKS

In this thesis, three research questions are mainly tried to be answered. To begin with,

we made a literature review about the thesis such as global-software development,

continuous maintenance, continuous practices and software repository. Findings of

this review suggested that, there is not enough study on “continuous maintenance”.

We presented a case study of global software development. The case study is mirror

the perfective continuous maintenance. To start the case study, we identified the high-

level structure and user-level design decisions made. Project provided by a company

and it’s a web application project. Analysis of the existing systems revealed how the

system works and help us the guide how to proceed for the project. Since the project

is a global-software development project, widely known best practices used to meet

the necessary functionalities. Case study lasted two weeks.

Thesis aim is to identify the challenges in continuous maintenance and especially

repository management. And again, the aim is increased the knowledge on the

continuous maintenance. In case study, we try to identify the challenges in a

continuous maintenance project. Case study shows us the difficulties in a continuous

maintenance project with a global software team. Difficulties are; communication

issues, library or environmental changes, impact analysis, failure track, coordination

issues. These findings show that continuous maintenance is high stress work.

Continuous maintenance activities nested with testing. Every change has to be tested

in order to deploy.

To minimize the effects of changes in continuous maintenance such as repository

fails, conflicts, and environment changes or even the deployment problems caused by

communication or coordination problems; code analyzing tools can be used. Also in

repository management perspective, testing branch can contain unit tests defined by

testers for every possible case in order to fulfill the requirements to deploy into the

master branch. This is basically referring to test automations. Without using test

62

atomization, continuous maintenance practices cannot be used efficiently. Test

atomization is key for minimizing the code effects. Even though there are some

continuous integration tools that cover the automated tests, there is no exclusive tool

for automating the unit test in version control systems for especially continuous

maintenance. The study extends the knowledge of challenges in continuous

maintenance projects and suggest the usage of test atomization to minimize the effects.

Even though, IEEE STD: 610 [10] describes the maintenance as “The process of

modifying a software system or component after delivery to correct faults, improve

performance or other attributes, or adapt to a changed environment”; however,

continuous maintenance activities start on the first day of the software project. Since

that, classical maintenance terminologies are not sufficient enough. Every aspect of

the project can be changed from day one. Requirement, environment, design or code

can be changed in any day. Since, project has to be able to adapt these changes.

Adaptation happens with continuous maintenance activities. Agile methodologies also

suggest the adaptation to change. In a world of change and software mostly developed

with Agile methodologies, continuous maintenance has to be used. The definition of

continuous maintenance is the extension of continuous integration, and the continuous

integration concerns with SDLC processes. Therefore, in a way by using continuous

maintenance in software development, we integrated continuous practices to

development life cycles as well. Since continuous maintenance starts with the projects

run day, it’s a different process than classical maintenance. Classical maintenance

terms are rigid, but they are not covering the modern software development

terminology. In continuous maintenance, there is no need to wait for a release or after

product period to start maintenance. But again, it also helps to improve the

performance of the project as well as improving the security of the project just as

maintenance. By adding and using continuous maintenance with SDLC and CP; we

can minimize the testing processes cost. Defects and bugs can be found so much earlier

and faster than the regular testing processes.

63

Classical maintenance is not sufficient enough to ensure Agile developments

relation with continuous maintenance. And again, terminology differences affect the

overall view of points. Because of these reasons, in order to be coherent with IEEE’s

maintenance definition, we propose new definition for “Continuous Maintenance”.

As a result, the study has achieved the researcher’s objectives. The findings and

case study clearly show that the aim of this study is realized.

This thesis, which is one of the few studies conducted on software continuous

maintenance, is of crucial importance for the coming studies to be carried out in the

fields of continuous practices. Any new research and application to be made on this

field will make the author of this thesis lines very happy.

Future Works

Many different adaptations, tests, and experiments have been left for the future due to

lack of time. Future research on continuous maintenance might focus on the

improvements on the automation aspect.

Unit test design and modelling for automated test tools is a new area that can be

expand by new researches. Exclusive continuous maintenance tools can be designed

with the new researches. Also, the definition of maintenance conflicts with the

definition of continuous maintenance. Since that renaming or changing the definition

could be a future work.

Continuous Maintenance

The process of modifying a software system or its units and

components from the first day of a project, and during

development to correct faults, improve performance or other

attributes, or adapt to a changed environment or changed

requirements under the Agile principles and values.

64

Version control systems can add new features to adapt continuous maintenance or

“Agile maintenance” such as commit limitations. To help with the failure tracking,

version control systems can add commit limitations in order to minimize the affect of

unnecessary commits.

65

REFERENCES

Tukey, J.W. (1958) The Teaching of Concrete Mathematics. The American

Mathematical Monthly, Vol. 65, no. 1, pp. 1–9.

Bourque P. and Fairley R.E. (Eds.) (2014) Guide to the Software Engineering Body of

Knowledge. Version 3.0, IEEE Computer Society.

IEEE 12207-2008. (2008) ISO/IEC/IEEE International Standard - Systems and

software engineering -- Software life cycle processes.

 Grubb, P. and Takang, A.A. (2003) Software Maintenance: Concepts and Practice.

2nd Edition, World Scientific Publishing Company, Singapore.

Boehm B.W. (1987) Improving Software Productivity. IEEE Computer, pp 61-72.

Jones C. (2008) Applied Software Measurement: Global Analysis of Productivity and

Quality. 3rd Edition.

Halpern M. and Shaw C. (Eds.). (1966) Annual Review of Automatic Programming.

vol. 5. Elmsford, NY: Pergamon Press, pp. 239-307.

Belady LA, Lehman MM. (1972) An introduction to program growth dynamics.

Freiburget W. (ed.) Statistical Computer Performance Evaluation, Academic,

New York, pp: 503-511.

Swanson E.B. (1976) The dimensions of maintenance. . ICSE '76: Proceedings of the

2nd international conference on Software engineering, pp 492-497.

IEEE Std 610.12-1990. (1990) ISO/IEC/IEEE International Standard, IEEE Standard

Glossary of Software Engineering Terminology, pp 1-84.

66

IEEE Std 14764-2006. (2006) ISO/IEC/IEEE International Standard for Software

Engineering - Software Life Cycle Processes – Maintenance, pp.1-58.

IEEE Std 1219-1998. (1998) ISO/IEC/IEEE International Standard for Software

Maintenance, pp 1-56.

Sommerville I. (2015) Software Engineering 10th ed., Pearson Education.

Stahl D., Martensson T. and Bosch J. (2017) Continuous practices and devops: beyond

the buzz, what does it all mean? 43rd Euromicro Conference on Software

Engineering and Advanced Applications (SEAA), pp 440-448.

Cusumano M. A. and Selby R. W. (1995) Microsoft Secrets: How the world's most

powerful software company creates technology, shapes markets, and manages

people, New York: Simon and Schuster.

Pang C., and Hindle A. (2016) Continuous Maintenance. IEEE International

Conference on Software Maintenance and Evolution (ICSME), Raleigh, NC, pp.

458-462.

Shahin M., Ali Babar M., and Zhu L. (2017) Continuous Integration, Delivery and

Deployment: A Systematic Review on Approaches, Tools, Challenges and

Practices. IEEE Access, Vol. 5, pp. 3909-3943.

Caum C. (2013) Continuous Delivery vs. Continuous Deployment: What’s the Diff?

[Online]. Available at: https://puppet.com/blog/continuous-delivery-vs-

continuous-deployment-what-s-diff/. (Accessed 12 February 2020)

Perry C. (2017) Continuous Delivery vs. Continuous Deployment: An Overview,

Continuous Delivery vs. Continuous Deployment: An Overview [Online].

Available at: https://dzone.com/articles/continuous-delivery-vs-continuous-

deployment-an-ov. (Accessed 12 February 2020)

Aranda, G. N. (2008) A Requirement Elicitation Methodology for Global Software

Development Teams. Encyclopedia of Information Science and Technology,

Second Edition, M. Khosrow-Pour, IGI Global.

67

Wiredu G.O. (2020) Global Software Engineering: Virtualization and Coordination,

Taylor & Francis Group.

Abdel-Hamid T. K. (1993) Adapting, correcting, and perfecting software estimates: a

maintenance metaphor. Computer, Vol. 26, no. 3, pp. 20-29.

Usha Rani, S. B. (2017) A detailed study of Software Development Life Cycle (SDLC)

Models. International Journal of Engineering and Computer Science, 6(7).

[Online] Available at: http://www.ijecs.in/index.php/ijecs/article/view/2830.

(Accessed 12 February 2020)

Cardoso de Mello M. (2012) Agile processes for the maintenance cycle. IBM.

Stolberg S. (2009) Enabling Agile Testing Through Continuous Integration. Agile

Conference, Chicago, IL, pp. 369-374.

Ó Conchúir E., Ågerfalk P., Olsson H. and Fitzgerald B. (2009) Global Software

Development: Where are the Benefits? Communications of the ACM. 52, pp

127-131.

Begel A. and Nagappan N. (2008) Global Software Development: Who Does It? IEEE

International Conference on Global Software Engineering, Bangalore, pp. 195-

199.

Kumar G. and Bhatia P. (2012) Impact of Agile Methodology on Software

Development Process. International Journal of Computer Technology and

Electronics Engineering (IJCTEE). Vol. 2, pp 2249-6343.

Sundararajan, S., Bhasi, M. and Pramod, K.V. (2017) Managing Software Risks in

Maintenance Projects, from a Vendor Perspective: A Case Study in Global

Software Development. International Journal of Information Technology Project

Management. Vol. 8, pp 35-54.

Mens T., Wermelinger M., Ducasse S., Demeyer S., Hirschfeld, R. and Jazayeri, M.

(2005) Challenges in software evolution. Eighth International Workshop on

Principles of Software Evolution (IWPSE'05), Lisbon, Portugal, pp. 13-22

68

Buinus M. (2015) Design for maintenance: An interview-based survey, Master Thesis

Work. Malardalen University Sweeden.

Hanssen G.K., Yamashita A., Conradi R. and Moonen L. (2009) Maintenance and

Agile Development: Challenges, Opportunities and Future Directions. IEEE

International Conference on Software Maintenance, Edmonton, AB, pp. 487-

490.

Bosch, J. (2014) Continuous Software Engineering, Springer.

Fowler M. (2006) Continuous Integration [Online]. Available at:

https://martinfowler.com/articles/continuousIntegration.html. (Accessed 12

February 2020)

Steidl D., Deissenboeck F., Poehlmann M., Heinke R. and Uhink-Mergenthaler B.

(2014) Continuous Software Quality Control in Practice. Proceedings - 30th

International Conference on Software Maintenance and Evolution, ICSME, pp

561-564.

Schermann G., Cito J., Leitner P., Zdun U and Gall H. (2016) An empirical study on

principles and practices of continuous delivery and deployment. PeerJ PrePrints,

Vol.4, e1889v1.

Borner K. and Zhou Y. (2001) A Software Repository for Education and Research in

Information Visualization. Proceedings Fifth International Conference on

Information Visualisation, London, England, UK, pp. 257-262.

Olatunji Sunday O., Idrees S.U, Al-Ghamdi Y.S and Al-Ghamdi J.S.A. (2010) Mining

Software Repositories - A Comparative Analysis. International Journal of

Computer Science and Network Security (IJCSNS) Vol.10 no:8.

Vassallo C., Zampetti F., Romano D., Beller M., Panichella A., Di Penta M. and

Zaidman A. (2016) Continuous Delivery Practices in a Large Financial

Organization. IEEE International Conference on Software Maintenance and

Evolution (ICSME), Raleigh, NC, pp. 519-528.

69

Holck J. and Jørgensen N. (2003) Continuous Integration and Quality Assurance: A

Case Study of Two Open Source Projects. Australasian Journal of Information

Systems; Vol. 11, No 1.

Pereira I., Lima L., Amorim V. and Nunes W. (2018) Implantation of continuous

integration practices: An experience report in a software development and

research laboratory. Computer on the Beach 2018.

Roy R., Stark R., Tracht K., Takata S., Mori M. (2016) Continuous maintenance and

the future – Foundations and technological challenges. CIRP Annals, Vol. 65,

Issue 2, pp 667-688.

Cheikhi L., Abran A. and Desharnais J. (2012) Analysis of the ISBSG software

repository from the ISO 9126 view of software product quality. 38th Annual

Conference on IEEE Industrial Electronics Society, Montreal, QC(IECON), pp.

3086-3094.

Raemaekers S., Deursen A. and Visser J. (2013) The Maven repository dataset of

metrics, changes, and dependencies. 10th Working Conference on Mining

Software Repositories (MSR), San Francisco, CA, pp. 221-224.

Ozbas-Caglayan K., and Dogru A. (2013) Software Repository Analysis for

Investigating Design-Code Compliance. Joint Conference of the 23rd

International Workshop on Software Measurement and the 8th International

Conference on Software Process and Product Measurement, Ankara, pp. 231-

234.

Reiss S. (2014) Tool Demo: Browsing Software Repositories. IEEE International

Conference on Software Maintenance and Evolution (ICSME), Victoria, BC,

Canada, pp. 589-592.

Tripathi A., Dabral S. and Sureka A. (2015) University-industry collaboration and

Open Source Software (OSS) dataset in Mining Software Repositories (MSR)

research. IEEE 1st International Workshop on Software Analytics (SWAN),

Montreal, QC, pp. 39-40.

70

Higgins D. A. (1988) Data Structured Maintenance: The Warnier/Orr Approach.

Dorset House Publishing Co. Inc., New York.

G2 (2019) Best Version Control Systems [Online] Available at

https://www.g2.com/categories/version-control-

systems?utf8=%E2%9C%93&order= popular (Accessed 12 February 2020).

	ABSTRACT
	ÖZET
	ACKNOWLEDGEMENT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1: THESIS STATEMENT
	1.1 Purpose of the Study
	1.2 Significance of the Study
	1.3 Organization of the Study

	CHAPTER 2: FUNDAMENTALS
	2.1 Software Life Cycle

	2.2 Software Maintenance
	2.3 Continuous Practices
	2.3.1 Continuous Integration
	2.3.2 Continuous Delivery
	2.3.3 Continuous Deployment
	2.3.4 Continuous Release
	2.4 Global Software Development for Small Teams
	CHAPTER 3: MOTIVATION AND LITERATURE RESEARCH
	3.1 Motivation

	3.2 Literature Research
	3.2.1 Research questions
	3.2.2 Data sources

	3.2.3 Data retrieval
	3.2.4 Data analysis
	3.2.5 Results of literature research
	CHAPTER 4: CONTINUOUS MAINTENANCE
	4.1 Pre-Production Continuous Maintenance
	4.2 Post-Production Continuous Maintenance
	CHAPTER 5: REPOSITORY MANAGEMENT
	5.1 Repository

	5.1.1 Version Control
	5.1.2 Centralized Version Control System
	5.1.3 Distributed Version Control System
	5.1.4 Advantages and disadvantages of version control system types
	5.1.5 Benefits of version control systems
	5.2 Repository Management
	CHAPTER 6: THE CASE STUDY
	6.1 The Company and Project Background

	6.2 Development Phase
	6.2.1 Project instructions

	6.2.2 Project structure
	6.2.3 Installations
	6.2.4 Analysis and design
	6.2.5 Code structure
	6.3 Observations of the Case Study
	6.4 Findings of the Case Study
	CHAPTER 7: CONCLUSIONS AND FUTURE WORKS
	REFERENCES

