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Sometimes a complex stochastic decision system undertakes multiple tasks called events, and the deci-
sion-maker wishes to maximize the chance functions which are defined as the probabilities of satisfying
these events. Originally introduced by Liu and Iwamura [B. Liu, K. Iwamura, Modelling stochastic decision
systems using dependent-chance programming, European Journal of Operational Research 101 (1997)
193-203], dependent-chance programming is aimed at maximizing some chance functions of events in
an uncertain environment. In this work, we show that the original dependent chance-programming
framework needs to be extended in order to capture an exact reliability measure for a given plan.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Chance-constrained programming, pioneered by Charnes and
Cooper [1], provides a means of handling uncertainty by specifying
a confidence level at which it is desired that the stochastic con-
straint holds. Chance-constrained programming models can be
converted into deterministic equivalents only for some special
cases, and then solved by using solution methods of deterministic
mathematical programming. In order to overcome this difficulty,
Liu [4] provided a new stochastic programming framework, called
dependent-chance programming, in which a complex stochastic
decision system undertakes multiple tasks called events, and the
decision-maker wishes to maximize the chance functions which
are defined as the probabilities of satisfying these events. Liu and
Iwamura [6] proposed a stochastic simulation-based genetic algo-
rithm for solving general chance-constrained programming as well
as chance-constrained multi-objective programming, and chance-
constrained goal programming (for a more detailed discussion
see [5]).

Roughly speaking, dependent-chance programming is aimed at
maximizing some chance functions of events in an uncertain envi-
ronment. In deterministic mathematical programming the feasible
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set is essentially assumed to be deterministic and the optimal solu-
tion can always be implemented. However when uncertainty is
taken into account the given solution may be infeasible if the real-
ization of uncertain parameters is unfavorable. In other words, the
feasible set of dependent chance-programming is described by a
so-called uncertain environment. Although a deterministic solution
is given by the dependent chance-programming model, this solu-
tion needs to be as flexible as possible with respect to the uncertain
environment. This special feature of dependent chance-program-
ming is very different from other existing stochastic programming
frameworks. However, such problems do exist in the real world.
Some applications of dependent chance programming have been
presented by Liu and Ku [7], Liu [2,3], Liu and Iwamura [6], and
more recently by Wu et al. [8].

In this note, we argue that the original dependent chance-pro-
gramming framework proposed by Liu and Iwamura needs to be
extended in order to capture an exact notion of reliability and we
show that the way Liu and Iwamura express constraint dependen-
cies, without taking into account the values assigned to decision
variables, does not guarantee optimal plans since in certain in-
stances common variables may take values which break the link
between dependent constraints.

This paper is organized as follows: In Section 2, we recall the
dependent-chance programming framework proposed by Liu and
Iwamura. In Section 3, we describe a motivational water supply-
allocation problem originally proposed in [4] and we analyze the
reliability of different distribution plans according to their frame-
work. In Section 4, we propose an exact notion of reliability ob-
tained by expressing constraint dependencies taking into account
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the values assigned to decision variables. An exact reliability mea-
sure is then proposed for the distribution plans being analyzed. In
Section 5, we draw conclusions.

2. Formal background

This section presents a summary of dependent-chance pro-
gramming of Liu [2,3] and underlying concepts.

If Q is a collection of objects denoted generally by x, then the
stochastic set A in Q is defined as a set of ordered pairs:

A={(x mX)x € Q},

where p4(x) is called the probability function of x in A. In uncertain
environments, the feasible set, represented by a series of stochastic
constraints, may be described by a stochastic set. In contrast to the
deterministic case, we cannot say a point is feasible or not when our
problem is defined on a stochastic set. We have to say a point x" is
feasible with probability «, where « is the value of probability func-
tion pia(x").

Usually, a solution x is a vector composed of n components,
X1,X2,. . .,Xnp. We will suppose that we know the following relation-
ship among the decision components.

Stochastic relationship: there is a known partition of n compo-
nents of a decision vector into k groups such that these k groups
are mutually stochastically independent and in each group any ele-
ments are stochastically dependent and have the same chance to
appear if they require to be realized simultaneously.

Thus, in stochastic decision systems, the feasible set of decision
vectors is represented by a stochastic set, say S, whose probability
function is ug(x).

Next we consider the purpose of our system. Usually there are
multiple purposes, functions or tasks of a complex system. Liu de-
notes the actions meeting the purposes or performing the tasks as
events. Each event is represented by a set E which is composed of
all the possible decisions meeting certain conditions. Let V(E) de-
note the set of all components of x which are necessary to the
event E and D(E) be the set of all components which are stochasti-
cally dependent of any elements in V(E). It is clear that V(E) c D(E).

For each element of an event E, we have to give an evaluation,
i.e. criterion function, of a decision vector. In view of the uncer-
tainty of the stochastic decision system, we are not certain
whether a decision is feasible before knowing the realization of
stochastic parameters, so we employ chance functions as objective
functions to evaluate some of the events. Generally, the chance
function, denoted by f(x), is the probability function on the event E.

Thus, for single event case, the dependent-chance programming
(DCP) is given as follows:

max f(x), (1)

where x is an n-dimensional decision vector, S is a stochastic set on
R" with probability function ps(x), f{x) is a chance function of a cer-
tain event, borrowing the symbol € from classical set theory, x € S
means x is feasible with probability us(x). A point X € S is called
an optimal solution of the problem in Eq. (1) if flx") > flx) for any
xeSs.

As an extension, the dependent-chance multiobjective pro-
gramming (DCMOP) for multiple events case is given as follows,

maxf(x) = [[i (%), (%), . fm ()], (2)

where f(x) is a vector of real-valued functions f; which are chance or
deterministic functions.

In Liu and Iwamura [6] the authors highlight that the key aspect
of algorithm for solving DCP, DCMOP and DCGP (i.e. dependent-
chance goal programs, for a detailed discussion refer to [6]) con-
sists in constructing the relationship between the decision vectors

and chance functions. They consider a set of t objectives
fi(x),i=1,2,...,t. They assume that every fj(x) is a chance function
that represents a probability of a certain event which is repre-
sented by E;. Then they define

EZE] ﬂEzﬂ---mE[,
and
V(E)=V(E;)UV(E) U--- UV(E).

In order to realize each event E;, as far as possible without sacrific-
ing the chances of other events, they treat all elements in the sto-
chastically dependent set D(E;) of V(E;) at an equitable level, i.e.,
these elements would have the same chance to be realized. On
the other hand they disregard elements out of V(E) because they
do not make any contribution to the events that have to be realized.
Thus the authors consider all the elements in and only in
D(E;) n V(E) simultaneously for the event E;. From the stochastic
relationship it follows that all the elements in D(E;) N V(E) are inde-
pendent of any other elements in V(E), therefore we can perform the
elements in D(E;) N V(E) as far as possible.

It has to be noted that the relationship between the decision
vectors and chance functions is defined by the authors in [6] with-
out taking into account the values assigned to decision variables.
For this reason we shall see that their definition does not guarantee
optimal plans, since in certain instances common variables may
take values which break the link between two dependent con-
straints. In order to show this, in the following section we recall
the water supply-allocation problem presented in Liu and Iwamura
[6] to demonstrate the subtleties inherent in dependent-chance
programming.

3. A dependent-chance programming example

Fig. 1 depicts a water supply system with three suppliers
$1,52,S; with their given probabilistic supply capacities and three
different customers, denoted by C;, C,, C3, with known demands.
The scopes of the suppliers are S;-»{Ci,C3},S,~»{Cq,Cs,C3},
53 d {Cz, C3 }

The deterministic customer demands are [8,7,4]. The suppliers’
probabilistic capacities are expressed as discrete probability den-
sity functions:

¢s, =1{3(0.3),7(0.5),12(0.2)},
¢s, = {6(0.4),7(0.2),10(0.4)},
s, ={3(0.3),8(0.7)},

where values in parentheses represent probabilities. We must
answer the following two types of question.

G S—y
G
N

Fig. 1. Water supply-allocation problem.
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e Supply problems. In order to achieve certain objectives in the
future, decisions must be made concerning present actions to
be taken. That is, we must determine the optimal combination
of inputs, for example to determine the quantities ordered from
the 3 inputs.

e Allocation problems. One of the basic allocation problems is the
optimal allocation of the resources. Here the task is to determine
the outputs that result from various combinations of resources
such that certain objectives are achieved.

Certainly, in this system supply and allocation decisions should
not be separate.

Let S be the set of suppliers and C the set of customers. Define
decision variables x;. € Z* | J{0} denoting the planned non-nega-
tive supply from supplier s to customer c. Also define random
variables &, with probability density function ¢, denoting the
uncertain supply available to supplier s. First we have the following
constraints

D Xe <&, VseS,

ceCs

where C;s is the set of customers for supplier s. A constant . denotes
the deterministic demand of customer c. Event E; is defined as
follows:

E: sz.c = Cm

SeS¢

where S, is the set of suppliers for customer c. Event E. means that
the decision should satisfy the demand of customer c. In view of the
uncertainty of this system, we are not sure whether a decision is
feasible before knowing the realization of stochastic variables, so
we employ chance functions to evaluate these events. Let

fex) = Pr{EC DY Xee= gc},

seS¢

where Pr denotes the probability of the event in {-}. Usually we hope
to maximize all the chance functions, i.e. increase the reliability lev-
els of all the events as much as possible.

Without loss of generality we will now assume that all the
events have the same priority and we will formulate the problem
as DCGP. The model is therefore

max > fe®) 3)
ceC
subject to, (4)
D X <& seES, (5)
ceCs
Xc€Z| J{0} seS, ceC (6)

The stochastic feasible set S will be defined by a probability function

Table 1
Representative distribution plans.

Us(X) = Pr{me <&, Vse s}. (7)

ceCs

The authors in Liu and Iwamura [6] divide the decision components
into three groups {Xs|s = S1}, {Xs|s =S2} and {xs|s = S3} which are
mutually stochastically independent and in each group any element
has the same probability of occurring. From the water supply-allo-
cation problem definition it follows that

V(E1) = {Xs,.¢c,:Xs,.¢, } 3
V(E2) = {Xs,.¢,,Xs,.0,+ X555 }» 9
V(E3) = {st,C37X53,C3},‘ (10)
and

D(E1) = {Xs, ¢, Xs,.C,» X5,.C 1 X5,.C5» X5,.C3 }» (11)
D(E3) = {Xs,.c,+Xs,,Cy X5,,C1 > X5,.Cp » X55,C5 > X55.C s X55.C |+ (12)
D(E3) = {Xs,.c,,X5,.,,X5,.C31X55.C,» X55.C3 }» (13)

therefore the induced constraint on D(E;) N V(E) is then, according
to Liu and Iwamura, {xs, ¢, +Xs, ¢, < &,,Xs,.c; +Xs5,.0, +Xs,.¢; < Es, |
on D(E;) NV(E) it is {Xs,c, +Xs,.c, < &s,,Xs,.0,+ Xs,.c, +Xs,.0; < s,
Xs,c, +Xs,.¢c, < &, ) and finally on D(Es) N V(E) it is {Xs, ¢, + Xs,.c,+
Xs,.c5 < EsyXs,.0, + Xsy.0; < &, }. Hence

Je, () = Pr{(&s,, &, )|Xs, ¢, +Xs,.0, < s, Xs,.0, + Xs,.0, + X5, < s, 1
(14)

fo, (%) = Pr{(&s,, &s,, &s,) Xs, ¢ + Xs,.0,
<&, Xs, 00 +Xs,.0, +Xs,.05 < &y, Xs,.0, + X5y < Es, ) (15)

Jes,(x) = Pr{(&s,, &s, ) |Xs, ., + Xs,.0, + Xs,.05 < sy, Xs,.0, + Xsy.05 < s, }-
(16)

Table 1 presents some representative distribution plans (columns
2-8) and their corresponding reliability measures according to Liu
and Iwamura (column under heading “Liu-Ilwamura”).

4. Decision variable value based dependency

Liu-lwamura’s framework ignores the important dependency
between constraints and values of decision variables.

Consider a plan in which xs, ¢, = 0 so that C; must receive all
supplies from S,. The reliability of the satisfaction of C; (event E;)
should now be independent of the ability of S; to meet its demand.
But the dependent-chance programming, in its current form which
does not take variable assignments into account, always relates the
demand satisfaction of C; to Sy and S, (Eq. (14)), which is not neces-
sarily correct. Therefore, one should refine the objectives (Egs. (14)-
(16)) via further logical connectives between constraints:

Plan no. Planned delivery S;-D; : (i.j) Reliability measures
(1,1) (1,2) (2,1) (2,2) (2,3) (3,2) (3,3) Liu-Iwamura New
1 3 5 5 1 1 1 3 0.624 0.624
2 4 7 4 0 4 0 0 0.560 0.680
3 6 2 2 5 0 0 4 0.624 0.940
4 5 0 3 3 4 4 0 0.756 0.960
5 7 5 1 1 1 1 3 1.040 1.040
6 2 5 6 0 4 2 0 0.960 1.380
7 8 2 0 2 4 3 0 1.400 1.400
8 0 7 8 0 0 0 4 0.756 1.800
9 5 0 3 3 0 4 4 1.890 2.100
10 6 0 2 0 4 7 0 1.890 2.400
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felx) = Pr{xsﬁéo =Y Xe <& Vse sc}, (17)

c'eCs

where — denotes logical implication: € — ¢ is the sum of the prob-
abilities of the scenarios in which either € is violated or €' is satis-
fied, or both. Because of this modification, under a decision in which
Xs,.c, = 0 there is no longer a penalty if

Z Xso <&

ey

is violated.

The new reliability measures calculated using Eq. (17) are listed
in the last column in Table 1.

To gain more insight into this problem class we examine alloca-
tion plans given in Table 1 in three categories: Plans {1,5}, Plans
{2,3,4,6,8,9,10}, and Plan {7}.

In the first category (Plans 1 and 5) the plans have non-zero val-
ues assigned to all decision variables and, therefore, as expected the
results of Liu-Iwamura and those produced by the extended model
proposed here are the same (in Eq. (17), x; # 0 becomes redun-
dant). In the second group, however, since certain variables have
zero assignments now a discrepancy between the Liu-Iwamura
model and the extended model proposed here is observed. As ex-
plained above, this difference in probabilistic measure values is
due to the broken constraint dependencies that arise when decision
variables are assigned value zero. In the third group, we have only
one plan (Plan 7). In this case, although two decision variables are
assigned zero values the two frameworks produce the same result.
To understand the reason behind this observation we need to look
at the amounts committed by suppliers S, and S3 according to Plan
7. Supplier S, (S3) is expected to provide in total xs,c, + Xs, ¢, +
Xs,c; = 6 (Xs, ¢, +Xs, c, = 3) units. When we look at the uncertain
supply capacities for suppliers S, and Ss, it is clear that these units
can be provided in full even under the worst-case scenarios. In
other words, the zero assignment does not make any difference in
Plan 7, because breaking the dependency is important only if there
is a chance of failure in complying with supply commitments.

5. Conclusion

We showed how to extend Liu and Iwamura’s original depen-
dent-chance programming framework in order to obtain an exact
reliability measure. Our experiments show that in most cases
expressing constraint dependency without taking into account
the values assigned to decision variables does not guarantee opti-
mal plans, in fact in certain instances common variables may take
values which break the link between two dependent constraints.
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