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1. Introduction

We consider the problem of controlling the inventory of a single
item with stochastic demand over a single period. This problem is
known as the “newsvendor” problem (Silver, Pyke, & Peterson,
1998). Most of the literature on the newsvendor problem has
focused on the case in which the demand distribution and its
parameters are known. However, what happens in practice is that
the decision maker must estimate the ideal order quantity from
a—possibly very limited—set of past demand realisations. This task
is often complicated by the fact that unobserved lost sales must be
taken into account.
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Existing approaches to the newsvendor under limited historical
demand data can be classified in non-parametric and parametric
approaches. Non-parametric approaches operate without any
access to and assumptions on the true demand distributions.
Parametric approaches assume that demand realisations come
from a given probability distribution—or from a family of probabil-
ity distributions—and make inferences about the parameters of the
distribution. When the class of the distribution is known, but
its parameters must be estimated from a set of samples, non-
parametric approaches may produce conservative results. For this
reason several works in the literature investigated parametric
approaches to the newsvendor under limited historical demand
data; a complete overview on these works will be provided in
Section 2.

Two classical parametric approaches for dealing with the news-
vendor problem under limited historical demand data are the
maximum likelihood (see e.g. Scarf, 1959; Gupta, 1960; Fukuda,
1970) and the Bayesian approach (see e.g. Hill, 1997, 1999). Both
these strategies feature a number of asymptotical properties that
guarantee their convergence towards the optimal control strategy.
However, a decision maker finds herself rarely in an asymptotic sit-
uation, since only few samples are generally available to estimate
an order quantity. This means that asymptotic properties may have
little relevance in practice. Unfortunately, both the maximum


http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2014.06.007&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2014.06.007
mailto:roberto.rossi@ed.ac.uk
mailto:s.prestwich@4c.ucc.ie
mailto:armagan.tarim@hacettepe.edu.tr
mailto:brahim.hnich@ieu.edu.tr
mailto:brahim.hnich@ieu.edu.tr
http://dx.doi.org/10.1016/j.ejor.2014.06.007
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

R. Rossi et al./European Journal of Operational Research 239 (2014) 674-684 675

likelihood estimation and the Bayesian approaches ignore the
uncertainty around the estimated order quantity and its associated
expected total cost or profit. Hayes (1969) and, more recently,
Akcay, Biller, and Tayur (2011) discuss how to quantify this uncer-
tainty by using the concept of expected total operating cost (ETOC),
which represents the expected one-period cost associated with
operating under an estimated inventory policy. By minimising this
performance indicator, they identify an optimal biased order
quantity that accounts for the uncertainty around the demand
parameters estimated from limited historical data. Their approach,
however, does not answer a number of fundamental questions. It
does not state at what confidence level we can claim this order
quantity to be optimal within a given margin of error; nor does
it quantify the probability of incurring an expected total cost sub-
stantially different than the estimated one, when such an order
quantity is selected. Kevork (2010) exploits the sampling distribu-
tion of the estimated demand parameters to study the variability of
the estimated optimal order quantity and its expected total profit
under a normally distributed demand with unknown parameters.
The author shows that these two estimators asymptotically con-
verge to normality. Based on this property, asymptotic confidence
intervals are derived for the true optimal order quantity and its
expected total profit. Unfortunately, these confidence intervals
achieve the prescribed confidence level only asymptotically and
they represent an approximation when one operates under finite
samples.

Our contributions to inventory management are the following.

1. We analytically combine confidence interval analysis and
inventory optimisation. By exploiting exact confidence intervals
for the parameters of a given distribution, we identify a range of
candidate order quantities that, according to a prescribed confi-
dence probability, includes the real optimal order quantity for
the underlying stochastic demand process with unknown sta-
tionary parameter(s). For each candidate optimal order quantity
that is identified, our approach computes an upper and a lower
bound for the associated cost. This range covers, once more
according to a prescribed confidence probability, the actual cost
the decision maker will incur if she selects that particular
quantity.

2. To obtain the former result, when the order quantity is fixed, we
establish convexity of the newsvendor cost function in the suc-
cess probability p of a binomial demand (Theorem 1) and in the
rate /4 of a Poisson demand (Theorem 2); we also establish that
the newsvendor cost function is quasi-convex in the expected
value 1/ of an exponential distribution (Theorem 3). These
results, to the best of our knowledge, have not been established
before in the literature.

3. For the binomial and the Poisson distribution we demonstrate
how to extend the discussion to account for unobserved lost
sales when demand is censored.

Our strategy is frequentist in nature and based on the theory
of statistical estimation introduced by Neyman (1937). In con-
trast to Bayesian approaches, no prior knowledge is required
to perform the computation, which is entirely data driven. In
contrast to Hayes (1969) and Akcay et al. (2011) we do not
introduce new performance indicators, such as the ETOC, and
we build our analysis on existing and well established results
from inventory theory, i.e. the expected total cost of a policy;
and from statistical analysis, i.e. confidence intervals. Finally,
in contrast to Kevork (2010) our results are valid both
asymptotically and under finite samples.

If the identified set of candidate optimal order quantities
comprises more than a single value, expert assessment or any
existing frequentist or Bayesian approach may be employed to
select the most promising of these values according to a given

performance indicator. By using our approach, the decision
maker may then determine—at a given confidence level and
from a limited set of available data—the exact confidence inter-
val for the expected total cost associated with such a decision,
as well as the potential discrepancy between the true optimal
decision and the one she selected. For this reason, a further con-
tribution is the following.

4. We effectively complement a number of existing strategies that
compute a point estimate of the optimal order quantity and its
expected total cost. We demonstrate this fact for the Bayesian
approach in Hill (1997) and for the frequentist approach based
on the maximum likelihood estimator of the demand distribu-
tion parameter.

2. Literature survey

A thorough literature review on the newsvendor problem is
presented by Khouja (2000). Among other extensions, the author
surveyed those dealing with different states of information about
demand.

Several authors (see e.g. Scarf, Arrow, & Karlin, 1958; Gallego &
Moon, 1993; Perakis & Roels, 2008) investigated the so-called
distribution free newsvendor, in which the decision maker has
access to partial information about the demand distribution, e.g.
mean, variance, symmetry, unimodality, etc., but does not know
the class of the demand distribution, e.g. Poisson, normal, etc.

However, in practice, it is often the case that the decision maker
can only access a set of past observations of the demand out of
which a near-optimal inventory target must be estimated.
Approaches trying to estimate a near-optimal inventory target
from observed realisations of the demands can be classified as
non-parametric or parametric.

Non-parametric approaches operate without any access to
and assumptions on the true demand distributions (see e.g.
Hayes, 1971; Levi, Roundy, & Shmoys, 2007; Huh, Janakiraman,
Muckstadt, & Rusmevichientong, 2009). Parametric approaches
assume that demand realisations come from a given probability
distribution and make inferences about the parameters of the dis-
tribution. The class of the distribution may be determined, for
instance, by selecting the maximum entropy distribution that
matches the structure of the demand process (see Perakis &
Roels, 2008, p. 190).

When the class of the distribution is known but its parameters
must be estimated from a set of samples non-parametric
approaches are not appropriate, since they would produce conser-
vative results. For this reason, in this work we focus on parametric
approaches. According to Berk, Gurler, and Levine (2007) there are
two general parametric approaches for dealing with a stochastic
decision making environment in which random variables follow
known distributions with unknown parameters: the Bayesian and
the frequentist. In the Bayesian approach a “prior” distribution is
selected for the demand distribution parameter(s). This selection
may be based on collateral data and/or subjective assessment.
Subsequently, a “posterior” distribution is derived from the prior
distribution by using observed demand data. This posterior distri-
bution is used to construct the posterior distribution of the
demand and to determine the optimal order quantity and objective
function value. In the frequentist approach a parametric demand
distribution is empirically selected and point estimates, e.g. maxi-
mum likelihood or moment estimators, for the unknown parame-
ters are obtained according to the observed data; these are then
used to derive the optimal order quantity and objective function
value. A further distinction can be made between approaches
assuming that demand is fully observed and approaches assuming
that demand occurring when the stock level drops to zero is lost
and thus not observed. In the latter case, it is necessary to adjust
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the estimation procedure to account for censored demand (see e.g.
Hill, 1992; Lau & Lau, 1996).

In the literature we find several works on Bayesian approaches
under fully observed demand (see e.g. Hill, 1997; Lee, 2008;
Bensoussan, Cakanyildirim, Royal, & Sethi, 2009). Similarly, we also
find several Bayesian approaches under censoring induced by lost
sales (see e.g. Lu, Song, & Zhu, 2008; Chen, 2010; Mersereau,
2012). Bayesian approaches suffer from a number of drawbacks.
First, an initial “belief” about the unknown parameters must be
expressed as a prior distribution of the demand. It is often assumed
that this prior distribution is obtained from collateral data and/or
subjective assessment. The need of a prior distribution is structural
in the Bayesian approach, which relies on the update of the prior
distribution to derive the posterior distribution of the demand
given the data. When no supporting information is available,
“uninformative” priors can be used, see e.g. Hill (1999), but these
tend to introduce a strong bias especially under limited available
data to perform Bayesian updating. This fact is well known in the
life sciences, see e.g. van Dongen (2006), but it is often ignored
in more theoretical settings. A second issue that arises with exist-
ing Bayesian approaches to the newsvendor problem is that to
show that the order quantity derived via the Bayesian approach
converges to the optimal order quantity one has to consider an infi-
nite set of samples, see e.g. Bensoussan et al. (2009). However, in
practice it is often the case that available information is very lim-
ited. Unfortunately, Bayesian approaches can be shown to be often
biased under small sample sets, especially due to the fact that the
choice of the prior may strongly influence the order quantity
obtained.

We shall now turn our attention to frequentist approaches. Two
early frequentist approaches are Nahmias (1994) and Agrawal and
Smith (1996). Nahmias (1994) analyzed the censored demand case
under a normally distributed demand. Agrawal and Smith (1996)
considered the estimation of a negative binomial demand under
censoring induced by lost sales. However, these two studies
consider the stock level as given and thus do not address the asso-
ciated optimisation problem of finding the optimal stock level.
More recently, Liyanage and Shanthikumar (2005) introduced the
“operational statistics” framework, in which an optimal order
quantity, rather than the parameters of the distribution, is directly
estimated from the data; the authors demonstrate that this
approach is superior to traditional approaches that separate esti-
mation and optimisation. Klabjan, Simchi-Levi, and Song (2013)
integrate distribution fitting and robust optimisation by identify-
ing a set of demand distributions that fit historical data according
a given criterion; they then characterise an optimal policy that
minimises the maximum expected total cost against such set of
demand distributions.

Bayesian and frequentist strategies surveyed so far share a key
limitation. Given a limited set of past demand observations, these
techniques would analyse these data and provide a single most-
promising order quantity and a point estimate of the associated
cost. However, they do not answer two fundamental questions:
(i) we do not know at what confidence level we can claim the quantity
selected to be optimal within a given margin of error and (ii) we also
do not know the probability of incurring a cost substantially higher
than the estimated one, when such an order quantity is selected.

To the best of our knowledge Kevork (2010) was the first to
exploit the sampling distribution of the estimated demand param-
eters in order to study the variability of the estimates for the opti-
mal order quantity and associated expected total profit. The author
adopts a frequentist approach in which demand is fully observed in
each period; thus a first limitation of this work is that demand
censoring is not addressed. By incorporating maximum likelihood
estimators for mean and variance of demand into expressions that
determine the optimal order quantity and associated expected

total profit, the author develops estimators for these latter two
variables. These estimators are shown to be consistent and to
asymptotically converge to normality. Based on these properties,
the author derives confidence intervals for the true optimal order
quantity and associated expected total profit. Unfortunately, these
estimators are biased in finite samples and the associated confi-
dence intervals achieve the prescribed confidence level only
asymptotically.

As pointed out in Akcay et al. (2011), the inventory manager
rarely finds herself in an asymptotic situation, since an inventory
target must be typically estimated from a small sample size. To
quantify the uncertainty about distribution parameter estimates
and thus about the estimated order quantity, Akcay et al. (2011)
exploit the “expected one-period cost associated with operating
under an estimated inventory policy” (ETOC), originally introduced
in Hayes (1969). Hayes (1969) discussed applications of ETOC to
exponentially and normally distributed demands and identified
the optimal biased order quantity that minimises ETOC in presence
of limited historical demand data. This was one of the first works
blending statistical estimation with inventory optimisation.
Akcay et al. (2011) extended this analysis to a parameterised fam-
ily of distributions—the Johnson translation system—that has the
ability to match any finite first four moments of a random variable
and to capture a broad range of distributional shapes. Despite their
ability to quantify the inaccuracy in the inventory-target estima-
tion as a function of the length of the historical data via the ETOC,
the approaches in Hayes (1969) and Akcay et al. (2011) do not
identify a confidence interval that, with prescribed confidence
probability, includes the real optimal order quantity for the under-
lying stochastic demand process with unknown parameter(s);
neither they are able to produce an exact confidence interval to
estimate the expected total cost associated with a given ordering
decision. Finally, both Hayes (1969) and Akcay et al. (2011) do
not address censored demand.

3. The newsvendor problem

In this section, we shall summarise the key features of the
newsvendor problem. For more details, the reader may refer to
Silver et al. (1998).

Consider a one-period random demand d with mean u and var-
iance g2. Let o be the unit overage cost, paid for each item left in
stock after demand is realised, and let u be the unit underage cost,
paid for each unit of unmet demand; we assume thatu > o > 0. Let
g(x) = ox" + ux~, where x* = max(x,0) and x~ = —min(x,0). The
expected total cost can be written as G(Q) = E[g(Q — d)], where
E[-] denotes the expected value. Let F(Q) = Pr{d < Q} denote the
cumulative distribution function of d. If d is continuous and F
strictly increasing, there is a unique optimal solution

Q —F'(p) M)

where = u/(u+ o) is usually named “critical fractile.”

In practice, the probability distribution of the random demand d
often has finite support over the set Ng = {0,1,2,...}. We can
then work with the forward difference AG(Q)=G(Q +1)—
G(Q), Q € Np. Since AG(Q) =0 — (0o +u)Pr{d > j} is non-decreas-
ing in Q and limg_..,AG(Q) = 0 > 0, an optimal solution is given
by Q" = min{Q € Ny : AG(Q) > 0} or equivalently

Q' =min{Q € N : F(Q) > ). )
3.1. A frequentist and a Bayesian approach

Consider the situation in which the decision maker knows the
class of the random demand distribution (e.g. binomial), but does
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not know the actual values of some or all the (stationary) parame-
ters of such a distribution. Nonetheless, she is given a set of M past
realisations of the demand from which she has to infer the optimal
order quantity and, possibly, estimate the cost associated with the
quantity selected. We now detail the functioning of a frequentist
approach, i.e. the maximum likelihood approach, and of a Bayesian
approach from the literature (Hill, 1997). In the rest of this work
we will make use of these two approaches to illustrate how our
approach can be used to complement existing frequentist or Bayes-
ian strategies. For the sake of brevity, we will focus only on these
two strategies from the literature. However, this choice is made
without loss of generality. Our approach may in fact also comple-
ment any of the other frequentist or Bayesian approaches previ-
ously surveyed.

3.1.1. Maximum likelihood approach

A commonly adopted heuristic strategy for order quantity
selection under sampled demand information consists in comput-
ing, from the available sample set, a point estimate for the
unknown demand distribution parameter(s). This may be done
by using the maximum likelihood estimator (Le Cam, 1990), thus
obtaining the so-called maximum likelihood policy (see e.g. Scarf,
1959; Fukuda, 1970; Gupta, 1960), or the method of moments
(Newey & McFadden, 1986). For instance, assume that the
available sample set comprises M observed past demand data,
dy,...,dy, and that the demand is assumed to follow a binomial
distribution. The binomial distribution comprises two parameters:
the number of trials N and the success probability p. As discussed
in Hill (1997), in the context of the newsvendor problem we might
have a known and fixed number N of customers each having a
probability p of purchasing a single unit within each period
i € {1,...,M}. Then, the maximum likelihood estimator for param-

eterpisp = Zﬁ‘ildi/(MN). After computing p, the decision maker

employs the random variable bin(N;p) in place of the actual
unknown demand distribution in Eq. (2) to compute the estimated

optimal order quantity Q* and expected total cost G(@*).

3.1.2. Hill’s Bayesian approach
A Bayesian approach to the newsvendor problem under partial
information is presented by Hill (1997). Consider Bayes’ theorem

G(alb) = - 2B9P@ _ \yith q continuous and b discrete or continu-
[ F b Pudu

ous. In the context of the newsvendor problem, a represents the
unknown parameter of the demand distribution, b represents the
actual set of observed demand samples. The prior distribution of
a, P(a), describes an estimate of the likely value that a might take,
without considering the observed samples. This estimation may be
derived from expert assessment and/or collateral data. The likeli-
hood function £(b|a) represents the probability of observing a set
of samples b given a. The posterior distribution of a, G(a|b), is an
updated estimate of the values a is likely to take based on the prior
distribution and the observed information. To express an initial
state of complete ignorance with respect to a, Hill adopts an unin-
formative prior. Then, by employing the conjugate prior for the
particular distribution under analysis, he constructs the posterior
distribution for the newsvendor demand as follows F(x|b) =
J, £(x|a)G(alb)da. Finally, Hill uses this posterior distribution in
place of the unknown true distribution for the demand in Eq. (1)

or (2) to obtain an order quantity Q.

4. Binomial demand

Consider, as discussed in Hill (1997), a newsvendor that has a
known and fixed number N of customers each having a probability

p of purchasing a single unit within each periodi € {1,...,M}.Itis
a well-known fact that any experiment comprising a sequence of N
Bernoulli trials, each having the same “yes” (respectively, “no”)
probability p (respectively, 1 — p), can be represented by a random
variable bin(N;p) that follows a binomial distribution with proba-
bility mass function

Pr{bin(N;p) = k} = (N>p"(1 -

k
where k =0,...,N.

Let us now consider the situation in which the true value p of
parameter p € [0, 1] is not known. The decision maker is given a
set of M past realisations of the demand and from these realisa-
tions she has to infer the optimal order quantity and, possibly, esti-
mate the associated cost.

Since we operate under partial information it may not be possi-
ble to uniquely determine “the” optimal order quantity and the
exact cost associated with it. Therefore, we argue that a possible
approach consists in determining a range of “candidate” optimal
order quantities and upper and lower bounds for the cost associ-
ated with these quantities. This range will contain the real opti-
mum according to a prescribed confidence probability.

4.1. Confidence intervals for the binomial distribution

Confidence interval analysis (Neyman, 1937, 1941) is a well
established technique in statistics for computing, from a given
set of experimental results, a range of values that, with a certain
confidence level (or confidence probability), will cover the actual
value of a parameter that is being estimated.

Several techniques (Clopper & Pearson, 1934; Garwood, 1936;
Epstein & Sobel, 1954, etc.) exist for building exact confidence
intervals associated with particular distributions. Approximate
techniques have been also investigated (see e.g. Agresti & Coull,
1998) because, especially with small sample sizes, an exact confi-
dence interval may be unnecessarily conservative.

A method to compute exact confidence intervals for the bino-
mial distribution has been introduced by Clopper and Pearson
(1934). This method uses the binomial cumulative distribution
function in order to build the interval from the data observed.
The Clopper-Pearson interval can be written as [py,, py,), Where

Py = min{p|Pr{bin(N; p) > X} > (1 - )/2},
Pup = max{p|Pr{bin(N;p) < X} > (1 —a)/2},

X is the number of successes (or “yes” events) observed in the
sample and o is the confidence probability. Note that we assume
pp =0 when X =0 and p,, =N when X =N. As discussed by
Forbes, Evans, Hastings, and Peacock (2000), this interval can be
also expressed using quantiles from the beta distribution. More
specifically, the lower endpoint is the (1 — «)/2-quantile of a beta
distribution with shape parameters X and N — X + 1, and the upper
endpoint is the (1 + o) /2-quantile of a beta distribution with shape
parameters X + 1 and N — X. Furthermore, the beta distribution is,
in turn, related to the F-distribution so a third formulation of the
Clopper-Pearson interval, discussed in Agresti and Coull (1998),
uses quantiles from the F distribution.

Intuitively, the “quality” of a confidence interval is directly
related to its size. When the confidence level is the same, the smal-
ler the interval, the better the estimate. In general, confidence
intervals that have symmetric tails (i.e. with associated probability
(1 —a)/2) are not the smallest possible ones. A large literature
exists on the topic of determining the smallest possible interval
(see e.g. Zielinski, 2010) or “good” approximate ones (see e.g.
Agresti & Coull, 1998). It should be noted that the discussion that
follows is independent of the particular interval adopted.
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4.2. Solution method employing statistical estimation based on
classical theory of probability

We shall now employ the Clopper-Pearson interval for comput-
ing an upper and a lower bound for the optimal order quantity Q"
in a newsvendor problem under partial information. The confi-
dence interval for the unknown parameter p of the binomial
demand bin(N;q) is simply [py,, pus] Where

P = in{plPr{bin(MN: p) > X} > (1 - %)/2},
Pus = Max{p[Pr{bin(MN; p) < X} > (1 - 2)/2},

and X = 3V, d.. Let Q;, be the optimal order quantity for the news-
vendor problem under a bin(N, p;,,) demand and Qj;, be the optimal
order quantity for the newsvendor problem under a bin(N,p,;,)
demand. As discussed, AG(Q) is non-decreasing in Q. Furthermore,
it is clear that the optimal order quantity Q" must increase if the
value of p increases. It immediately follows that, according to past
demand realisations, with confidence probability greater or equal
to o the optimal order quantity Q" is a member of the set
{Q},---,Q;p} (Fig. 1)—note that this probability may be greater
than o because of the discrete nature of the demand.

We shall now compute upper (c,,) and lower (cy,) bounds for
the cost associated with a solution that sets the order quantity to
a value in the set {Q},,...,Qy,}. Let us write the cost associated
with an order quantity Q,

Q N
(Q)=0) Pr{bin(N;p) =i}(Q —i) +u) Pr{bin(N;p) =i}(i-Q).

i=0 i=Q

Then, consider the function

Go(p) = OZiOPr{bin(N;p) =i}Q —i)
Gy ()
+uY ) Pr{bin(N:p) = i}(i - Q), 3)
Go(p)

in which the order quantity Q is fixed and in which we vary the
“success” probability p € [0, 1]. It can be proved that Gq (p) is convex
in the continuous parameter p. Firstly, we rewrite Eq. (3) as

0(Q ~ Np) + (0-+ Wy (1 - Pr{bin(N:;p) < i}). (4)

i=Q

Go(p) =

We now show that the second derivative of this function is positive.
Of course, this is equivalent to proving that

Pr{bin(N;p) < Q}} ---

Pr{bin(N;p) < Q4 }

Pr{bin(N;p) < Q*} —

t
Pib { Pub

Fig. 1. Determining the candidate set {Q,.... Q;,}: note that the family of
functions obtained by increasing Q is discrete, and in some cases it may not be
possible to find Qj, (resp. Qp,) such that Pr{bin(N;p)<Q;} (resp.
Pr{bin(N;p) < Q;,}) is exactly g, e.g. Q;, and Q" in the picture.

2 N
0+u21—Pr{b1an) i}) = 0.
i=Q

Theorem 1. For Q < N,
dZZl—Pr{mep i})

is a positive function of p € [0, 1].

Proof. The proof is given in the supplementary material,
Appendix A. O

Although it is possible to prove that Gq (p) is convex in p, there is
no closed form expression for finding the p* that minimises this
function. We shall therefore use numerical convex optimisation
approaches to find the p* that minimises or maximises this func-
tion over a given interval.

Let us consider the confidence interval [py,, p] for the parame-
ter p of the binomial demand. For a given order quantity Q, con-
sider the values

Pgmin = &g Min Go(p)

Pomax = arg max Go(p).
PEP1b-Pub)

PE[PIb-Pub)

With  confidence o = Go (pa_mi11> and

cuw = Go (PE.max) represent a lower and an upper bound, respec-
tively, for the cost associated with Q (Fig. 2-A). Note that with prob-
ability 1 — o the interval [py,, p,p] Will not cover p (Fig. 2B and C). In
the case of (Fig. 2C) [py,, Dy, does not cover p, but the true value
Gq(p) of the expected total cost associated with Q is covered by
[P, Pup)- Nevertheless, this should not be regarded as a coverage
event, because as shown in Fig. 2D the two cost components of
Go(p)—overage Gy (p) and underage Gy (p) cost—are misclassified,
i.e. they are not covered by the respective intervals [cf,,cS;] and
(et Clin)-

By recalling that the optimal order quantity Q" is, with confi-
dence probability o, a member of the set {Qj,,...,Q},}, it is then
easy to compute upper (c;;;) and lower (cj,) bounds for the cost
that a manager will face, with confidence probability o, whatever
order quantity she chooses in the candidate set {Qy,,...,Qy,}
The lower and the upper bounds are
Cp, = Mmin Cip = Max

It should be emphasised that, when the confidence interval
(P, Pup) covers the real parameter p of the binomial demand we
are estimating, then the set {Qy;,...,Qy, } covers the optimal order
quantity Q" and the interval (¢}, ¢;;) covers the real cost associated
with every possible order quantity in {Qy,, ..., Q}, }. Given the way
confidence interval (py,,p,,) is constructed, it is guaranteed that
this happens with probability o.

Finally, consider the case in which unobserved lost sales
occurred and the M observed past demand data, di,...,dy, only
reflect the number of customers that purchased an item when
the inventory was positive. The analysis discussed above can still
be applied provided that the confidence interval for the unknown
parameter p of the bin(N;p) demand is computed as

probability o,

pip, = min {p Pr{bin (i&m) > X} > (1- 0<)/2},
j=1

Dyp = Max {p Pr{bin(i&;p) < X} > (1- ac)/z},
j=1
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Fig. 2. Coverage of the true cost associated with an order quantity Q.

where N; is the total number of customers that entered the shop in
day j—for which a demand sample d; is available—while the inven-
tory was positive.

To keep the discussion compact, the computational procedure
for binomial demand is presented in the supplementary material,
Appendix B.

In general, the set {Qy,,...,Qy,} may comprise a significant
number of elements, especially if a very limited number of samples
is available. A decision maker may then employ one of the strate-
gies discussed in Section 3.1 in order to determine a promising
ordering quantity in this set. However, it is worth remarking that
information we provide on the minimum and maximum cost asso-
ciated with each order quantity in Q allows not only a better esti-
mation of the actual cost associated with a given decision, but it
can also be exploited to make more educated choices than other
existing approaches. For instance, if a manager is risk averse, she
may select the order quantity for which the o confidence interval
for the estimated cost has the lowest possible upper bound.

5. Poisson demand

A random demand Poisson(4) is said to be distributed according
to a Poisson law with rate parameter / > O, if its probability mass
function is

k
Pr{Poisson(/) = k} = e”'%,
The Poisson distribution is the limiting distribution of the binomial
distribution when N is large and p is small. In this case, the param-
eters of the two distributions are linked by the relationship 4 = Np.
We recall that the expected value of d is A and that the standard
deviation of d is V1.

We shall now consider, also in this case, the situation in which
the parameter / is not known. Instead, the decision maker is given
a set of M past realisations of the demand. As in the previous case,

k=0,1,2,...,00.

from these realisations she has to infer the range of “candidate”
optimal order quantities and upper and lower bounds for the cost
associated with these quantities. This range will contain the real
optimum according to a prescribed confidence probability.

5.1. Confidence intervals for the Poisson distribution

As in the previous case, we discuss the exact confidence interval
that can be used to estimate the rate parameter A of the Poisson
distribution. This confidence interval was proposed by Garwood
(1936) and takes the following form. Consider a set of M samples
d; drawn from a random demand d that is distributed according
to a Poisson law with unknown parameter A. We rewrite
d =Y ,di. According to Garwood (1936), the confidence interval
for 1 is (A, Auw), Where

b = min{/|Pr{Poisson(MJ) > d}
Jub = max{|Pr{Poisson(M2) < d}

(1 —0)/2},
(1—0)/2}.

This interval can be expressed in terms of the chi-square distribu-
tion, as shown by Garwood (1936). Let x2 denote the chi-square
distribution with n degrees of freedom, and G '(32,-) denote the
inverse cumulative distribution function of 2. We can write

=
=

¢ (2 (1 -2)/2) G (2 (14 2)/2)

;vlb = M ) ub — oM .

Furthermore, it is possible to express this interval using quantiles
from the gamma distribution (Swift, 2009). More specifically, the
lower endpoint is the (1 — o)/2-quantile of a gamma distribution
with shape parameter d and scale parameter 1/M, and the upper
endpoint is the (1+ o)/2-quantile of a gamma distribution with
shape parameter d + 1 and scale parameter 1/M. Brown, Cai, and
Dasgupta (2003) list a number of existing approaches for building

approximate intervals that are less conservative than Garwood’s
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one and he also suggests strategies to shorten Garwood’s interval by
choosing suitable asymmetric tails.

5.2. Solution method employing statistical estimation based on
classical theory of probability

The method for computing an upper and a lower bound for the
optimal order quantity Q" in a newsvendor problem under Poisson
demand and partial information on parameter /4 can be carried out
in a similar fashion to the binomial case given in Section 4.2. Con-
sider Garwood’s confidence interval (p,4w) for the unknown
parameter /. of the Poisson demand. Let Q,, be the optimal order
quantity for the newsvendor problem under a Poisson(4;,) demand
and Q;,, be the optimal order quantity for the newsvendor problem
under a Poisson(Z,,) demand. With confidence probability « the
optimal order quantity Q" is a member of the set {Qy,,...,Qy,}-

Consider the cost associated with an order quantity Q,

oZPr{Pmsson A=
i=0 i=Q

Also in this case we can prove that Gq (1)

Go(4) = on:Pr{Poisson(M =iHQ —1i)+ ui[’r{[’oisson(&)
i=0 i=Q

(5

is convex in the continuous parameter /. Firstly, we rewrite Eq. (5)
as

00

+(0+ u)Z(l — Pr{Poisson(4) < i}). (6)

i=Q

Ga(4) = 0(Q — 1)

We now show that the second derivative of this function is positive.
Of course, this is equivalent to proving that

2 00
7 (0+u)) (1 —Pr{Poisson(i) < i}) > 0.
i=Q

Therefore, we have to prove that

ZPr{Pmsson y<i} = 0.
i=Q

Theorem 2. For Q > 0

2
;2 ZPr{Pmsson( ) < i}
P

is a positive function of /. > 0

Proof. The proof is given in the supplementary material,
Appendix C. O

Therefore upper (cy,) and lower (cy,) bounds for the cost associ-
ated with a solution that sets the order quantity to a value in the
set {Q},, ..., Qy, } can be easily obtained by using convex optimisa-
tion approaches to find the /* that minimises or maximises this
function over a given interval.

Also in this case, consider the case in which unobserved lost
sales occurred and the M observed past demand data, di,...,dy,
only reflect the number of customers that purchased an item when
the inventory was positive. The analysis discussed above can still
be applied provided that the confidence interval for the unknown
parameter Z of the Poisson(4) demand is computed as

i}(Q-1) +uZPr{P01sson(/1) i}(i—Q).

(1—-0)/2},
dy > (1-0)/2}.

where M = Ej:]Tj, and T; € (0,1) denotes the fraction of time in
day j—for which a demand sample d; is available—during which
the inventory was positive.

To keep the discussion compact, the computational procedure
for Poisson demand is presented in the supplementary material,
Appendix D.

i = mln{/l\Pr{Pmsson(M)) >d} >
) <

Jup = max{4|Pr{Poisson(M)

6. Exponential demand

A random demand exp(/) is said to be distributed according to
an exponential law with rate parameter 2 > 0 if its probability den-
sity function is

Pr{exp(4) = k} = le %,

the expected value of exp(2) is 1/2.

In the context of the newsvendor, the exponential distribution
may occur in two cases. An exponentially distributed random var-
iable exp(/) with rate parameter A can represent the inter-arrival
time between two unit demand occurrences in a Poisson process
with rate parameter /. Alternatively, an exponentially distributed
random variable exp(4) can represent the total demand over the
newsvendor planning horizon. It is clear that the first case can be
easily reduced to the case of a random demand that follows a
Poisson distribution with rate parameter 1. Such a situation can
be handled by following the discussion in the previous section. In
the second case, by using Eq. (1), we easily obtain the optimal
order quantity Q" for exp(Z). This is simply

Q=-1hn (h_’;p) (7)

Furthermore, consider the cost function

k = 0;

Q (o]
GQ) = 0/ (Q —i)Pr{exp(4) =i}di+ u/ (i—Q)Pr{exp() =i}di.
0 Q
Rewrite
G(Q)=o0(Q - I) +(0+ u)/Q (1 — Pr{exp(4) < i})di.
By noting that

o+u

6@ =27 (20 -1 +e ). ®

the optimal cost G(Q") is immediately obtained.

Also in this case we consider the situation in which the param-
eter / is not known and the decision maker is given a set of M past
realisations of the demand. As in the previous case, from these
realisations she has to infer the range of candidate optimal order
quantities and upper and lower bounds for the cost associated with
these quantities. This range will contain the real optimum accord-
ing to a prescribed confidence probability.

6.1. Confidence intervals for the exponential distribution

We discuss the exact confidence interval that can be used to
estimate the rate parameter / of the exponential distribution. Con-
sider a set of M samples d; drawn from a random variable that is
distributed according to an exponential law with unknown param-
eter /. We rewrite d = 3"} d;. Since the sum of M independent and
identically distributed exponential random variables with rate
parameter 4 is a random variable gamma(M, 1/4) that follows a
gamma distribution with shape parameter M and scale parameter
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1/4, the o confidence interval for the unknown parameter 1 is
(b Aub), Where

Jp = min{|Pr{gamma(M,1/2) > d} > (1 — a)/2},
Jup = Max{2|Pr{gamma(M, 1/4) < d} > (1 —«)/2}.

A closed form expression for this confidence interval—that employs
quantiles from the y? distribution—was proposed by Epstein and
Sobel (1954) and takes the following form. Let 2 denote the chi-
square distribution with n degrees of freedom, and G~! (x%,-) denote
the inverse cumulative distribution function of y2. We can write

G (B (1-2)/2) G (8w (1 +9)/2)

2d 2d
Furthermore, it is possible to express this interval using quantiles
from the gamma distribution Trivedi (2001, chap. 10). More specif-
ically, the lower endpoint is the (1 — o)/2-quantile of a gamma dis-
tribution with shape parameter M and scale parameter 1/d, and the
upper endpoint is the (1 + a)/2-quantile of a gamma distribution
with shape parameter M and scale parameter 1/d. Finally, a simple
approximation can be derived by using a normal approximation to
the chi-square distribution.

l]b P ;vub

6.2. Solution method employing statistical estimation based on
classical theory of probability

Consider the confidence interval (4, Ay) for the unknown
parameter 1 of the exponential demand. Let Q;, be the optimal
order quantity for the newsvendor problem under an exp(iy)
demand and Qj;, be the optimal order quantity for the newsvendor
problem under an exp(4;,) demand. Recall that Z is a rate, this is the
reason why the optimal order quantity for the newsvendor prob-
lem under an exp(/y,) gives an upper bound (Q,,,) for the real opti-
mal order quantity. Clearly, the optimal order quantity Q" lies in
the interval [Qy,,Q}]-

It is well-known that the expected total cost G(Q) associated
with an order quantity Q for a given demand rate A > 0 is convex.
Consider the function

Go(7) =0 (Q - %) +(o+u) /Q " (1~ Priexp() < i})di, 9)

in which the order quantity Q is fixed and in which we vary the
demand rate Z > 0. Unfortunately, Gq(4) is not convex in the con-
tinuous parameter /. Nevertheless, we shall prove the following
property for this function.

Theorem 3. Function Gq(2) is quasi-convex in the continuous
parameter A.

Proof. The proof is given in the supplementary material,
Appendix E. O

Because of the property introduced in Theorem 3, we can
employ a simple line search procedure in order to find the 2* that
minimises or maximises this function over a given interval.

Since the optimal order quantity Q" is, with confidence proba-
bility o, a value in the interval [Q;,, Q}], it is possible to compute
upper (c;,,) and lower (c;,) bounds for the cost that a manager will
face, with confidence probability «, whatever order quantity she
chooses in this interval.

Theorem 4. The lower and upper bounds are
Ciy = Gay (ub) €l = Max {G% (/): Ga, (;.ub)}.

Proof. The proof is given in the supplementary material,
Appendix E. O

Unlike the previous cases, it is not straightforward to extend the
above reasoning to the case in which unobserved lost sales
occurred and the M observed past demand data, d,...,dy, only
reflect the number of customers that purchased an item when
the inventory was positive. This is due to the fact that the distribu-
tion of the general sum of exponential random variables is not
exponential, rather it is Hypoexponential. We therefore leave this
discussion as a future research direction.

To keep the discussion compact, the computational procedure
for exponential demand is presented in the supplementary mate-
rial, Appendix F.

7. Computational results

We conducted an extensive computational study to demonstrate
how our approach can complement other existing approaches in the
literature. Our test set comprises a total of 420 instances under a
binomial demand and a total of 200 instances under Poisson and
exponential demands. Parameter values investigated in our full fac-
torial analysis are illustrated in Table 1.

In Fig. G.3, presented in Appendix F of our electronic addendum,
we report box plots illustrating the mean absolute percentage error
(MAPE) with respect to the true optimal cost for the Bayesian
(Bayes) and for the maximum likelihood estimation (MLE)
approaches discussed in Section 3.1. It is clear that both these
approaches are very good, even under small samples, in determin-
ing near-optimal order quantities. Their average MAPE for the real
cost associated with the order quantity selected decreases, in fact,
from about 6%, if 5 samples are used, to 0.15%, if 80 samples are
used. However, the estimation of the cost associated with a given
order quantity is problematic. Under small samples, MAPE for
the estimated cost reported by these approaches is likely to exceed
100% of the true cost and on average amounts to about 45%. Even
when the sample size increases to 80 samples, the average MAPE
remains as high as 10%. This is clearly an issue, since by using these
approaches the decision maker is not able to reliably estimate the
degree of uncertainty associated with the estimated order quantity
or cost. Intuitively, a cost or an order quantity estimated by using
more samples will be more accurate, the question that these
approaches do not answer is how to quantify these different
degrees of accuracy.

Our approach answers this question by identifying a range of
candidate order quantities that, with prescribed confidence proba-
bility, includes the real optimal order quantity for the underlying
stochastic demand process. In addition, for each candidate order
quantity that is identified, our approach produces an upper and a
lower bound for the associated cost. In Fig. 3 we report computa-
tional results for our approach over the test set previously
discussed. Coverage probabilities for order quantity and cost inter-
vals produced by our approach were estimated by averaging one
thousand Monte Carlo (MC) simulations; since this computation

Table 1
Test set employed in our computational analysis.

Parameter Values Description

o 1 Per unit overage
cost

u 2,4, 8,16 Per unit underage
cost

M 5, 10, 20, 40, 80 Number of demand
samples

o 0.9 Confidence level

N 1, 2, 4, 8, 16, 32, 64 Binomial trials

p 0.5, 0.75, 0.95 Binomial success
probability

p) 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64 Poisson/exponential

rate
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Fig. 3. Simulated coverage probabilities; size of the candidate set of order quantities [Q;,, Q] in relation to the true optimal order quantity Q"; size of the confidence interval
cjy» €ip] for the optimal cost in proportion to the true optimal cost G(Q"); and size of the confidence interval [c}'F, cM¥] for the cost associated with the MLE solution in

proportion to G(Q").

turned out to be cumbersome—each MC iteration deals with multi-
ple convex optimisation problems that are solved numerically to
determine order quantity and cost interval bounds—we limited
our analysis to a randomly selected subset of instances covering
approximately 10% of the whole test set; results are summarised
again using box plots. We conducted experiments using both exact
and approximate confidence interval for the distribution parame-
ter. More specifically, the approximate intervals employed are
Agresti-Coull interval (Agresti & Coull, 1998) for the binomial,
Wald’s interval (Brown et al., 2003) for the Poisson, and an approx-
imate interval constructed by exploiting a normal approximation
to the chi-square distribution for the exponential distribution.

Our results demonstrate that true coverage probabilities for
order quantity and cost intervals produced by our approach are
in line with the prescribed confidence level o. When approximate
intervals are employed intervals are generally smaller, coverage
probability may however fall below expectation if sample size is
small. Surprisingly, when demand distribution is exponential,
coverage probability for approximate intervals far exceeds the
prescribed nominal one for small samples and approximate inter-
vals are larger than the exact ones. This is due to the known fact
that a normal approximation to the chi-square distribution per-
forms poorly when sample size is too small. To understand what
exactly happens, one should recall that the expected value of an
exponential random variable with parameter /. is 1/4; since we
are trying to estimate /, a smaller confidence interval for 4 means
a larger interval for the expected demand 1//, which leads to the
conservative results discussed above.

Order quantity and cost intervals reflect manager’s uncertainty
about the optimal decision to be taken, its cost, or about the cost
associated with a given decision, e.g. ordering the amount sug-
gested by an MLE strategy. Uncertainty about the optimal order
quantity, reflected by the size of the interval [Q},, Q};], can be quite
high when sample size is small; e.g. up to 2.5 times the size of the
optimal order quantity Q" under a Poisson distribution sampled 5
times. This uncertainty quickly decreases as the same size
increases. The same is true for the uncertainty about the cost of
an optimal decision, reflected by the size of the interval [c},, c;, ],
which can be as large as 10 times the true cost G(Q") of the optimal
decision Q". By using our approach, a manager can quantify this
uncertainty. For instance, one may determine the cost confidence
interval for an optimal decision determined by an MLE strategy,
i.e.interval [c)'E, cM'E] which provides an effective tool for address-
ing the issue illustrated in Fig. G.3 of the high MAPE that might be
associated with the cost predicted by MLE or Bayes solutions.

8. Limitations and future works

Our analysis is limited to three maximum entropy probability
distributions in the exponential family (Andersen, 1970), each of
which features a single parameter that must be estimated. As
shown by Harremoes (2001), the binomial and the Poisson are
maximum entropy probability distributions for the case in which
all we know about the distribution of a random demand is that it
has positive mean and discrete support that goes from 0 to a
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maximum value N (binomial) or to infinity (Poisson). The exponen-
tial distribution is the maximum entropy probability distribution
for the case in which all we know about the distribution of a ran-
dom demand is that it has positive mean and continuous support
that goes from O to infinity. These considerations show how
broadly applicable the results in this work are.

In this work, the normal distribution—which is part of the expo-
nential family and which is also a maximum entropy probability
distribution—has not been considered. The analysis on the normal
distribution is complicated by the fact that two parameters, mean
and variance, must be considered. Then a number of cases natu-
rally arise: unknown mean and known variance, unknown variance
and known mean, etc. For this reason, in order to keep the size and
the scope of the discussion limited, we decided to leave this discus-
sion as a future work.

Likewise, we left as a future research direction the investigation
of the case in which parameter N, rather than parameter g, of a
binomial distribution is unknown—confidence regions that can
be employed in this case are discussed in Tang and Sindler
(1987)—as well as the case in which both parameters of a binomial
distribution are unknown.

Finally, in principle it may be possible to extend the analysis to
other distributions such as the multinomial, for which confidence
intervals are surveyed in Lee, Nyangoma, and Seber (2002) and
Chafai and Concordet (2009); or the Johnson translation system
(Johnson, 1949), if exact or approximate expressions for the confi-
dence regions of its unknown parameters were available. Unfortu-
nately, we are not aware of any work that investigated these
confidence regions.

9. Conclusions

We considered the problem of controlling the inventory of a
single item with stochastic demand over a single period. We intro-
duced a novel strategy to address the issue of demand estimation
in single-period inventory optimisation problems. Our strategy
analytically combines confidence interval analysis and inventory
optimisation. More specifically, we employed confidence interval
analysis in order to identify a range of candidate order quantities
that, with prescribed confidence probability, includes the real opti-
mal order quantity for the underlying stochastic demand process
with unknown parameter(s). In addition, for each candidate order
quantity that is identified, our approach can produce an upper and
a lower bound for the associated cost. We applied our novel
approach to three demand distribution in the exponential family:
binomial, Poisson, and exponential. For two of these distributions
we also discussed the case in which the decision maker faces unob-
served lost sales. Finally, we presented a comprehensive numerical
study in which we showed that existing strategies based on max-
imum likelihood estimators or on Bayesian analysis may provide—
particularly under small samples—unreliable point estimates of the
cost of a given ordering decision; and that our novel approach can
be employed to better assess the expected total cost associated
with such a decision, as well as the potential discrepancy between
the true optimal decision and the one selected.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ejor.2014.06.007.
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