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A B S T R A C T

In this study, the effect of linear and nonlinear slip boundary conditions on the flow of a slow viscous fluid is
investigated numerically. The boundary integral representation of the transient Stokes equations is given in
primitive variables form. The fundamental solution to the steady Stokes equations is employed in the boundary
element method (BEM) formulation. The time derivative is taken to the boundary with the dual reciprocity
method and approximated by the finite difference method (FDM) until a steady-state is achieved. It is assumed
that the fluid is capable of slip, with the slip velocity expressed as a function of shear rate at the wall. In the
numerical tests, the fluid is initially assumed to be stationary; at each time step, the velocity boundary
conditions along the walls are updated as the shear forces vary with time.

1. Introduction

The area of micro and nanofluidics is fundamentally important due
to the need of understanding the nature of fluid flow at these scales [1].
It has been demonstrated that, at these scales, the mechanical proper-
ties at the fluid-solid interface cannot be understood by extrapolating
known properties of the bulk fluid [2]. An example of the breakdown of
conventional macroscopic ideas at small scales is the no-slip boundary
condition between a fluid and a solid, which is a fundamental notion in
fluid mechanics [3]. Experimental [4,5], theoretical [6] and numerical
[7,8] simulations at micro/nano scales have provided clear evidence
that wall slip occurs at fluid-solid interfaces, and show that the degree
of boundary slip is a function of the liquid viscosity and the shear rate.
Variation in slip length arises from the fact that, during a collision with
a solid surface, a fluid molecule will transfer some of its tangential
momentum to the solid. The collision frequency is not high enough to
ensure thermodynamic equilibrium, and a certain degree of slip
tangential velocity must be allowed [9].

Luo and Pozrikidis [10] developed a BEM formulation for studying
slip flow over a spherical particle in an infinite fluid and near a plane
wall. In the case of a wall-bounded flow, the numerical model was
axisymmetric and thus reduced to a one-dimensional integral equation
in cylindrical coordinates. Ding and Ye [11] solved oscillatory slip
Stokes flow problems by using a system of integral equations for the
surface velocity and the normal derivative of its tangential component.
The resulting integral equation for the normal derivative contains
singularities of the Cauchy and Hadamard (hypersingular) types.
Frangi et al. [12] employed a combined velocity-surface traction

integral equation to study fluid damping in micro-electro-mechanical
systems (MEMS), which also contains Cauchy and Hadamard singula-
rities. Nieto et al. [15] developed a BEM formulation to study linear slip
flow in rotating mixers, based on the use of the normal and tangential
projections of the velocity integral equation, resulting in a weakly-
singular mixed system of integral equations for the normal and
tangential components of the surface traction. Later, their formulation
was extended to incorporate the nonlinear slip condition [16]. Myong
et al. [17] investigated slip flows in concentric rotating cylinders using
a slip model defined in terms of the Langmuir adsorption isotherm for
the gas-solid surface molecular interaction, instead of the Navier
accommodation coefficient. They showed that despite the conceptual
difference in the two slip models, both are in qualitative agreement
with Monte Carlo simulation data in capturing the general features of
the flow field.

In comparison with linear slip flows, research on nonlinear slip
flows is more limited, with relatively few works reported in the
literature. Newtonian flows with linear and nonlinear slip boundary
condition were studied analytically by Matthews and Hill [6] for simple
pressure driven flows. They observed that although the generalized
Navier boundary condition is highly nonlinear in terms of the assumed
form of solution, the integration constants obtained are still unique.
Numerical solutions of nonlinear slip flows using Thompson and
Troian's model are reported, where lid-driven polar cavity flow and
thin film flow of a fluid between two spheres are considered in [18] and
[19]. In a recent study, Power et al. [9] studied the effect of the
Thompson and Troian's nonlinear slip condition on Couette flows
between concentric rotating cylinders. They showed that, by using this
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type of nonlinear slip condition, it is possible to predict complex
characteristics of the flow field not previously reported in the literature.

In this study, transient Stokes flow in different geometries with
linear and nonlinear slip boundary conditions is numerically investi-
gated using the Dual Reciprocity Boundary Element Method (DRBEM).
The DRBEM for time-dependent Stokes flows was originally developed

by Power and Partridge [20], considering standard no-slip boundary
conditions. The technique gives rise to a system of first-order ordinary
differential equations which is solved here by the Finite Difference
Method (FDM). The method is initially applied to the pressure-driven
flow in a channel, for which analytical solutions are available, and then
extended to study flow past a step and flow in a square cavity.

2. Governing equations

Fluid flow at micro and nano scales is characterized by very low
values of the Reynolds number. In these cases, the non-linear
convective terms in the Navier-Stokes equations can be neglected.
The transient Stokes system of equations can be written in dimension-
less form as [21]
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where ui and p are the components of the fluid velocity and pressure,

Fig. 1. Geometry of Problem 1.

Fig. 2. Comparison of the velocity profiles at the centerline of the channel when L=2 (first row) and L=10 (second row).
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respectively. The above equations are normalized by a characteristic
length scale L and a characteristic velocity scale U, respectively. At
micro-scale conditions, L is of the order of 100 μm while U is of the
order of 1 mm/s. Eq. (1) is supplemented by the initial conditions
u x x u x x( , , 0) = ( , )1 2 0 1 2 and by velocity and surface force boundary
conditions.

The Navier slip boundary condition states that the relative tangen-
tial fluid velocity, ut

f, with respect to the tangential wall velocity, Ut
w,

is proportional to the tangential projection of the local shear rate
[3,13–15],

u U Lsγ− = ˙t
f

t
w

t (2)

where Ls is the slip length, which represents the hypothetical distance
at the wall needed to satisfy the no-slip condition [1]. The variable γ̇t is
the local shear rate projection in the tangential direction defined as
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where ni and si are the i th− component of the normal and tangential
vectors to a boundary surface showing the outward and the counter-
clockwise direction, respectively.

The slip length, Ls, can be either linear or nonlinear. The nonlinear
slip length also depends on the tangential shear rate at the solid
surface, given as [16]

Fig. 3. Transient behaviour of velocity profiles at the inlet, centerline and outlet of the channel with L=10 for Ls=0.25 (first row) and Ls=0.5 (second row).

Table 1
Maximum and minimum values of computed velocity at different time levels for L=10.

Time step Ls=.25 Ls=.5

Max value Min value Max value Min value

3 .0811364 .0240827 .1107291 .0479862
5 .0771529 .0247043 .1059491 .0490092
15 .0750109 .0249984 .1002880 .0499520
50 .0750000 .0249999 .1000000 .0499999

Exact Solution .0750000 .0250000 .1000000 .0500000

Error .0000000 .0000001 .0000000 .0000001

Fig. 4. Velocity profiles at the centerline for several nonlinear slip length values when
L = 2 and b = 0.50 .
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Ls
b

βγ
=

(1 − ˙)t
n

0

(4)

where β γ= 1/ ċ, γ̇c is the critical shear rate, b0 is the slip length in the
case of linear slip condition, and n is an index which depends on the
cohesive property at the interface. The nonlinear slip boundary
condition is obtained by substituting Eq. (4) in Eq. (2). The constant

Fig. 5. Comparison of the velocity profiles at the centerline of the channel for several non-linear slip length when L = 2 and b = 0.50 .

Table 2
Maximum values of computed and exact velocity and error at steady-state for several
nonlinear slip length value when L = 2 and b = 0.50 .

β Computed solution Exact solution Error

0.1 .5295085 .5295084 .0000001
0.2 .5727487 .5727486 .0000001
0.3 .6452848 .6452847 .0000001
0.4 .8090171 .8090169 .0000002

Table 3
Minimum values of computed and exact velocity and error at steady-state for several
nonlinear slip length value when L = 2 and b = 0.50 .

β Computed solution Exact solution Error

0.1 .2795084 .2795084 .0000000
0.2 .3227485 .3227486 .0000001
0.3 .3952846 .3952847 .0000001
0.4 .5590169 .5590169 .0000000

Fig. 6. Geometry of Problem 2.
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Fig. 7. Steady-state solution for different time-step values for Ls = 0.5.
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Fig. 8. Transient velocity profiles at x = 0.171, x = 0.4, x = 4 and x = 8, respectively, Ls = 0.5.
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slip length and the no-slip condition are the limiting cases of Eq. (4)
[16]. The first one refers to the condition when γ̇ → ∞c (β → 0) for
finite values of b0, corresponding to the limit Ls b→ 0 (constant slip
length). On the other hand, the limiting case when n → ∞, for finite
values of γ̇c and b0, corresponds to Ls → 0, resulting in the classical no-
slip condition.

3. Boundary element formulation

The Stokes velocity field has the following direct integral represen-
tation formulae for an arbitrary point x in a closed domain Ω bounded
by a closed surface Γ [21]:

∫ ∫ ∫c u K u dΓ u t dΓ u g dΩx x x y y x y y x y y( ) ( ) − ( , ) ( ) + ( , ) ( ) = ( , ) ( )k
Γ

kj j
Γ

j
k

j
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j
k

jy y y

(5)

where tj are the components of the surface traction, g =j
u

t

∂
∂

j , and

c x( ) = 1
2 for a point located on a smooth part of the boundary and 1

when the point is on the domain. For any boundary point c x( ) = θ
π2

where θ is the internal angle at the considered point in radians.
The fundamental velocity and traction for two-dimensional pro-

blems are given by [21]
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in which r x y= | − | is the distance between the source point x and the
field point y, and δij is the Kronecker delta.

In order to approximate the domain integral on the right-hand side

Fig. 9. Comparison of transient behaviour of the flow at the midplane and outlet for Ls = 0.5.
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Fig. 10. Velocity profiles at x = − 1, x = 0.171, x = 0.4 and x = 4, respectively, for no-slip and various linear slip length values.
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of Eq. (5), the Dual Reciprocity idea is used [22]. The time derivative is
expanded as

∑g
u
t

f α t δx x y( ) =
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= ( , ) ( )j
j

m
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l
m
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=1 (7)

where f x y( , )m are known functions depending only on geometry, αm

are time dependent unknown coefficients and ym, m N= 1, 2, …, , are N
fixed collocation points.

Thus, the domain integral on the right-hand side of Eq. (5) can be
written as
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Applying Green's formula to the above equation yields
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where uj
l and t̂ j

l
are the particular displacements and tractions defined

as
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After substituting Eq. (9) into Eq. (5), the BEM is used to discretize
the boundary integral Eq. (5) by dividing the surface Γ of the problem
into smaller elements as [21]
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where NE is the number of elements.

When Eq. (11) is applied at all collocation points, the set of
equations produced can be written in matrix-vector form as

HU GT HU GT α− = ( − ) (12)

where U and T are velocity and traction vectors at each nodal point,
respectively. H andU are N N(2 × 2 ), G is N N(2 × 3 ) and T is N N(3 × 2 )
matrices in which N is the number of boundary nodes. U and T are

constructed by taking uj
l and t̂ j

l
as columns.

The α vector can be obtained by inverting Eq. (7) so that Eq. (12)
can be written as

HU GT HU GT F U− = ( − ) ̇−1 (13)

in which F is a N N(2 × 2 ) matrix containing the coordinate functions,
f x y( , )m , as columns evaluated at each boundary point.

The time derivative is approximated by a central difference scheme

HU GT HU GT F U U
t

− = ( − ) −
2Δ

m m
m m

( +1) ( +1) −1
( +1) ( −1)

(14)

In order to calculate U (2) (when m=1), two initial conditions are
required. Thus, the equation is solved first using a forward difference
scheme to calculate U (1) by setting the values of U (0). Then, Eq. (14) is
solved step by step for m ≥ 1.

Rearranging Eq. (14) yields

H U GT d− = .͠ m m+1 +1 (15)

where S HU GT F= ( − ) −1, H H= ( − )͠ S
t2Δ and d U= − S

t
m

2Δ
( −1).

Then, the boundary conditions are inserted into Eq. (15). When the
boundary conditions are no-slip the corresponding columns of H͠ and G
are interchanged so that the known values are transposed to the right-
hand side and the unknown values are collected on the left-hand side of
the equation. On the other hand, when the boundary conditions are
slip, the columns of the matrices are arranged using the slip condition

u U Lst− =i
f

i
w

i (16)

as follows

H Lst U Gt d LsH G t d H U( + ) − = ( − ) = −͠ ͠ ͠
i i

w
i i i

w (17)

Finally, the system can be written in the form

Ax b= (18)

and solved for the unknowns x t= i, then the values of ui are calculated
using Eq. (16).

4. Results and discussion

Quadratic boundary elements and linear radial basis functions,
f r= 1 + , are used in the DRM formulation. Solutions are presented at
steady-state in which the pre-assigned tolerance is taken as

u umax | − | ≤ 10
m N L

m m

=1, +

+1 −7
(19)

where N and L are the number of boundary and internal nodes,
respectively.

4.1. Flow in a horizontal channel

The simple problem of flow in a horizontal channel shown in Fig. 1
is investigated for linear and nonlinear slip boundary conditions. The
linear slip boundary condition is considered for two slip length values,
Ls=0.25 and 0.5, while the channel length varies from L=2 to 10. The
nonlinear slip boundary condition is applied by taking n=1, β0 < ≤ 0.4
and L=2.

The analytical solution of the linear and nonlinear slip problem in
dimensional form is given respectively as [15]

Fig. 11. Geometry of Problem 3.
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where L is the channel length, h2 = 2 is the channel height,
P P PΔ = − = 1L0 is the imposed pressure difference, μ = 1 is the

dynamic viscosity and Ls is the slip length. The velocity reduces to
no-slip when the slip length is dropped to zero.

The boundary conditions are specified in Fig. 1. The value of t2 at
the horizontal walls is given by the pressure p, which varies linearly
between its given values at the inlet and outlet.

Fig. 2 shows the results for Ls=0.25 and 0.5 when the channel
length is L=2 and 10. For L=2, 50 boundary elements are used in the
discretization of the boundary. Since the channel is short, the hor-

izontal boundaries are divided into 15 elements while the vertical
boundaries are divided into 10 elements. The time step is taken as

tΔ = 0.1. As the channel length increases to 10, more boundary
elements are needed. Thus, 70 boundary elements are used in the
discretization. The horizontal boundaries are divided into 25 elements
while the same number of elements are used for the vertical bound-
aries. It is also observed that a smaller time step is needed with an
increase in the channel length. Thus, the time step tΔ is reduced to
0.05. Note that, for the values adopted, the velocity u1, at the horizontal
boundaries y h h( = − , ) can be calculated as u = Ls

L1 . It is clear from
Fig. 2 that the numerical values are in excellent agreement with the
analytical ones.

Fig. 3 presents the transient behaviour of the flow for various time
levels when Ls=0.25 and 0.5 with L=10, respectively. It can be seen
that the flow becomes steady in a short period of time.

Table 1 presents the maximum and minimum values of the

Fig. 12. Validation of the DRBEM formulation.
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computed velocity with linear slip at different time levels for Ls=0.25
and 0.5 when the length of the channel is L=10. These values occur at
the channel center and at the wall, respectively. One can see that
convergence is obtained after 50 iterations. The results are in very good
agreement with the exact solution at steady-state. One can see from
Table 1 that for Ls=0.25 and 0.5, the errors for the maximum and
minimum velocities are 10−7 and 10−6, respectively.

Fig. 4 shows the velocity profiles for various nonlinear slip length
values when the channel length is L=2 and b = 0.50 . Fig. 5 shows a
comparison of these velocity profiles with the analytical solution.
Tables 2 and 3 present the maximum and minimum values of the
computed and exact velocities for several nonlinear slip values

β0 < ≤ 0.4 when the channel length is L=2 and b = 0.50 . Again, these
values occur at the channel center and at the wall, respectively. The
BEM solutions are in good agreement with the above steady-state
analytical solution.

4.2. Backward-facing step

As a second test problem, a backward-facing step flow is considered
for several slip length values, Ls, from 0 to 0.75. The boundary

conditions are given in Fig. 6. Linear slip boundary conditions are
inserted at the bottom and top walls of the channel, as well as
downstream of the step. At the inlet of the channel a parabolic velocity
profile is imposed as boundary condition, and at the outlet a developed
flow is considered. Discretization of the channel is more refined from
x=0 to x=4. Overall, 224 boundary elements are used with time step

tΔ = 0.001.
Fig. 7 presents the flow downstream of the step up to the outlet for

tΔ = 0.005, 0.003, 0.001 and 0.0008. The mentioned convergence cri-
teria is reached after 122, 80, 50 and 30 time steps, respectively.

The transient behaviour of the flow is shown in Fig. 8 at different
sections of the channel from downstream of the step up to the outlet for
slip length Ls=0.5. It is observed that the flow reaches steady-state in a
short time. Fig. 9 presents the velocity profiles at the midplane and
outlet of the channel for different time steps. It can be seen that at
steady-state, the flow is fully developed and preserves its parabolic
shape up to the outlet.

Fig. 10 shows the horizontal velocity profiles at different sections of
the channel from inlet to centerline for no-slip and several slip length
values at steady-state. It is observed that at the inlet, the parabolic
shape is preserved and it is shifted to the right depending on the slip

Fig. 13. Effect of the number of boundary elements when S = 1 and Ls = 1.
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length value. It is also observed that after the step, the parabolic
behaviour is distorted up to the centerline. Furthermore, the effect of
the slip condition is more pronounced at the upper wall of the channel
due to the step being placed at its left bottom corner.

4.3. Lid-driven cavity flow

The lid-driven cavity flow is considered as the third problem.
Boundary conditions can be seen in Fig. 11. The upper wall of the
cavity is moving to the right with constant velocity, while the lower wall
is either moving in the same (S=1) or in the opposite (S = − 1)
directions. Linear slip boundary condition is applied on the vertical
and horizontal walls of the cavity.

In order to validate the formulation, different boundary conditions
are initially considered. Fig. 12a shows the solution when both the left
and right walls of the cavity move up with velocity u = 12 , while
Fig. 12b shows the solution when the left wall moves down with
velocity u = − 12 and the right wall moves up with velocity u = 12 , with
the bottom and top walls are stationary. These solutions are in good

agreement with those presented in Fig. 4-(a), (c) of Kelmanson and
Lonsdale [23]. Fig. 12c presents the solution when the upper and lower
walls move in the same direction, S=1 (in this case the top wall of the
cavity moves to the right with velocity u = 21 ), while Fig. 12d presents
the solution when the upper and lower walls move in opposite
directions, S = − 1, with the vertical walls stationary. These solutions
are in good agreement with the ones presented in Fig. 2-(d), (f) of
Gaskell et al. [24].

The effect of the number of boundary elements is tested in Fig. 13
for the case S=1. The boundary of the cavity is discretized into
120, 160, 320 and 360 elements, respectively. The time step is taken
as tΔ = 0.005. It was noted that more boundary elements are needed
with the same time step value when the horizontal walls are moving in
the opposite directions, i.e. S = − 1.

Flow in the cavity for the cases S=1 and S = − 1 with Ls0 ≤ ≤ 1 are
presented in Figs. 14 and 15, respectively. When the horizontal walls of
the cavity move in the same direction, S=1, the velocity field has two
main circulations. The upper one is in the clockwise direction and the
lower one is in the counter clockwise direction. It is observed that as

Fig. 14. Upper and lower walls moving in the same direction, S = 1.
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the slip length value increases to 1, the main circulation cells move
through the corners of the cavity. When the walls of the cavity are
moving in opposite directions, S = − 1, there is one main circulation
cell which is in the clockwise direction and its center has an elliptical
shape. As the slip length value increases the elliptical shape in the
center of the cavity becomes circular and the streamlines become
parallel to the walls.

In Fig. 16, the effect of the slip length value Ls(0 ≤ ≤ 1) on the
vertical and horizontal velocity profiles along the centerline of the
cavity are presented for both cases. It is observed that the magnitude of
the vertical and horizontal velocity decreases with an increase in slip
length value. For the case S = − 1 the magnitude of the vertical velocity
is greater than the one for S=1, and the decrease with respect to the slip
length value is more pronounced.

5. Conclusions

In this study, transient slip Stokes flow in different geometries is
numerically investigated using DRBEM. The time derivative is approxi-
mated by the FDM. Linear and nonlinear slip boundary conditions are
applied. For the channel flow problem, comparisons are made with
analytical solutions for both linear and nonlinear slip boundary
conditions. For the step flow problem, it is observed that the flow is
fully developed at the mid-plane and has the same parabolic behaviour
up to the outlet. In the cavity problem, it is observed that more
boundary elements are needed when the walls of the cavity are moving
in opposite directions, but the time step value can be kept the same. It
is also observed that the effect of the slip length value on the velocity
profiles is more pronounced in this case. The time step value is selected
depending on the geometry of the problem. Due to the implicit nature
of the time integration scheme, quite large time steps can be taken.

Fig. 15. Upper and lower walls moving in opposite directions, S = − 1.
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