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a b s t r a c t 

In benthic macroinvertebrate biomonitoring systems, the target is to determine the status of ecosystems 

based on several biological indices. To increase cost-efficiency, computer-based taxa identification for im- 

age data has recently been developed. Taxa identification errors can, however, have strong effects on the 

indices and thus on the determination of the ecological status. In order to shift the biomonitoring process 

towards automated expert systems, we need a clear understanding on the bias caused by automation. In 

this paper, we examine eleven classification methods in the case of macroinvertebrate image data and 

show how their classification errors propagate into different biological indices. We evaluate 14 richness, 

diversity, dominance and similarity indices commonly used in biomonitoring. Besides the error rate of the 

classification method, we discuss the potential effect of different types of identification errors. Finally, we 

provide recommendations on indices that are least affected by the automatic identification errors and 

could be used in automated biomonitoring. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In biomonitoring, reliable taxa identification is an impor-

tant prerequisite for subsequent index calculation. Diversity, rich-

ness, dominance and similarity indices are often used in aquatic

biomonitoring to determine the status of waterbodies (e.g. Birk

et al., 2012 ). In order to calculate indices, samples of biological

indicator groups such as benthic macroinvertebrates are collected

and the individuals in the samples are identified to taxa. However,

when taxa identification errors are made, these errors may affect

the statistical properties of the estimated indices. This can result

in incorrect ecological status predictions that can further propagate

into unnecessary mitigation measures or even prevent needed mit-

igation measures ( Haase, Pauls, Schindehütte, & Sunderman, 2010 ).

The ever decreasing research and monitoring funding calls for

new and more efficient ways of monitoring and sample processing.

To improve the cost-efficiency of the monitoring process, it needs

to be automated. This can be achieved by building an expert sys-
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em that automatically identifies samples to taxa, calculates biolog-

cal indices based on their abundances and provides the user with

n assessment of the ecological status of the sampled waterbody.

efore the process can be automated, we need a clear understand-

ng on the possible bias involved with automation. However, the

ommon approach followed when designing an expert system in-

olves the selection of its building blocks based on an absolute per-

ormance metric. For the case of the classification block, this met-

ic is usually the absolute classification rate on a pre-defined test

et. While this approach, indeed, leads to a good selection in the

ases where a classifier is clearly superior compared to its compe-

ition, it might lead to a bad selection without taking into account

he bias introduced by the tested data ( Ali, Lee, & Chung, 2017 ). 

To address the high costs of the identification step in ben-

hic macroinvertebrate biomonitoring, researchers have explored

.g. citizen-science monitoring ( Dickinson et al., 2012 ) and au-

omated identification methods (e.g. Blaschko et al., 2005; Cul-

erhouse et al., 2006; Lytle et al., 2010; Kiranyaz et al., 2011;

rje, Kärkkäinen, Turpeinen, & Meissner, 2013; Joutsijoki et al.,

014 ). However, such approaches may introduce additional bias

nd variation into biological indices calculated from samples due

o identification errors. Indeed, Gardiner et al. (2012) noted that

isidentification in citizen-science monitoring results in overesti-
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ation of species richness ( Magurran, 2004 ) and Simpson’s diver-

ity ( Simpson, 1949 ). 

The goal of this study is to empirically investigate the statisti-

al properties of biological indices when the automated identifica-

ion of individuals contains misidentifications. Similar studies have

een done in remote sensing for landscape pattern indices ( Chen,

amaguchi, & Chen, 2010; Shao, Liu, & Zhao, 2001; Wickham,

’Neill, Riitters, Wade, & Jones, 1997 ), e.g. mean patch size, total

dge and contagion index. Shao et al. (2001) included Shannon’s

nd Simpson’s diversity indices in their study but concentrated on

ariation caused by classification errors rather than bias. Scardi,

ataudella, Dato, Fresi, and Tancioni (2008) studied an expert sys-

em based on multimetric indices of fish assemblages but did not

ake into account possible identification errors on the fish species.

nderstanding the bias and extra variation caused by identifica-

ion errors is a prerequisite step in shifting towards automated

iomonitoring and ecological status assessments. Recent studies

n the field of expert systems have highlighted the importance of

easuring not only absolute accuracy but also quality. Biswas and

iswas (2017) , Piltan and Sowlati (2016) and Carayannis, Grogor-

udis, and Goletsis (2016) have developed multi-metric criteria to

easure performance based on quality, while Abdar, Zomorodi-

oghadam, Das, and Ting (2017) have used sensitivy, specificity

nd other statistics of the confusion matrix to assess the quality of

lassifiers. In remote sensing, Chen et al. (2010) have used the bias

aused in index values due to classification errors as a measure of

uality. However, to our knowledge, there exist no comprehensive

tudies on the quality of classification as performance measure in

utomated biomonitoring. 

We consider several commonly derived biological indices i) de-

cribing richness, i.e. species richness ( Magurran, 2004 ), Margalef’s

iversity ( Clifford & Stephenson, 1975 ) and Chao’s estimator of the

bsolute number of species in an assemblage ( Chao, 1984 ), ii) de-

cribing diversity, i.e. Shannon index ( Shannon & Weaver, 1963 )

nd Simpson’s index ( Simpson, 1949 ), iii) describing evenness and

ominance, i.e. Shannon evenness ( Pielou, 1969; 1975 ), Simpson’s

venness ( Smith & Wilson, 1996 ) and Berger–Parker index ( Berger

 Parker, 1970 ), and iv) describing similarity of two assemblages,

.e. Sørensen index ( Sørensen, 1948 ), percent model affinity index

 Novak & Bode, 1992; Renkonen, 1938 ), Canberra metric ( Lance &

illiams, 1967 ), Euclidian similarity ( Clifford & Stephenson, 1975 ),

orisita–Horn index ( Horn, 1966 ) and Jaccard similarity ( Jaccard,

901 ). The similarity indices compare the similarity of species dis-

ributions in two conditions, e.g. reference and monitored condi-

ions in aquatic systems. Richness, diversity and dominance indices

re calculated for a single species distribution, i.e. for a monitored

ample. 

In the current work, we are especially interested in estimat-

ng the error propagation of indices that use computer-based taxa

dentification from image data. In automated identification, the

ask is to classify n images of individuals belonging to c classes us-

ng features extracted from the images (e.g. width, height, mean

rey value, etc.). Various classification methods can be used in

utomated identification (see e.g. Hastie, Tibshirani, & Friedman,

009; Duda, Hart, & Stork, 2001 ). However in all approaches, the

lassifiers are trained with a training data of known identity (i.e.

he gold standard). Subsequently, optimal parameter values are se-

ected based on classification error of a validation data and the fi-

al error rate is evaluated with an independent test data set. Often,

he best classifier is the one having lowest error rate. Besides error

ate, we can also estimate a confusion matrix which provides the

robabilities of different correct and incorrect classifications. When

onsidering the estimation of the indices, the confusion matrix is

f great interest as its properties affect the amount of bias and

ariation propagated. We perform a simulation study to showcase

he effects of different types of confusion matrices on error propa-
ation. We acknowledge that there are other sources of bias but in

his paper we focus on bias due to classification errors. 

Using a benthic macroinvertebrate image data, we illustrate

he effect of classification errors on biological indices. We use

leven classifiers: Random Bayes Array (RBA, Ärje et al., 2013 ),

upport Vector Machines (SVM, KSVM, Cortes & Vapnik, 1995 ),

andom Forest (RF, Breiman, 2001 ), Linear Discriminant Analysis

LDA, Hastie et al., 2009 ), Radial Basis Function Network (RBFN,

aykin, 2009; Kiranyaz et al., 2011 ), Multilayer Perceptron (MLP,

aykin, 2009; Kiranyaz, Ince, Yildirim, & Gabbouj, 2009 ), Reference

iscriminant analysis + nearest neighbor (KRDA, Iosifidis, Tefas, &

itas, 2014a ), Graph Embedded Extreme Learning Machine (GEELM,

osifidis, Tefas, & Pitas, 2015 ), Graph Embedded Kernel Extreme

earning Machine (GEKELM, Iosifidis, Tefas, & Pitas, 2014b ) and

aïve Bayes (NB, Hastie et al., 2009 ). Some of these methods have

een evaluated with the same image data in Ärje et al. (2013) with

mall changes. However, the target of the current work is to com-

are the statistical properties of estimated indices using the results

f these eleven classifiers. In the comparisons, we use simulation-

ased results. Finally, we provide some recommendations on which

f the indices are least biased by classification errors and could

hus be used in automated biomonitoring. 

. On biological indices and their properties 

In this section, we first describe the set-up for data collection,

econd, the considered indices with respect to the given set-up and

hird, the modified set-up in the case of misclassification is out-

ined. 

.1. The set-up 

Mathematically, let { ω 1 , . . . , ω c } be the finite set of c classes

uch that p h is the probability of class ω h in a monitored situ-

tion and q h is the probability of class ω h in a reference situa-

ion. For simplicity, we assume that a random sample of counts

 = (X 1 , . . . , X c ) is drawn from a multinomial distribution M ( n , p ),

here n is sample size and p = (p 1 , . . . , p c ) the probabilities of

nterest. Then, the natural estimator of p h is ˆ p h = X h /n, a max-

mum likelihood estimator for h = 1 , . . . , c. Similarly, the random

ample Y = (Y 1 , . . . , Y c ) of size m is drawn from a multinomial

istribution M ( m , q ), where a natural estimator for the values of

 = (q 1 , . . . , q c ) is ˆ q h = Y h /m . 

Below, we present the indices ( Table 1 ), give the references for

he statistical properties, if known, and further outline some prac-

ical details. The ranges of the indices are used in the comparison

f index behavior in Section 4 . 

We tested three richness indices: 1) species richness ( S ,

agurran, 2004 ), 2) Chao’s estimator of the absolute number of

pecies in an assemblage ( S Chao , Chao, 1984 ) and 3) Margalef’s di-

ersity ( D Mg , Margalef, 1958; Clifford & Stephenson, 1975 ). Smith

nd Grassel (1977) studied the theoretical mean and variance of S .

sing those results, the same properties of D Mg could easily be de-

ived. Chao (1987) derived variance for S Chao = S + F 2 1 / 2 F 2 . Due to

ases F 2 = 0 , we use instead the formula in Table 1 by Magurran

nd McGill (2010) . 

We also study the effect of classification errors on two diversity

ndices: 4) Shannon’s index ( H 

′ , Shannon & Weaver, 1963 ) and 5)

impson’s index ( D x , Simpson, 1949 ). Tong (1983) presents some

istributional properties for H 

′ assuming multinomial distribution.

aninski (2003) studies nonparametric estimation of H 

′ and gives

n overview on its bias and variance. 

Further, we study three evenness/dominance indices in our

nalyses: 6) Shannon evenness ( J ′ , Pielou, 1969; 1975 ), 7) Simp-

on’s evenness ( E 1/ D , Smith & Wilson, 1996 ) and 8) Berger–Parker
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Table 1 

Biological indices used for analyses and their ranges. 

Index Formula Min Max 

Richness 

1) Species richness S x = 

∑ c 
h =1 I(X h > 0) 0 c 

2) Chao’s estimator S Chao,x = S x + 

F 1 ,x (F 1 ,x −1) 
2(F 2 ,x +1) 

, where 0 (c 2 − c + 2) / 2 if n > c 

F 1 ,x = 

∑ c 
h =1 I(X h = 1) and F 2 ,x = 

∑ c 
h =1 I(X h = 2) (c 2 + c) / 2 if n = c

3) Margalef’s diversity D Mg,x = 

S x −1 
log n 

0 (c − 1) / log n 

Diversity 

4) Shannon index H ′ x = − ∑ c 
h =1 ˆ p h log ̂  p h 0 log c 

5) Simpson’s index D x = 

∑ c 
h =1 ˆ p 2 

h 
1/ c 1 

Evenness/dominance 

6) Shannon evenness J ′ x = H ′ x / log S x 0 1 

7) Simpson’s evenness E 1 /D,x = 

1 /D x 
S x 

0 1 

8) Berger-Parker index d x = max (X ) /n 1/ c 1 

Similarity 

9) Sørensen similarity QS = 

2 S xy 

S x + S y , where S xy = 

∑ c 
h =1 I(X h > 0 ∧ Y h > 0) 0 1 

10) Percent model affinity index PMA = 1 − 1 
2 

∑ c 
h =1 | ̂ p h − ˆ q h | 0 1 

11) Canberra metric 1 − CM = 1 − 1 
S x + S y −S xy 

∑ c 
h =1 

| X h −Y h | 
(X h + Y h ) 0 1 

12) Euclidian similarity 1 − D 2 
Eucl 

= 1 − ∑ c 
h =1 ( ̂ p h − ˆ q h ) 

2 -1 1 

13) Morisita–Horn index C λ = 

2 
∑ c 

h =1 X h Y h 
(D x + D y ) nm 

0 1 

14) Jaccard similarity coefficient J = 

S xy 

S x + S y −S xy 
0 1 
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index ( d , Berger & Parker, 1970 ). J ′ is a scaled version of H 

′ that

measures evenness instead of diversity. 

We study the effect of classification errors on six similar-

ity indices: 9) Sørensen similarity ( QS , Sørensen, 1948 ), 10) per-

cent model affinity index ( PMA , Renkonen, 1938; Novak & Bode,

1992 ), 11) Canberra metric ( 1 − CM, Lance & Williams, 1967 ), 12)

Euclidian similarity ( 1 − D 

2 
Eucl 

, Clifford & Stephenson, 1975 ), 13)

Morisita–Horn index ( C λ, Horn, 1966 ) and 14) Jaccard similarity

coefficient ( J , Jaccard, 1901 ). Theoretical properties of the PMA

in the case of multinomial distribution are presented in Ärje,

Choi, Divino, Meissner, and Kärkkäinen (2016) and the references

therein. For the calculation of 1 − CM, classes with zero abundan-

cies in both samples are left out. Janson and Vegelius (1981) stud-

ied the asymptotical standard error of J . Further, Albatineh and

Niewiadomska-Bugaj (2011) discovered the expectation for cor-

rected form of the index. C λ has a maximum value not equal to

one but ’about one’ ( Horn, 1966 ). 

To our knowlegde, the properties of the other diversity, even-

ness, dominance and similarity indices have only been studied

with simulation experiments (e.g. Magurran, 2004; Smith, 2002 ). 

2.2. The effect of classification errors on indices 

The classification of objects performed by either human or ma-

chine may include errors which affect the values of indices calcu-

lated from classified samples. Let us formulate the set-up as pro-

posed by Healy (1981) and Fortier (1992) . The confusion matrix

A of a specified classification procedure is assumed to be known.

Its element a hh ′ is the probability of classifying an object into the

class h when originating from the class h ′ . Further, 
∑ 

h a hh ′ = 1

and a hh ′ ≥ 0 , h, h ′ = 1 , . . . , c. Then, the probability of an object to

be classified to the class h is 

˜ p h = 

c ∑ 

h ′ =1 

a hh ′ ∗ p ′ h . 

The interesting consequence is that the allocated counts ˜ X 1 , . . . , ˜ X c 
of size n are drawn from a multinomial distribution M(n, ̃  p ) in-

stead of M ( n , p ), respectively ˜ Y ∼ M(m, ̃  q ) . As the distribution of

the allocated counts is biased, the identification errors may prop-
gate into the expected values of the indices causing bias in the

ndex values. 

In this paper, we do not comment on the properties of the in-

ices per se but restrict our analyses to study the error propaga-

ion into the indices due to classification errors as follows. Using

 general notation of index I with correct classification and index
˜ 
 with incorrect classification, we concentrate on the proportional

ias defined as follows 

 bias = 

E( ̃ I ) − E(I) 

| max I − min I| , (1)

here the expectations are Monte Carlo estimates. Similar propor-

ional bias has been used by Chen et al. (2010) to study error prop-

gation in remote sensing. The %bias provides a measure of the

iological significance of the bias and enables us to compare the

ias in different biological indices over a range of taxa distribu-

ions. Similarly, we study the effect of classification errors on the

ariation of the biological indices as follows 

 sd = 

sd( ̃ I ) − sd(I) 

| max I − min I| , (2)

here the standard deviations are Monte Carlo estimates. 

. Materials and methods 

.1. Data 

To study the effects of identification errors on biological in-

ices, we use two datasets. The first data is a benthic macroin-

ertebrate image data set with 6814 individual images of 33 lotic

axa and two lentic gastropod taxa. Lotic specimens were col-

ected during research projects of the Finnish Environment Insti-

ute and the national freshwater biomonitoring program in Finland,

hereas lentic specimens were collected by the department of Bi-

logical and Environmental Sciences at the university of Jyväskylä.

he taxonomic identities of the specimens were verified by three

axonomic experts and are considered to be true (i.e. form the

old standard). The macroinvertebrates were batch imaged onto

 computer one taxa at a time using VueScan 

(c) software ( http:

/www.hamrick.com/ , Phoenix, Arizona, USA) with an HP Scan-

et4850 flatbed scanner at an optical resolution of 2400 d.p.i. The

http://www.hamrick.com/
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mages were normalized to the same intensity range and color bal-

nce. The specimens were segmented from these batches to their

ndividual images and from each image, a total of 64 geometric

nd color scale features were extracted. The feature extraction was

one with ImageJ ( Rasband, 1997-2010 ). Detailed information on

he features and taxa used can be found in Ärje et al. (2013) . 

The second data set is abundance data of benthic macroinverte-

rates gathered during the national freshwater biomonitoring pro-

ram 2006–2013 in Finland. The monitoring program includes a to-

al of total 12 stream types (small, medium and large or extra large

eatland and woodland streams for northern and southern Finland

eparately). For details, see Aroviita et al. (2012) . For each stream

ype, there are reference streams that are considered to be in near

atural condition unaltered by human-induced stressors and non-

eference streams considered to be impacted by human actions.

he second data set comprises a total of 149 taxa. We restrict our

nalysis to taxa that are present in both data sets and combine

ome taxa into groups to obtain equal taxa lists (i.e. 32 taxa) for

oth the image data and the monitoring data. The taxa list and

nfo of combined taxa can be found in the appendix ( Table 7 ). 

.2. Classification 

We first use the image data for taxa identification, i.e. classifi-

ation. The data is divided 10 times into training (33.33 %), vali-

ation (33.33 %) and testing (33.33 %) sets. Each classifier is first

rained with the training data and the validation data is utilized

o find the optimal parameter values. Then, training and validation

ata are combined and used to train the classifier with the cho-

en parameter values. Finally, we evaluate the classifier with the

est data. This procedure is repeated 10 times, once with each data

plit. The error rate of a classifier is then calculated as the average

lassification error from these 10 repetitions. Similarly, we obtain

he confusion matrix of a classifier as the average from the 10 rep-

titions. 

We explore the effects of misclassifications with eleven differ-

nt classifiers: Naïve Bayes (NB, Hastie et al., 2009 ), Linear Dis-

riminant Analysis (LDA, Hastie et al., 2009 ), Random Forest (RF,

reiman, 2001 ), Random Bayes Array (RBA, Ärje et al., 2013 ), Sup-

ort Vector Machines (SVM, KSVM, Cortes & Vapnik, 1995 ), Ref-

rence Discriminant analysis + nearest neighbor (KRDA, Iosifidis

t al., 2014a ), Graph Embedded Extreme Learning Machine (GEELM,

osifidis et al., 2015 ), Graph Embedded Kernel Extreme Learning

achine (GEKELM, Iosifidis et al., 2014b ), Multilayer Perceptron

MLP, Haykin, 2009; Kiranyaz et al., 2009 ) and Radial Basis Func-

ion Network(RBFN, Haykin, 2009; Kiranyaz et al., 2011 ). Some of

he classifiers are known to perform poorly with the macroinver-

ebrate image data ( Ärje et al., 2013 ) but are included as examples

o fully explore to gradient of error propagation. 

NB and LDA are Bayesian classifiers (e.g. Hastie et al., 2009 )

hat both assume that features are normally distributed and which

lassify observations according to the highest posterior probabil-

ty. LDA assumes that all classes have a common covariance matrix

hereas NB that features are independent from each other. 

RF ( Breiman, 2001 ) is a collection of random decision trees. For

ach tree, the classifier takes a bootstrap sample of the training

ata. For each node in a tree, RF randomly selects a subset of M

eatures and chooses the one that best separates the data based

n entropy. RF builds k trees and uses voting to get the final class

redictions for the test data. 

RBA ( Ärje et al., 2013 ) is an implementation of RF for quadratic

iscriminant analysis (QDA) which is a generalization of LDA that

llows arbitrary covariance matrices. RBA forms a collection of ran-

om QDAs. Each QDA classifier is trained using a bootstrap sample

f the training data and M randomly selected features. RBA consists

f k random QDAs. It uses either voting, posterior weighted voting,
veraged posterior probabilities, or highest average rank to deter-

ine the final class predictions of the test data. RBA can also be

sed to evaluate the importance of the features, which can thereon

e used as weights when sampling the features for each random

DA. Here we used averaged posterior probabilities to make the

nal class decision. 

SVM ( Cortes & Vapnik, 1995 ) is a non-probabilistic binary clas-

ifier that determines the hyperplane separating the two classes

ith maximal margin. Non-linear decision functions are obtained

y exploiting the kernel trick, which inherently maps the input

ata to a feature space of high dimensions. The determination of

he optimal hyperplane separating the two classes in this high-

imensional feature space corresponds to the determination of a

on-linear decision function in the input space. Multi-class classi-

cation is obtained by combining multiple binary classifiers. In this

aper we employ the One-Versus-Rest combination scheme. KSVM

s an extension of SVM that uses a radial basis function kernel. 

KRDA ( Iosifidis et al., 2014a ) is an extension of Kernel Discrim-

nant Analysis (KDA) that tries to overcome the assumption of the

atter concerning the optimal representation of each class. KDA

mploys the class mean for class representation, assuming that the

lasses in the feature space are unimodal and follow Gaussian dis-

ributions. However, since these two assumptions are usually not

alid in many real world problems, class representation by the

lass mean is suboptimal. KRDA overcomes this problem by deter-

ining both the optimal class representation and data projection. 

GEELM ( Iosifidis et al., 2015 ) is an algorithm for Single-hidden

ayer Feedforward Neural (SLFN) network training that exploits ge-

metric data relationships. GEELM first nonlinearly maps the data

rom the input space to a high-dimensional feature space based on

andom weights. Then a regularized regression problem is solved.

he regularization term in this process is designed in order to

xploit geometric data (or class) relationships encoded in an in-

rinsic and a penalty graph. In our experiments we employed the

raphs used in Local Fisher Discriminant Analysis ( Sugiyama, 2007 ,

FDA). 

GEKELM is a kernel extension of GEELM. The main idea of

EKELM is that the networks hidden layer can be formed by a very

arge (even infinite) number of neurons. In this case, the ELM net-

ork is similar to an infinite neural network in which the train-

ng data similarities are encoded in a kernel matrix ( Iosifidis et al.,

014b ). GEKELM trains such a network by also exploiting geometric

ata (or class) relationships encoded in an intrinsic and a penalty

raph. For GEKELM we also employ the LFDA graphs. 

MLPs ( Haykin, 2009; Kiranyaz et al., 2009 ) are feed-forward,

ully-connected Artificial Neural Networks (ANNs), which can be

escribed as directed graphs where each node is performing some

ctivation function to its inputs and forwarding the result to the

nput of other neurons in the adjacent layer. MLPs may contain one

r more layers of hidden neurons. In this work, for all experiments,

 conventional back-propagation training rule with a global adap-

ation of the learning rate (with initial value of 0.001) is used and

oth shallow (single hidden layer of 32 neurons) and deep (two

idden layers of 64 and 32 neurons, respectively) MLP configura-

ions are considered. 

RBFN ( Haykin, 2009; Kiranyaz et al., 2011 ) is another well-

nown feed-forward, fully-connected ANN type which can approx-

mate any solution space or function as a sum of N RBFs (such as

aussian functions) in a single hidden layer. For training of RBFN,

iven the specified maximum number of hidden neurons and the

pread parameter of each Gaussian neuron, for each epoch a hid-

en layer neuron is added to minimize training Mean-Squared Er-

or (MSE) below specified target level. For each data partition, the

pread parameter is chosen to minimize the validation data clas-

ification error. Both shallow (64 hidden neurons) and deep (384

idden neurons) RBFN configurations are considered. 
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Table 2 

Classification errors using 66.6/33.3 split for training and test data. The classification errors are averages from 10 runs, standard deviation for classification errors is presented 

in parenthesis. 

GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP 

CE 0 .159 (0.006) 0 .161 (0.008) 0 .167 (0.006) 0 .169 (0.007) 0 .190 (0.008) 0 .194 (0.007) 0 .229 (0.008) 0 .240 (0.008) 0 .245 (0.007) 0 .514 (0.009) 0 .892 (0.015) 

Table 3 

Average proportional bias for diversity, richness, evenness and dominance indices with sample size n = 500 . Standard deviation of the proportional bias is presented in 

parenthesis. 

%Bias 

Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP 

S 0 .18 (0.06) 0 .18 (0.06) 0 .22 (0.07) 0 .17 (0.06) 0 .20 (0.06) 0 .19 (0.07) 0 .23 (0.07) 0 .23 (0.08) 0 .27 (0.07) 0 .30 (0.08) 0 .27 (0.09) 

S Chao 0 .20 (0.07) 0 .21 (0.07) 0 .25 (0.08) 0 .19 (0.07) 0 .22 (0.07) 0 .22 (0.07) 0 .24 (0.08) 0 .25 (0.08) 0 .29 (0.08) 0 .29 (0.09) 0 .29 (0.09) 

D Mg 0 .18 (0.06) 0 .18 (0.06) 0 .22 (0.07) 0 .17 (0.06) 0 .20 (0.06) 0 .19 (0.07) 0 .23 (0.07) 0 .23 (0.08) 0 .27 (0.07) 0 .30 (0.08) 0 .27 (0.09) 

H ′ 0 .07 (0.03) 0 .07 (0.03) 0 .08 (0.03) 0 .07 (0.04) 0 .07 (0.03) 0 .07 (0.04) 0 .10 (0.04) 0 .09 (0.05) 0 .10 (0.04) 0 .14 (0.05) 0 .11 (0.08) 

J ′ 0 .07 (0.03) 0 .07 (0.03) 0 .08 (0.03) 0 .07 (0.04) 0 .07 (0.03) 0 .07 (0.04) 0 .10 (0.04) 0 .09 (0.05) 0 .10 (0.04) 0 .14 (0.05) 0 .11 (0.08) 

D 0 .03 (0.03) 0 .03 (0.02) 0 .03 (0.02) 0 .03 (0.03) 0 .02 (0.02) 0 .03 (0.03) 0 .04 (0.03) 0 .03 (0.03) 0 .04 (0.03) 0 .05 (0.03) 0 .05 (0.05) 

E 1/ D 0 .04 (0.02) 0 .03 (0.02) 0 .04 (0.02) 0 .04 (0.02) 0 .04 (0.02) 0 .05 (0.02) 0 .03 (0.02) 0 .04 (0.02) 0 .04 (0.02) 0 .05 (0.03) 0 .08 (0.07) 

d 0 .05 (0.04) 0 .03 (0.03) 0 .04 (0.04) 0 .05 (0.04) 0 .03 (0.02) 0 .05 (0.05) 0 .05 (0.04) 0 .05 (0.04) 0 .05 (0.05) 0 .07 (0.05) 0 .08 (0.08) 
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3.3. Simulation study 

We study the effect of classification errors on the richness, di-

versity, evenness and dominance indices in each of the 12 river

types for both, reference and non-reference compositions, result-

ing in a total of 24 different taxa distributions. We use the refer-

ence and non-reference streams as the two conditions being com-

pared with the similarity indices. In biomonitoring, the reference

condition is often considered to be a known (i.e. fixed) target dis-

tribution. Therefore, we study the error propagation of the simi-

larity indices in two cases. In the first case, the reference sample

is assumed to be known, i.e. correctly identified by several human

experts, and the non-reference sample is classified using the afore-

mentioned classifiers. In the second case, both samples are classi-

fied using the classifiers and may contain classification errors. 

First, we draw 10 0 0 samples from multinomial distributions, X

∼ M ( n , p ) for non-reference streams and respectively, Y ∼ M ( n , q )

for reference streams. The taxa distributions p and q are weighted

averages over one river type’s non-reference and reference stream

monitoring samples using sample sizes as weights. We calculate

the values of all richness, diversity, evenness, dominance and sim-

ilarity indices, denoted by I . As a result, we obtain an empiri-

cal distribution of each index I , called the correct distribution be-

low. Second, we draw 10 0 0 samples from multinomial distribu-

tions ˜ X ∼ M(n, ̃  p ) and 

˜ Y ∼ M(n, ̃  q ) , where ˜ p = A p , ˜ q = A q and A

is the average confusion matrix of a classifier. Using the allocated

counts, we calculate the values of each index, denoted by ˜ I , and

the obtained empirical distribution is called the allocated distri-

bution of the index I . Finally, we compare the distributions of the

correct and allocated index values to see how the different indices

are affected by misclassifications. In this work, we restrict sample

sizes to n = m = { 20 0 , 50 0 , 10 0 0 } . 
4. Results 

Considering solely classification error, the best classifier is

GEKELM and the worst MLP (see Table 2 ). However, we are more

interested in the end result, i.e. how index values affecting deci-

sion making are biased due to classification errors. Below we dis-

cuss the results summarized over all river types, i.e. 24 different

taxa distributions for the richness, diversity, evenness and domi-

nance indices and 12 different taxa distribution pairs for the sim-

ilarity indices. As an example, Figs. 1 –3 show the results for the
ost common river type of the monitoring data, medium-sized

on-reference peatland streams in southern Finland. All following

ables are ordered based on the classification errors of Table 2 . 

To evaluate the severity of error propagation to biological

ndices, we concentrate on the proportional bias in Eq. (1) .

able 3 shows the average proportional bias for the diversity, rich-

ess, evenness and dominance indices over all river types, i.e. 24

ifferent species distributions. As the sign of the bias can be dif-

erent among the classifiers even in one river type and different

or the same classifier in different river types, in Table 3 the aver-

ge is taken over absolute proportional bias. With our parameters

 c = 32 , n = 500 ), S Chao has a very high maximum value which is

eached if there is one large class with the majority of observa-

ions and all other classes have a single observation in them. As

his is a highly unlikely scenario, we calculate the %bias in S Chao 

roportional to the range of S , which is c , instead of | max S Chao −
in S Chao | . 

From Table 3 , it is evident that richness indeces 1)–3) S, S Chao 

nd D Mg are sensitive to classification errors. For these indices,

ven the best classifiers result in approximately 20 %bias. All three

ndices are based on presence/absence data and linked to the num-

er of species, which may well be the cause of their sensitivity.

his is due to the fact that even one misclassified observation can

ring a new taxa into the calculation and cause overestimation in

he number of taxa. This conclusion is also supported by Fig. 1 as

he allocated index value distributions for S, S Chao and D Mg are bi-

sed upwards for all classifiers. 

The rest of the diversity, evenness and dominance indices have

roportional bias 10% or under ( Table 3 ), at least with the bet-

er classifiers that have classification errors under 30%. Actually,

ven for the poorly performing classifiers, NB (ce > 51%) and MLP

ce > 89%), the error propagation into the biological indices is sur-

risingly small. The reason for this is that, the calculation of these

ndices is based on taxa proportions instead of counts. Therefore

ew individual misclassifications have less influence on the index

alues, at least with reasonably large sample size. E 1/ D seems to

ave a slightly larger %bias than D because it is proportional to S

nd therefore affected more by extra species. Note that the pro-

ortional bias for H 

′ and J ′ is identical, as the latter is a scaled

ersion of the former. The Berger-Parker index, d , depends only on

he most common taxa in the sample so it may have high %bias in

iver types where the most common taxa is one with a higher clas-
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Fig. 1. The effect of classification errors on richness, diversity, evenness and dominance indices for medium-sized non-reference peatland streams in southern Finland. Here, 

X ∼ M (500, p ). The red boxplots represent the correct index value distributions. The blue boxplots represent the allocated index value distributions. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article). 
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ification error rate. However, this problem can be overcome since

iologists are likely to choose classification methods that identify

he most common taxa of a sampling site well. 

According to Tables 4 and 5 , none of the similarity indices are

s sensitive to classification errors as the richness indices based on

resence/absence data ( Table 3 ). For similarity indices, the qual-
ty of the classification method has a more clear impact as MLP

roduces severe %bias in the index values when compared to

he other classifiers. However, not taking MLP into account, all

f the similarity indices have proportional bias mostly under 10%

 Table 4 ). QS and J are based on presence/absence data but are

uch less biased than S, S Chao and D Mg . This may be because in
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Fig. 2. The effect of classification errors on similarity indices for medium-sized non-reference peatland streams in southern Finland when the reference sample is assumed 

to be known. Here, X ∼ M (500, p ) and Y ∼ M (500, q ). The red boxplots represent the correct index value distributions. The blue boxplots represent the allocated index value 

distributions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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QS and J the number of species affects both the numerator and

denominator. Extra species due to misclassifications thus increase

both the number of common taxa and the number of observed

taxa and therefore do not increase the final index value as much.

Euclidian similarity, 1 − D 

2 
Eucl 

, and PMA index have very similar for-

mulas, yet 1 − D 

2 
Eucl 

has smaller proportional bias than the PMA
ndex. Unlike PMA , 1 − D 

2 
Eucl 

is affected by how the observations

re distributed in non-common classes, giving a larger distance if

he observations in the non-common classes are distributed evenly.

herefore Euclidian similarity has range [ −1 , 1 ] , compared to the

ange of the PMA [0, 1]. 
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Fig. 3. The effect of classification errors on similarity indices for medium-sized non-reference peatland streams in southern Finland when both samples may contain clas- 

sification errors. Here, X ∼ M (500, p ) and Y ∼ M (500, q ). The red boxplots represent the correct index value distributions. The blue boxplots represent the allocated index 

value distributions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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The proportional bias increases the most for the Canberra met-

ic, 1 − CM, when both samples are classified (see Table 5 ), com-

ared to the case when the reference sample is assumed to be

nown ( Table 4 ). In fact, all similarity indices have higher ex-

ected values when both samples are classified, compared to the

ase when the reference sample is assumed to be known (see
igs. 2 and 3 ). The index values are often biased downwards when

nly one of the samples is classified and biased upwards when

oth samples contain classification errors. This may be caused by

he fact that classification errors increase the entropy and evenness

f the samples. The higher the evenness in both samples, the more

imilar they become. 
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Table 4 

Average proportional bias for similarity indices with sample size n = 500 , when only one of the two samples may contain classification errors. Standard deviation of the 

proportional bias is presented in parenthesis. 

%Bias 

Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP 

QS 0 .06 (0.04) 0 .06 (0.04) 0 .06 (0.05) 0 .06 (0.04) 0 .06 (0.04) 0 .06 (0.04) 0 .07 (0.05) 0 .07 (0.05) 0 .08 (0.05) 0 .09 (0.06) 0 .11 (0.06) 

PMA 0 .03 (0.02) 0 .02 (0.02) 0 .03 (0.02) 0 .03 (0.02) 0 .02 (0.02) 0 .04 (0.03) 0 .03 (0.02) 0 .04 (0.03) 0 .04 (0.02) 0 .07 (0.05) 0 .33 (0.13) 

1 − CM 0 .06 (0.04) 0 .05 (0.04) 0 .06 (0.05) 0 .06 (0.04) 0 .05 (0.04) 0 .06 (0.05) 0 .06 (0.05) 0 .07 (0.06) 0 .07 (0.06) 0 .08 (0.06) 0 .20 (0.09) 

1 − D 2 
Eucl 

0 .0 0 (0.0 0) 0 .0 0 (0.0 0) 0 .0 0 (0.0 0) 0 .01 (0.00) 0 .0 0 (0.0 0) 0 .01 (0.01) 0 .0 0 (0.0 0) 0 .01 (0.00) 0 .01 (0.00) 0 .01 (0.00) 0 .05 (0.03) 

C λ 0 .03 (0.03) 0 .02 (0.02) 0 .02 (0.03) 0 .04 (0.04) 0 .02 (0.02) 0 .05 (0.05) 0 .03 (0.03) 0 .04 (0.04) 0 .05 (0.04) 0 .07 (0.04) 0 .46 (0.19) 

J 0 .08 (0.06) 0 .08 (0.06) 0 .09 (0.07) 0 .08 (0.06) 0 .08 (0.06) 0 .09 (0.06) 0 .10 (0.07) 0 .10 (0.07) 0 .11 (0.07) 0 .12 (0.08) 0 .15 (0.08) 

Table 5 

Average proportional bias for similarity indices with sample size n = 500 , when both samples are classified and may contain classification errors. Standard deviation of the 

proportional bias is presented in parenthesis. 

%Bias 

Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP 

QS 0 .05 (0.04) 0 .06 (0.04) 0 .06 (0.04) 0 .05 (0.04) 0 .05 (0.04) 0 .05 (0.04) 0 .07 (0.04) 0 .07 (0.04) 0 .08 (0.05) 0 .10 (0.05) 0 .09 (0.06) 

PMA 0 .05 (0.03) 0 .04 (0.02) 0 .04 (0.03) 0 .05 (0.03) 0 .04 (0.03) 0 .06 (0.03) 0 .05 (0.03) 0 .07 (0.04) 0 .06 (0.04) 0 .11 (0.06) 0 .22 (0.10) 

1 − CM 0 .08 (0.04) 0 .09 (0.03) 0 .10 (0.03) 0 .08 (0.04) 0 .09 (0.04) 0 .09 (0.04) 0 .12 (0.04) 0 .11 (0.04) 0 .13 (0.04) 0 .19 (0.05) 0 .23 (0.08) 

1 − D 2 
Eucl 

0 .01 (0.01) 0 .01 (0.01) 0 .01 (0.01) 0 .01 (0.01) 0 .01 (0.01) 0 .01 (0.01) 0 .01 (0.01) 0 .01 (0.01) 0 .01 (0.01) 0 .02 (0.01) 0 .03 (0.02) 

C λ 0 .04 (0.04) 0 .03 (0.03) 0 .04 (0.03) 0 .05 (0.04) 0 .03 (0.03) 0 .06 (0.05) 0 .05 (0.04) 0 .06 (0.05) 0 .05 (0.05) 0 .09 (0.07) 0 .22 (0.14) 

J 0 .07 (0.06) 0 .09 (0.06) 0 .09 (0.06) 0 .08 (0.06) 0 .08 (0.06) 0 .08 (0.06) 0 .11 (0.06) 0 .10 (0.06) 0 .12 (0.07) 0 .16 (0.07) 0 .14 (0.09) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Average proportional bias for different classifiers over all river types and diver- 

sity, richness, evenness and dominance indices (DIV), similarity indices when one 

sample is classified (SIM1) and similarity indices when both samples are classified 

(SIM2). Here, n = 500 . Standard deviation of the proportional bias is presented in 

parenthesis. 

%Bias 

Classifier DIV SIM1 SIM2 

GEKELM 0 .10 (0.08) 0 .04 (0.04) 0 .05 (0.04) 

KRDA 0 .10 (0.08) 0 .04 (0.04) 0 .05 (0.04) 

KSVM 0 .12 (0.10) 0 .04 (0.05) 0 .06 (0.05) 

GEELM 0 .10 (0.08) 0 .05 (0.04) 0 .05 (0.04) 

RBA 0 .11 (0.09) 0 .04 (0.05) 0 .05 (0.05) 

RBFN 0 .11 (0.09) 0 .05 (0.05) 0 .06 (0.05) 

LDA 0 .13 (0.10) 0 .05 (0.05) 0 .07 (0.05) 

RF 0 .13 (0.10) 0 .06 (0.06) 0 .07 (0.05) 

SVM 0 .14 (0.12) 0 .06 (0.06) 0 .08 (0.06) 

NB 0 .17 (0.12) 0 .07 (0.06) 0 .11 (0.08) 

MLP 0 .16 (0.12) 0 .22 (0.18) 0 .15 (0.12) 
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While the aforementioned results ( Figs. 1 –3 and Tables 3 –5 ) are

obtained with sample size 500, we also tested sample sizes 200

and 10 0 0 to assess whether error propagation in biological indices

varies with sample size (see results in appendix, Tables 8 –13 ). Of

the diversity, richness, evenness and dominance indices, only S,

S Chao and D Mg are affected by sample size. For S and D Mg , the av-

erage proportional bias clearly increases with the sample size for

all classification methods. For S Chao , the %bias increases for good

classifiers. When there are more observations in the sample, the

chance of a misclassified observation introducing an extra species

is higher. D Mg is proportional to sample size which should make it

less sensitive to changes in sample size. However, when calculating

the %Bias, the log ( n ) terms are canceled and the %Bias is identical

to that of S . Of the similarity indices, the bias increases with sam-

ple size for QS , 1 − CM and J when both samples may contain clas-

sification errors. PMA, C λ and 1 − D 

2 
Eucl 

are less sensitive to sample

size. 

In addition to studying the effect of classification errors on bi-

ological indices, we compare the different classification methods.

Usually, classifiers are compared on error rate but we are inter-

ested in their effect on decision making via the indices. The clas-

sifiers which have classification errors under 20% are very similar

with respect to the %bias in biological indices ( Table 6 ). However,

note that the third best classifier based on error rate, KSVM, in-

troduces more bias in the indices than some classification meth-

ods that have higher error rates than KSVM. This is more clear for

diversity, richness, evenness and dominance indices. Even though

the differences are small, this does show that classification error

should not be the only basis in the selection of classification meth-

ods. 

Last, we consider the effect of individual river types, i.e. the

effect of species distribution combined with the different confu-

sion matrices. When we use automated classification methods, the

number of possible taxa is fixed based on the training image data

and this sets the dimensions for the confusion matrix. In this set-

ting, taxa distributions with only few taxa are problematic for in-

dices based on presence/absence data (see e.g. Tables 14 –17 in ap-

pendix). When a confusion matrix has many classes, misclassifi-

cation easily introduces extra taxa into the samples and therefore
 fi
ffects the index values. The problem is even larger if the taxa

resent in the distribution happen to be ones with a high clas-

ification error. On the other hand, taxa distributions with the ma-

ority of the taxa present tend to produce smaller %bias in the in-

ex values. For indices based on proportions, the most problem-

tic taxa distributions are ones where the most common taxa have

igh error rates as the highest proportions contribute most in the

alculation of these indices. For example, in our simulation study,

roportion based indices for medium-sized woodland streams of

orthern Finland display higher bias than other river types (see

able 18 in appendix compared to Table 3 ). This is because almost

alf of this river type’s observations are Baetis rhodani which is a

axa identified well only by RBA. Unsurprisingly, RBA is the only

lassifier with a low bias in proportion based indices for medium-

ized woodland streams of northern Finland. 

Using Eq. (2) , we also study how the standard error of biologi-

al indices is affected by classification errors. However, as there is

ery little difference in the standard errors before and after classi-

cation, the results are not shown here. 
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Table 7 

Taxa used for the classification and simulation experiments. Baetis muticus and 

Baetis niger are identified separately in the image data but are combined here 

into the Baetis niger group to have equal taxa lists in both image and monitor- 

ing data. Similarly Protonemura intricata and Protonemura meyeri are combined to 

Protonemura spp. 

Taxonomic group 

Ameletus inopinatus Habrophlebia spp. 

Arctopsyche ladogensis Heptagenia dalecarlica 

Asellus aquaticus Hydraena spp. 

Baetis niger group Hydropsyche pellucidula 

Baetis rhodani Hydropsyche saxonica 

Bithytnia tentaculata Hydropsyche siltalai 

Caenis spp. Isoperla spp. 

Corixidae Leuctra spp. 

Ceratopsyche silfvenii Limnius volckmari 

Ceratopogonidae Micrasema gelidum 

Cheumatopsyche lepida Micrasema setiferum 

Diura spp. Nemoura spp. 

Elmis aenea Sphaeriidae 

Ephemerella aurivillii Protonemura spp. 

Ephemerella ignita Rhyacophila nubila 

Ephemerella mucronata Taeniopteryx nebulosa 
. Conclusions 

In this paper, we discuss the effect of classification errors on bi-

logical indices describing richness, diversity, evenness, dominance

nd similarity. We study the error propagation into biological in-

ices with simulation experiments based on real data. We train

1 classifiers with benthic macroinvertebrate image data and use

hese classification results to evaluate how different confusion ma-

rices affect index values calculated from classified macroinverte-

rate samples. We study which indices are most sensitive to mis-

lassifications and sample size and how different taxa distributions

ffect the error propagation. 

The most sensitive indices to classification errors are the rich-

ess indices based on presence/absence data, i.e. S, S Chao and D Mg .

s the calculation of these indices relies on the number of ob-

erved species, even one misclassified observation can introduce

n extra taxa into the calculation and therefore introduce bias into

he index. These indices are even more sensitive to errors when

here are fewer taxa in the species distribution than in the confu-

ion matrix since this makes it possible to have false extra taxa.

, S Chao and D Mg are also sensitive to sample size since increasing

ample size increases the possibility of misclassifications introduc-

ng extra taxa in the sample. 

Diversity, evenness, dominance and similarity indices analyzed

n this paper are less sensitive to classification errors than richness

ndices, with proportional bias less than 10% when using good clas-

ifiers. Presence/absence based similarity indices, i.e. QS and J , are

ess biased than S, S Chao and D Mg because in their calculation ex-

ra taxa increase both the numerator and denominator, keeping the

atio roughly the same. Proportion-based indices can also be sensi-

ive to classification errors if the most common taxa in the samples

re poorly classified, i.e. identified. However, since biologists have

rior knowledge of expected taxa distributions at sampling sites

hey are likely to choose the classification method accordingly. The

lassification methods used in this paper can be split into three

roups: good classifiers (ce < 20%), mediocre classifiers (20% < ce

 50%) and poor classifiers (ce > 50%). Although different in er-

or rates, the good classifiers do not really differ when considering

he proportional bias they bring into biological indices, allowing to

hoose the most favorable classifier among them for a given sce-

ario. 

We found many of the similarity indices to be sensitive to sam-

le size as well. When both samples being compared are classi-

ed, bias caused by misclassifications increases with sample size

or QS , 1 − CM and J . We found that for similarity indices, misclas-

ifications often increase entropy of the samples. Thus, when both

amples are classified, their similarity increases and the similar-

ty index values become over-estimated. Therefore decision mak-

rs should carefully consider cases where the necessity of mitiga-

ion measures is evaluated based on similarity values. Based on our

nalyses and simulation experiments, the similarity indices least

ffected by classification errors, sample size and taxa distributions

re 1 − D 

2 
Eucl 

, PMA and C λ. The least biased diversity index is D . We

cknowledge that there are other sources of bias, e.g. sampling er-

or, but in this paper we limit our analyses on classification errors

nd restrict the study of the effect of sample size and taxa distribu-

ion to their interaction with classification errors, when the counts

ollow a multinomial distribution. We also note that the choice

f an index ultimately depends on what needs to be measured

rom a monitored community but we would generally recommend

roportion-based indices for diverse communities as these are the

ost robust against taxa misidentification error propagation, based

n our simulation experiments. When shifting the biomonitoring

nd ecological status assessment process towards automation, the

roposed expert system should consider only indices that are ro-

ust to automated classification errors. 
The results in this paper were obtained using automated clas-

ification. A nice property of automated classification given a gold

tandard training set is the knowledge of confusion matrices. As

isclassifications with good classifiers are systematic and pre-

ictable, for future work, correction methods will be considered in

rder to decrease the bias in biological indices due to misclassi-

cation. Even though we like to think that human experts rarely

ake identification errors, it does happen ( Culverhouse, Williams,

eguera, Herry, & González-Gil, 2003 ) and can cause remarkable

ias in resulting index values and ecological status evaluations

 Haase et al., 2010 ). Unlike in automated methods, human expert

rrors rarely include knowledge of the human expert’s confusion

atrix. Also as human misclassifications may not be as system-

tic as with automated classifiers it is not sensible to construct a

orrection method for every single human expert. In contrast, it

s highly sensible to construct a correction method for a well per-

orming automated classifier to further boost its performance. 

Interestingfuture research directions include i) the comparison

etween human experts and automated classifiers and how much

uman experts introduce bias into biological indices due to prior

nowledge affecting identification errors, ii) analysis of the classi-

cation errors observed by expert systems when evaluation is con-

ucted in varying conditions, e.g. differences in illumination that

ight be caused either by product failures or by external factors,

ii) analysis of the classification errors observed when the expert

ystem is trained and evaluated using data obtained by different

onditions, and iv) analysis of the classification errors observed

hen a test sample from a previously unseen class is processed. 
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Table 8 

Average proportional bias for diversity, richness, evenness and dominance indices for sample size n = 200 . Standard deviation of the proportional bias is presented in 

parenthesis. 

%Bias 

Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP 

S 0 .14 (0.06) 0 .15 (0.05) 0 .17 (0.06) 0 .14 (0.06) 0 .16 (0.06) 0 .15 (0.07) 0 .20 (0.06) 0 .19 (0.07) 0 .22 (0.05) 0 .27 (0.08) 0 .22 (0.09) 

S Chao 0 .18 (0.07) 0 .19 (0.06) 0 .23 (0.07) 0 .17 (0.06) 0 .21 (0.07) 0 .19 (0.08) 0 .24 (0.07) 0 .24 (0.08) 0 .27 (0.07) 0 .30 (0.08) 0 .28 (0.09) 

D Mg 0 .14 (0.06) 0 .15 (0.05) 0 .17 (0.06) 0 .14 (0.06) 0 .16 (0.06) 0 .15 (0.07) 0 .20 (0.06) 0 .19 (0.07) 0 .22 (0.05) 0 .27 (0.08) 0 .22 (0.09) 

H ′ 0 .07 (0.03) 0 .07 (0.03) 0 .07 (0.03) 0 .07 (0.04) 0 .06 (0.03) 0 .07 (0.04) 0 .09 (0.03) 0 .08 (0.04) 0 .10 (0.04) 0 .14 (0.05) 0 .11 (0.08) 

J ′ 0 .07 (0.03) 0 .07 (0.03) 0 .07 (0.03) 0 .07 (0.04) 0 .06 (0.03) 0 .07 (0.04) 0 .09 (0.03) 0 .08 (0.04) 0 .10 (0.04) 0 .14 (0.05) 0 .11 (0.08) 

D 0 .03 (0.03) 0 .03 (0.02) 0 .03 (0.02) 0 .03 (0.03) 0 .02 (0.02) 0 .03 (0.03) 0 .04 (0.03) 0 .03 (0.03) 0 .04 (0.03) 0 .05 (0.03) 0 .05 (0.05) 

E 1/ D 0 .04 (0.02) 0 .03 (0.02) 0 .04 (0.02) 0 .04 (0.03) 0 .04 (0.02) 0 .05 (0.03) 0 .03 (0.02) 0 .04 (0.02) 0 .05 (0.02) 0 .05 (0.03) 0 .08 (0.07) 

d 0 .04 (0.04) 0 .03 (0.03) 0 .04 (0.04) 0 .05 (0.04) 0 .03 (0.02) 0 .05 (0.05) 0 .05 (0.04) 0 .05 (0.04) 0 .05 (0.05) 0 .07 (0.05) 0 .08 (0.08) 

Table 9 

Average proportional bias for similarity indices with sample size n = 200 , when only one of the two samples may contain classification errors. Standard deviation of the 

proportional bias is presented in parenthesis. 

%Bias 

Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP 

QS 0 .05 (0.04) 0 .05 (0.04) 0 .05 (0.04) 0 .05 (0.04) 0 .05 (0.04) 0 .05 (0.04) 0 .06 (0.05) 0 .06 (0.05) 0 .07 (0.05) 0 .10 (0.06) 0 .16 (0.06) 

PMA 0 .03 (0.02) 0 .02 (0.02) 0 .03 (0.02) 0 .03 (0.02) 0 .02 (0.02) 0 .04 (0.03) 0 .03 (0.02) 0 .04 (0.03) 0 .04 (0.02) 0 .06 (0.05) 0 .32 (0.13) 

1 − CM 0 .05 (0.04) 0 .04 (0.04) 0 .05 (0.04) 0 .05 (0.04) 0 .05 (0.04) 0 .05 (0.05) 0 .06 (0.05) 0 .06 (0.06) 0 .06 (0.05) 0 .09 (0.06) 0 .20 (0.09) 

1 − D 2 
Eucl 

0 .0 0 (0.0 0) 0 .0 0 (0.0 0) 0 .0 0 (0.0 0) 0 .01 (0.01) 0 .0 0 (0.0 0) 0 .01 (0.00) 0 .0 0 (0.0 0) 0 .01 (0.00) 0 .01 (0.00) 0 .01 (0.00) 0 .05 (0.03) 

C λ 0 .03 (0.03) 0 .02 (0.02) 0 .02 (0.03) 0 .04 (0.04) 0 .02 (0.02) 0 .05 (0.04) 0 .03 (0.02) 0 .04 (0.04) 0 .05 (0.04) 0 .07 (0.04) 0 .45 (0.18) 

Jacc 0 .07 (0.05) 0 .07 (0.05) 0 .07 (0.06) 0 .07 (0.05) 0 .07 (0.06) 0 .07 (0.06) 0 .09 (0.06) 0 .09 (0.07) 0 .09 (0.07) 0 .13 (0.08) 0 .20 (0.08) 

Table 10 

Average proportional bias for similarity indices with sample size n = 200 , when both samples are classified and may contain classification errors. Standard deviation of the 

proportional bias is presented in parenthesis. 

%Bias 

Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP 

QS 0 .04 (0.04) 0 .04 (0.04) 0 .05 (0.04) 0 .04 (0.04) 0 .04 (0.04) 0 .05 (0.04) 0 .06 (0.04) 0 .05 (0.04) 0 .06 (0.04) 0 .08 (0.05) 0 .07 (0.06) 

PMA 0 .04 (0.03) 0 .03 (0.02) 0 .03 (0.03) 0 .04 (0.03) 0 .04 (0.02) 0 .05 (0.03) 0 .04 (0.03) 0 .05 (0.04) 0 .05 (0.04) 0 .09 (0.06) 0 .19 (0.10) 

1 − CM 0 .05 (0.04) 0 .05 (0.03) 0 .06 (0.04) 0 .06 (0.04) 0 .05 (0.04) 0 .06 (0.04) 0 .08 (0.04) 0 .07 (0.05) 0 .08 (0.05) 0 .13 (0.05) 0 .16 (0.08) 

1 − D 2 
Eucl 

0 .01 (0.01) 0 .01 (0.01) 0 .01 (0.01) 0 .01 (0.01) 0 .01 (0.01) 0 .01 (0.01) 0 .01 (0.01) 0 .01 (0.01) 0 .01 (0.01) 0 .02 (0.01) 0 .03 (0.02) 

C λ 0 .04 (0.03) 0 .03 (0.03) 0 .04 (0.03) 0 .05 (0.04) 0 .03 (0.03) 0 .06 (0.05) 0 .04 (0.04) 0 .06 (0.05) 0 .05 (0.05) 0 .08 (0.07) 0 .20 (0.14) 

J 0 .06 (0.05) 0 .06 (0.05) 0 .06 (0.05) 0 .06 (0.06) 0 .06 (0.05) 0 .06 (0.05) 0 .08 (0.06) 0 .07 (0.06) 0 .08 (0.06) 0 .12 (0.07) 0 .10 (0.08) 

Table 11 

Average proportional bias for diversity, richness, evenness and dominance indices with sample size n = 10 0 0 . Standard deviation of the proportional bias is presented in 

parenthesis. 

%Bias 

Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP 

S 0 .20 (0.07) 0 .20 (0.06) 0 .24 (0.07) 0 .19 (0.06) 0 .22 (0.07) 0 .21 (0.07) 0 .24 (0.07) 0 .24 (0.07) 0 .28 (0.08) 0 .29 (0.08) 0 .28 (0.09) 

S Chao 0 .21 (0.08) 0 .21 (0.08) 0 .25 (0.09) 0 .20 (0.07) 0 .22 (0.08) 0 .23 (0.08) 0 .24 (0.08) 0 .25 (0.08) 0 .28 (0.09) 0 .27 (0.09) 0 .28 (0.09) 

D Mg 0 .20 (0.07) 0 .20 (0.06) 0 .24 (0.07) 0 .19 (0.06) 0 .22 (0.07) 0 .21 (0.07) 0 .24 (0.07) 0 .24 (0.07) 0 .28 (0.08) 0 .29 (0.08) 0 .28 (0.09) 

H ′ 0 .07 (0.03) 0 .07 (0.03) 0 .08 (0.03) 0 .07 (0.04) 0 .07 (0.03) 0 .07 (0.04) 0 .10 (0.04) 0 .09 (0.05) 0 .10 (0.04) 0 .14 (0.05) 0 .11 (0.08) 

J ′ 0 .07 (0.03) 0 .07 (0.03) 0 .08 (0.03) 0 .07 (0.04) 0 .07 (0.03) 0 .07 (0.04) 0 .10 (0.04) 0 .09 (0.05) 0 .10 (0.04) 0 .14 (0.05) 0 .11 (0.08) 

D 0 .03 (0.03) 0 .03 (0.02) 0 .03 (0.02) 0 .03 (0.03) 0 .02 (0.02) 0 .03 (0.03) 0 .04 (0.03) 0 .03 (0.03) 0 .04 (0.03) 0 .05 (0.03) 0 .05 (0.05) 

E 1/ D 0 .03 (0.02) 0 .03 (0.02) 0 .04 (0.03) 0 .04 (0.02) 0 .04 (0.02) 0 .04 (0.02) 0 .03 (0.02) 0 .04 (0.02) 0 .04 (0.02) 0 .06 (0.03) 0 .08 (0.07) 

d 0 .05 (0.04) 0 .03 (0.03) 0 .04 (0.04) 0 .05 (0.04) 0 .03 (0.02) 0 .05 (0.05) 0 .05 (0.05) 0 .05 (0.04) 0 .05 (0.05) 0 .07 (0.05) 0 .08 (0.08) 

Table 12 

Average proportional bias for similarity indices with sample size n = 10 0 0 , when only one of the two samples may contain classification errors. Standard deviation of the 

proportional bias is presented in parenthesis. 

%Bias 

Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP 

QS 0 .06 (0.04) 0 .06 (0.04) 0 .06 (0.05) 0 .06 (0.04) 0 .06 (0.04) 0 .06 (0.04) 0 .07 (0.05) 0 .07 (0.05) 0 .07 (0.05) 0 .08 (0.05) 0 .09 (0.05) 

PMA 0 .03 (0.02) 0 .02 (0.02) 0 .03 (0.02) 0 .03 (0.02) 0 .02 (0.02) 0 .04 (0.03) 0 .03 (0.02) 0 .04 (0.03) 0 .04 (0.02) 0 .07 (0.05) 0 .33 (0.13) 

1 − CM 0 .06 (0.04) 0 .05 (0.04) 0 .06 (0.04) 0 .06 (0.04) 0 .05 (0.04) 0 .06 (0.05) 0 .06 (0.05) 0 .07 (0.05) 0 .07 (0.05) 0 .08 (0.06) 0 .20 (0.09) 

1 − D 2 
Eucl 

0 .0 0 (0.0 0) 0 .0 0 (0.0 0) 0 .0 0 (0.0 0) 0 .01 (0.00) 0 .0 0 (0.0 0) 0 .01 (0.01) 0 .0 0 (0.0 0) 0 .01 (0.00) 0 .01 (0.00) 0 .01 (0.00) 0 .05 (0.03) 

C λ 0 .03 (0.03) 0 .02 (0.02) 0 .02 (0.03) 0 .04 (0.04) 0 .02 (0.02) 0 .05 (0.05) 0 .03 (0.02) 0 .04 (0.04) 0 .05 (0.04) 0 .07 (0.04) 0 .46 (0.19) 

J 0 .08 (0.06) 0 .08 (0.06) 0 .09 (0.07) 0 .08 (0.05) 0 .09 (0.06) 0 .09 (0.06) 0 .1. (0.07) 0 .10 (0.07) 0 .11 (0.07) 0 .11 (0.07) 0 .12 (0.07) 
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Table 13 

Average proportional bias for similarity indices with sample size n = 10 0 0 , when both samples are classified and may contain classification errors. Standard deviation of the 

proportional bias is presented in parenthesis. 

%Bias 

Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP 

QS 0 .06 (0.03) 0 .07 (0.03) 0 .08 (0.03) 0 .06 (0.03) 0 .07 (0.03) 0 .06 (0.03) 0 .08 (0.03) 0 .08 (0.04) 0 .10 (0.04) 0 .11 (0.04) 0 .10 (0.05) 

PMA 0 .05 (0.03) 0 .04 (0.02) 0 .05 (0.03) 0 .05 (0.03) 0 .05 (0.03) 0 .06 (0.03) 0 .06 (0.03) 0 .07 (0.04) 0 .07 (0.04) 0 .12 (0.06) 0 .24 (0.10) 

1 − CM 0 .11 (0.03) 0 .11 (0.03) 0 .13 (0.03) 0 .11 (0.03) 0 .12 (0.03) 0 .12 (0.04) 0 .15 (0.03) 0 .15 (0.04) 0 .17 (0.04) 0 .23 (0.05) 0 .29 (0.08) 

1 − D 2 
Eucl 

0 .01 (0.01) 0 .01 (0.01) 0 .01 (0.01) 0 .01 (0.01) 0 .01 (0.01) 0 .01 (0.01) 0 .01 (0.01) 0 .01 (0.01) 0 .01 (0.01) 0 .02 (0.01) 0 .03 (0.02) 

C λ 0 .05 (0.04) 0 .03 (0.03) 0 .04 (0.03) 0 .05 (0.04) 0 .04 (0.03) 0 .06 (0.05) 0 .05 (0.04) 0 .06 (0.05) 0 .06 (0.04) 0 .10 (0.07) 0 .23 (0.14) 

J 0 .10 (0.05) 0 .11 (0.05) 0 .13 (0.05) 0 .10 (0.05) 0 .11 (0.05) 0 .11 (0.05) 0 .14 (0.05) 0 .13 (0.06) 0 .16 (0.06) 0 .18 (0.07) 0 .17 (0.07) 

Table 14 

Proportional bias for richness indices for large or extra large woodland reference streams of southern Finland 

with sample size n = 500 . For this river type, c = 22 . 

%Bias 

Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP 

S 0 .28 0 .27 0 .33 0 .28 0 .30 0 .31 0 .33 0 .32 0 .34 0 .42 0 .42 

S Chao 0 .31 0 .30 0 .36 0 .29 0 .31 0 .32 0 .35 0 .33 0 .37 0 .41 0 .44 

D Mg 0 .28 0 .27 0 .33 0 .28 0 .30 0 .31 0 .33 0 .32 0 .34 0 .41 0 .42 

Table 15 

Proportional bias for richness indices for small peatland reference streams of southern Finland with sample 

size n = 500 . For this river type, c = 19 . 

%Bias 

Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP 

S 0 .29 0 .29 0 .34 0 .27 0 .34 0 .30 0 .36 0 .36 0 .39 0 .46 0 .41 

S Chao 0 .36 0 .37 0 .43 0 .34 0 .41 0 .40 0 .41 0 .42 0 .46 0 .48 0 .46 

D Mg 0 .29 0 .29 0 .34 0 .27 0 .34 0 .30 0 .36 0 .36 0 .39 0 .46 0 .41 

Table 16 

Proportional bias for richness indices for medium-sized peatland non-reference streams of northern Finland 

with sample size n = 500 . For this river type, c = 30 . 

%Bias 

Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP 

S 0 .07 0 .09 0 .12 0 .07 0 .10 0 .07 0 .13 0 .11 0 .17 0 .16 0 .17 

S Chao 0 .10 0 .10 0 .13 0 .10 0 .11 0 .10 0 .12 0 .12 0 .16 0 .14 0 .16 

D Mg 0 .07 0 .09 0 .12 0 .07 0 .10 0 .07 0 .13 0 .11 0 .17 0 .16 0 .17 

Table 17 

Proportional bias for richness indices for large or extra large peatland non-reference streams of northern Fin- 

land with sample size n = 500 . For this river type, c = 29 . 

%Bias 

Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP 

S 0 .06 0 .08 0 .08 0 .05 0 .09 0 .05 0 .10 0 .08 0 .12 0 .13 0 .09 

S Chao 0 .07 0 .08 0 .09 0 .07 0 .08 0 .09 0 .09 0 .10 0 .12 0 .11 0 .10 

D Mg 0 .06 0 .08 0 .08 0 .05 0 .09 0 .05 0 .10 0 .08 0 .12 0 .13 0 .09 

Table 18 

Proportional bias for proportion-based indices for medium-sized woodland non-reference streams in northern 

Finland with sample size n = 500 . Standard deviation of the proportional bias is presented in parenthesis. 

%Bias 

Index GEKELM KRDA KSVM GEELM RBA RBFN LDA RF SVM NB MLP 

H ′ 0 .13 0 .11 0 .14 0 .14 0 .06 0 .15 0 .15 0 .15 0 .19 0 .20 0 .27 

J ′ 0 .13 0 .11 0 .14 0 .14 0 .06 0 .15 0 .15 0 .15 0 .19 0 .20 0 .27 

D 0 .11 0 .09 0 .11 0 .12 0 .04 0 .13 0 .12 0 .12 0 .14 0 .14 0 .18 

E 1/ D 0 .07 0 .02 0 .03 0 .08 0 .04 0 .09 0 .04 0 .05 0 .05 0 .07 0 .14 

d 0 .18 0 .12 0 .15 0 .19 0 .04 0 .23 0 .17 0 .18 0 .21 0 .19 0 .27 
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