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ABSTRACT

USING ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TO SOLVE

NP-COMPLETE GRAPH THEORY PROBLEMS
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Computer EngineeringMaster Program

Advisor: Asst. Prof. Dr. Kutluhan Erol

February, 2020

Computer science literature is abound with NP-complete problems with numerous

practical applications ranging from logistics to information security. This thesis attempts

to address such problems by drawing inspiration from heuristic search literature and

machine learning, striving for optimality while improving computation time. Our

approach involves utilizing A* Algorithm in conjunction with Linear Programming (LP)

approximations as a heuristic function and proceeds to train a Neural Network to improve

on the LP heuristic with respect to both computation overhead and reduction in search

space size. We demonstrate our approach in the context of All Colors Shortest Path

(ACSP), a rich graph theory problem that extends the Travelling Salesperson Problem

(TSP). Our results indicate that using LP as a heuristic function reduces search space by

half, while preserving optimality. Artificial Neural Network (ANN) train to replace LP

as a heuristic does a much better job reducing the search space by six fold at a fraction

of the computational overhead. While it is not guaranteed to be admissible, empirically

it produces mostly optimal or almost optimal solutions. Note that our results are based

on small problem sizes due to computational resource availability, but we believe they are

sufficient to establish the viability of our approach for future studies of larger scale.

Keywords: NP-complete, ACSP, TSP, Machine Learning, ANN, A* Search Algorithm.
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ÖZET

NP-TAM ÇİZGE TEORİ PROBLEMLERİNİN ÇÖZÜMÜ İÇİN YAPAY ZEKA VE

MAKİNE ÖĞRENMESİ KULLANIMI

Binli, Mustafa Kemal

Bilgisayar MühendisliğiYüksek LisansProgramı

Tez Danışmanı: Dr. Öğr. Üyesi Kutluhan Erol

Şubat, 2020

Bilgisayar bilimi literatürü, lojistikten bilgi güvenliğine kadar bir çok alanda polinom

zamanda çözümü bilinmeyen NP-tam problemlerle doludur. Bu tez, sezgisel arama

literatüründen ve optimallik için çabalayan makine öğrenmesinden ilham alarak bu

tür problemlerin hesaplama süresini iyileştirmeye çalışır. Yöntemimiz, sezgisel bir

fonksiyon olarak Doğrusal Programlama (DP) yaklaşıklıkla birlikte A* Algoritmasının

kullanılmasını içerir ve hem hesaplama yükü hem de arama alanı boyutunu azaltmak

açısından DP sezgiselliğini geliştirmek için bir Sinir Ağı eğitimine yönelir. Yaklaşımımızı

Gezgin Satıcı Problemi (GSP) ’ni genişleten zengin bir çizge teori problemi olan All

Colors Shortest Path (ACSP) bağlamında gösteriyoruz. Sonuçlarımız, sezgisel bir

fonksiyon olarak DP kullanmanın, arama alanını yarı yarıya azaltırken, aynı zamanda

da optimalliği koruduğunu göstermektedir. Bir sezgisel olarak DP’nin yerini alan Yapay

Sinir Ağı’nı (YSA) eğitmek, hesaplama alanını altı kat azaltırken hesaplama yükünde

yalnızca çok küçük bir oranda artış getirmektedir. A* algoritmasında kullanılan sezgisel

fonksiyonun onanırlık özelliğini garanti edilmese de, deneysel olarak çoğunlukla optimal

veya neredeyse optimal çözümler üretmektedir. Sonuçlarımız, hesaplama kaynaklarının

kullanılabilirliği nedeniyle küçük problem boyutlarına dayanmakta olsa da gelecekteki

daha büyük ölçekli çalışmalarda yaklaşımımızın uygulanabilirliğini belirlemek için yeterli

olduğuna inanmaktayız.

Anahtar Kelimeler: NP-tam, ACSP, Makine Öğrenmesi, Yapay Sinir Ağları, A*.
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CHAPTER 1 : INTRODUCTION

Computer science literature is abound with NP-complete problems with numerous

practical applications ranging from logistics to information security. These problems

remain intractable as best known algorithms perform in exponentially many steps in terms

of input size, and we must be content with heuristic or approximation algorithms, which

perform in reasonable time, albeit with inferior, suboptimal results. Some optimization

problems are so hard that even their constant-factor approximations are NP-hard (Garey

and Johnson, 1979).

In this study, we introduce a tiered approach to attacking such problems, drawing

inspiration from heuristic search literature and machine learning, striving for optimality

while improving computation time.

A* is a well-known AI search algorithm that can find optimal solutions when used

in conjunction with an admissible heuristic function which always underestimates an

optimal solution of the problem (Hart et al., 1968). As a base line, one can use a heuristic

function of 0, which will find the optimal solution, at the cost of searching the entire space

(Uniform Cost Search). Next, we utilize Integer Linear Programming (ILP) encodings

of such problems, and use LP as a search heuristic algorithm. The approach we call

A*LP combines the strengths of A* search, together with Linear Programming (LP) as an

admissible heuristic function in order to optimally solve NP-complete problems. LP can

be solved in polynomial time, and it provides a lower or an upper bound approximation

to ILP, an NP-complete problem with well-known polynomial-time reductions from many

other NP-complete problems. This method was carried out by examining the ILP model

introduced for the All Colors Shortest Path (ACSP) problem in the study of (Bilge et al.,

2015). While LP as an admissible heuristic guarantees optimality, and significantly

reduces the search space per our experimental results, its computational overhead is too

large to improve overall computation time.

Therefore, as the next step, we explore replacing LP using a machine learning approach

based on neural networks, that can predict the optimal solution cost, at a fraction of LP

computation time. The use of rapidly developing Artificial Neural Networks (ANN),

which have proven themselves in many application areas, raises the following questions:
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Can it produce an admissible heuristic for the A* algorithm? What are the optimal training

structures or parameters? Can we make a good estimate of the solutions of NP-complete

problems by considering ANNs? We explore the viability of our general approach in the

context of graph theory problems, more specifically ACSP (All Colors Shortest Path),

and our modification to it –Some Colors Shortest Path (SCSP)– with minor variety and

complexity. Accordingly, we utilize manual feature map of graph properties as an input

data to train Neural Network for the efficacy of our work in terms of solution quality.

We compare the LP and ANN approaches for the A * algorithm. We show how these

approaches affect the solution quality, the search space size and computation time of the

A* algorithm.

The rest of this document is organized as follows: Chapter 2 presents preliminary

information for the algorithms and methods used in this study. Chapter 3 provides a

literature review of ANN’s approach to problems and the A* algorithm. Chapter 4

describes the methods applied to the underlying NP-complete problem, and Chapter 5

analyses the results from the experimental data. Finally Chapter 6 summarizes the study

and proposes directions for future research.
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CHAPTER 2 : PRELIMINARIES

2.1 A* and Linear Programming

A* is an AI search algorithm, which utilizes a heuristic function h(n) that given a

search node n, estimates the cost of the optimum path from n to a goal node (Hart et al.,

1968). Together with g(n), which denotes the already established cost of reaching a node

n from the starting node I, A* uses a ranking function f (n) = g(n) + h(n) to explore

the search space, always picking the node with the lowest f () value from its search

frontier, maintained in a data structure called “Open List”. A* is guaranteed to return

the optimal solution, provided that the heuristic function h() satisfies the admissibility

constraint 0 <= h(n)<= h*(n) for all nodes n, where h*(n) is the cost of the optimal path

from n to a goal node (Hart et al., 1968).

Linear programming (LP) involves a set of real-valued variables, a set of linear

constraints on those variables, and a linear objective function on those variables that we

wish to optimize. In other words, it is a mathematical method used to optimize the linear

relations of various problems by maximizing or minimizing a linear objective function.

Several software libraries implement LP solutions in polynomial time (CPLEX Optimizer,

2019).

Integer Linear Programming (ILP) places the additional constraints that the variables

must take integer values only. ILP is NP-complete, and thus all known algorithms for ILP

runs in exponential time in the worst case (Khachiyan, 1979; Kearns et al., 1994). As

ILP is NP-complete, any other NP problem can be transformed to ILP in polynomial time.

There are well-known ILP encodings for many NP-complete problems, including TSP

and ACSP (Bilge et al., 2015; Akcan and Evrendilek, 2017; Mohammad Reza Bonyadi

and Azghadi, 2008) which will be discussed in Section 2.2.

Note that in case of a minimization problem, an LP solution is always less than equal to

its ILP counterpart, as the ILP version has additional constraints. Thus, LP can be used as

an admissible heuristic function for A* by encoding h() for each node in the search space

as a linear optimization problem. The encoding for a child node can be incrementally

generated from the encoding of its parent by modifying variables and constraints.
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2.2 Travelling Salesperson and All Colors Shortest Path Problems

Travelling Salesperson Problem (TSP) investigates the minimum cost of traversing the

set of all cities arriving provided that a return to the origin city. The goal is to obtain

a Hamiltonian cycle, which visits each vertex exactly once and having the least possible

cost among all tours existing in the graph/map (Mohammad Reza Bonyadi and Azghadi,

2008). Although the name and the story behind it suggest a salesperson travelling to find

the shortest path, TSP has a broader concept which can be applied in diverse range of

areas such as genetics, manufacturing, telecommunications and many more (Applegate

et al., 2006).

All Colors Shortest Path (ACSP), while being derived from TSP with the same core

objective of finding the shortest path, has additional constraints and characteristics chasing

the computational nature of the problem complexity : it may skip some vertices or it might

visit some other vertices multiple times resulting in non-simple paths (Bilge et al., 2015).

But note that no optimum path will traverse an edge more than once in any direction. An

example ACSP graph and the optimal solution are shown in Figure 2.1. In this figure,

vertices are designated by circles, and the pair of numbers in each circle denote vertex no

and color no, respectively. Edges are designated by grey lines, and the rectangular box on

each edge designate the weight, interpreted as the cost of traversing that edge. From the

base station (vertex no : 1-3) which is starting point of the graph through the red-colored

vertices, along with the bold edges mark the optimal path.

More formally, ACSP is defined as “Given an undirected graph G(V,E) with a color

drawn from a set C of colors assigned to each vertex, and a non-negative weight associated

with each edge, ACSP is the problem of finding the shortest (possibly non-simple) path

starting from a designated base vertex s ∈ V such that every color occurs at least once

on the path” (Bilge et al., 2015). Therefore, edge(i, j) ∈ E represents the traversable

undirected edge between vertex i and vertex j with wi, j = w j,i as the cost of traversing

this edge. The vertices are demonstrated as V = {1, .....,n} associated with the colors

C = {1, ....,k} values. Bilge et. al. provides an ILP and LP relaxation model implemented

to solve the ACSP problem (Bilge et al., 2015). General approach to solve the ILP
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formulation for the graph G results in minimization of ∑

(i, j):(i, j)∈E ′
xi, j ∗wi, j (xi, j is the

binary decision variable that assumes one when edge(i, j) is the part of solution and zero

otherwise)

In this thesis, the logical structure of the ILP model was modified in order to use it

in ANN training, in data processing, and also in LP heuristic function of A* algorithm as

explained in Chapter 4.

Figure 2.1. Sample ACSP Graph

2.3 Deep Learning and ANN structure

ANNs (Artificial Neural Networks) emulate the human brain in terms of structure

and transfer of the information between neurons to the subsequent layer and utilize a

gradient descent based feedback with the error obtained over time in the most efficient

way to adapt itself to the desired structure (Jain et al., 1996). In other words, deep

learning is biologically inspired by the transformation and conduction of traits that attempt

to establish a relationship between the stimulants associated with the stimuli present

in the brain. As a branch of Machine Learning, deep learning utilizes algorithms to

simulate the brain learning process using multiple layers by providing nonlinearity via
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activation functions for parallel multi-feature transformation, and to enable decision-

making (Zurada, 1992). This structure also represents concepts in multiple hierarchical

models that correspond to various levels of abstraction. The information passes through

each layer and the output of the previous layer provides input in a dependent way for

the next layer. The first layer in a network is called the input layer and the last layer

is called as an output layer, while all layers between these two layers are called hidden

layers. Each layer has a simple and standard algorithm that classically contains some kind

of an activation function (LeCun et al., 2015). Lastly, with back-propagation algorithm by

Yann Le Cun (LeCun et al., 1989), it adjusts the network parameters to minimize the error

function. Basic structure of Multi-layer Perceptrons (MLP) is demonstrated in Figure 2.2.

Figure 2.2. Sample Multi-Layer Perceptron (MLP)
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CHAPTER 3 : RELATED WORK

NP-completeness has attracted great interest in computer science. There has been a

significant range of work on ANN models for NP-complete problems (Smith, 1999; Smith

and Potvin, 2001; Huang et al., 2019), spearheaded by Hopfield’s work in combinatorial

problems which has gained further momentum recently (Smith, 1999; Smith and Potvin,

2001). In addition, recent graph neural network studies are also promising for solving

NP-Complete graph-theory problems(Huang et al., 2019; Scarselli et al., 2008).

ACSP-t -the tree version of ACSP- has an applicability to the real world practices

(Akçay et al., 2018) which makes it interesting. Also, the ACSP problem has proven to be

NP-complete and cannot be solved with an optimal constant factor. Thus, approximation

algorithms and heuristic solutions have been developed for the graph and tree versions of

ACSP (Bilge et al., 2015; Akçay et al., 2018). As such this problem is a good starting point

to investigate whether we can train a new heuristic for A* to solve NP-complete problems.

3.1 Approaches for Solving NP-Complete Problems

In this section, we review approaches about ANN to solve NP-complete graph theory

problems.

In 1985, Hopfield and Tank introduced Hopfield Neural Network (HNN) to tackle

NP-hard problems, especially TSP (Hopfield and Tank, 1985). While their initial results

seemed promising, lack of the reproducibility of their results in the study casted doubts on

their effectiveness (Wilson and Pawley, 1988). Moreover, further researches limited the

success with modifications to the H-T energy function (Yao and Mitra, 1988; Unaltuna and

Pitchumani, 1994) and Hopfield Network to obtain that the stability by means of subspace

approach and keeping all of the constraints under a single term (Gee, 1993; Aiyer et al.,

1990).

Other approaches reaching from past to present are up to Kohonen’s Self-Organizing

Feature Map (Kohonen, 1982), elastic net (Durbin and Willshaw, 1987) and their

combination. Application of these techniques to vehicle routing problems leveraging

elastic band studies and Self-Organizing Feature Map do not produce feasible results
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(Smith, 1999; Huang et al., 2019).

In recent times, deep learning has attracted great attention; especially Graph Neural

Network (GNN). This method combines an n vertex and in a graph G in a multi-

dimensional Euclidean space representing tau (G, n) function in a way that it can be

implemented in compliance with all graph structures (Scarselli et al., 2008). Additionally,

it is illustrated that the parameters of the graph are well learned by a supervised learning

algorithm on the large dataset (Scarselli et al., 2008). Then, with the contribution of GNN,

the solution of NP-complete problems became the focus. In one of these studies, it is aimed

to learn how to solve the decision variables by considering the Travelling Salesperson

Problem. It envisages a training effective message-passing algorithm to calculate whether

the edges with weight values iteratively communicate with the vertices to determine if

there is a better route than the cost determined (Prates et al., 2019). It is seen that the

network trained with this method gives a promising 80% accuracy and generalizes the

problem to some extent (Prates et al., 2019). In another project, it is seen that with

small examples, GNN-based message passing neural network (MPNN) can be trained

in combinatorial optimization problems and generalizes the problem with 85% accuracy

(Selsam et al., 2018). Recently, Graph Convolution Network (GCN) has been used for the

solution of NP-Hard problems by (Li et al., 2018). In this method, classical algorithms

and deep learning methods are combined to focus on the solution of Maximal Independent

set problem. Performance comparison shows that GCN strengthens both deep learning

and classical heuristics according to other methods and approaches for solving NP-Hard

problems (Li et al., 2018).

3.2 Training ANNs

In this section, we present prior research on training ANNs in order to establish a

foundation to guide our approach to NP-complete problems. More specifically, we will

examine the structure of our dataset for the training and development of an appropriate

ANN in the literature that we will use with the A* algorithm.

To keep ANN with optimal capacity during the training phase, the training error must

be as small as possible and the gap between the training error and the test error must

be as diminutive as possible (Goodfellow et al., 2016). Therefore, instead of giving
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direct input data to ANN, we chose to replace it with manual engineering (Goodfellow

et al., 2016). Because of the importance of introducing nonlinearity to the input function,

this process is crucial to reduce training error and to avoid underfitting. In addition, as

depicted by (Bengio et al., 2007; Erhan et al., 2009; Goodfellow et al., 2013), the Figure

3.1 demonstrates that increasing the number of hidden layers decreases the training error

by increasing the layer size in the neural network (Goodfellow et al., 2016). However,

although increasing the input complexity reduces the underfitting, it is clear that the test

error will move away from the training error. We know from the efforts to provide training

generalization that increasing the number of training samples (Goodfellow et al., 2016)

will reduce the overfitting gap between training and test errors.

Figure 3.1. Deep and Shallow Networks Comparison Using Different Neuron Size (Source
: (Goodfellow et al., 2016))

In the training phase, activation functions prevent linear transitions and ensure the

stability of the neural network (Glorot and Bengio, 2010; Nair and Hinton, 2010; Jarrett

et al., 2009; Glorot et al., 2011). In many aspects, it is recommended that the Rectified

Linear Unit (ReLU), which is one of the activation functions in new generation approaches,

is more useful in providing nonlinearity than other functions such as Sigmoid, Softsign,

Tanh and Maxout (Nair and Hinton, 2010; Jarrett et al., 2009; Glorot et al., 2011).

Our experiments show that using ReLU saturates training error and stabilize capacity.
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Furthermore, Sigmoid or Tanh act functions could not exhibit good performance as much

as ReLU.
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CHAPTER 4 : METHODOLOGY

4.1 Roadmap

The goal of this thesis is to generate a heuristic function using Machine Learning as an

alternative to LP approximation to drive A* search algorithm for ACSP.

In order to solve ACSP using A*, we need a heuristic function that can estimate the cost

of completing the partial solution at any given node in the search space. In other words,

we must estimate the cost of travelling through the remaining colors, not yet visited, on

the way from the start vertex to the current vertex. In addition to the usual input for ACSP,

we also provide an additional list of colors to be visited, not necessarily the entire set

of colors on the graph. Thus we need to slightly modify and restate ACSP in order to

address the needs of the heuristic function. We call this modified version SCSP (Some

Colors Shortest Path) throughout the thesis and it should be noted that SCSP is actually

equivalent to ACSP with the color of the vertices not in that list repainted to the color of

the base.

Next, we modify the ILP formulation of ACSP in (Bilge et al., 2015) accordingly to

handle SCSP by including in the specific colors only.

We must also evaluate how well LP approximates the ILP in our problem space, and

see how much using LP as a heuristic reduces the A* search space in our problem space.

With the comparison of h() = 0 (Uniform Cost Search) iteration quantity in the A* search

algorithm, we measure how LP approximation affects the A* algorithm’s search space.

Once we have shown the potential of our approach using LP, we proceed to address

the significant computational overhead of using LP (not just once, but once at each search

node explored by A*) by utilizing supervised machine learning to generate a much faster

heuristic function. For generating the training set, we solve SCSP instances by generating

the corresponding ILP encodings and solving them using CPLEX. In this way, we train an

ANN to be utilized as a heuristic for the A* algorithm.

In order to generate the SCSP problem instances the previous step, we create a
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benchmark of ACSP and SCSP problems, we conduct the experiments to measure the

reductions in the search space when using h() = 0, h() = LP, and h() = ANN respectively,

both from search space and solution quality perspectives.

Finally, we proceed to present our experiment results, and their discussion in Chapter

5 and Chapter 6, respectively.

The rest of this section is organized as follows. Section 4.2 defines SCSP modification

of ACSP, section 4.3 explains A* algorithm with utilizing LP function as h(n) on A* and

generating heuristic model of ANN, section 4.4. consists of benchmark of raw data, and

lastly, section 4.5 demonstrates the training methodology of ANN in order to perform as a

good heuristic model on A*.

4.2 Some Colors Shortest Path (SCSP) and its ILP Formulation

We make a minor modification to the ILP formulation given by (Bilge et al., 2015) to

solve the ACSP problem with A*. In internal nodes of the search space, we must be able to

estimate the cost of completing the path from the current node by traversing the remaining

colors that has not been visited up to that point. Thus we must reformulate the ACSP

problem (Bilge et al., 2015) in order to allow the specification of some colors required

to be visited. Accordingly, we define the Some Colors Shortest Path (SCSB) problem as

follows:

Given a set of colors C = {c1, ...,ck}, a subset of colors Cs ⊆C and an undirected graph

G(V,E) with a non-negative weight value wi, j for each edge(i, j) ∈ E, a designated base

vertex s ∈ V = {1,2, ...,n}, a color value κ(v) ∈ C for each v ∈ V , SCSP is the problem

of finding the shortest (possibly non-simple) path starting at s such that every color in Cs

occurs at least once on the path.

For the ILP formulation(Bilge et al., 2015), we follow the approach described by Bilge

et.al. and we transformed the undirected graph G(V,E) to a directed graph G′(V ′,E ′)

by adding two new vertices with color label C0 and zero weighted directed edges,

E ′ = {(0,s)}∪ {(i,n+ 1)|i = 1,2, ...,n}∪E. The resulting ILP formulation is depicted

in constraints (4.1) through (4.11) below. The objective function in (4.1) minimizes the

12



sum of the edges in the optimal solution. Constraint (4.2) guarantees that the solution

always starts with a randomly selected base node s ∈ V . Constraints (4.3) ensures each

distinct color in Cs ∈ C is visited at least once and note that original formulation uses C

and not Cs! This is the only point where SCSP ILP model differs from that of ACSP.

Constraint (4.4) specifies that the number of edges traversed by visiting any vertex in G is

equal to the number of visited edges leaving it. This obviously applies to all nodes except

for source and sink vertex in G′. Constraints 4.5, and 4.6 construct the rules related with

the decision variable y j for all j ∈ V ′ \ {0}. If node j navigates in a viable solution, the

binary decision variable y j takes the value of 1, zero otherwise. Constraint 4.5 assumes

that visiting an edge (i, j) is a result of visiting vertex j , while Constraint 4.6 verifies the

adverse. Constraint 4.7, along with 4.8, is used to eliminate any possible sub-tours, and to

guarantee connectedness to the base. Constraint 4.7 ensures that the total flow in a vertex

visited is equal to a value greater than the total flow from that vertex. Constraint 4.8 is

responsible for the regulation of the flow values. The flow is associated with the edge

only if that edge is part of a solution. Lastly, the constraints 4.9, 4.10, and 4.11 are the

integrality constraints for the decision variables xi, j, y j, and fi, j, respectively.
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Minimize ∑
(i, j):(i, j)∈E ′

xi, j ∗wi, j (4.1)

Subject to x0,s = 1 (4.2)

∑
(i, j):(i, j)∈E ′
∧ κ( j)=c

xi, j ≥ 1 ,∀c ∈Cs (4.3)

∑
j:( j,i)∈E ′

x j,i = ∑
j:(i, j)∈E ′

xi, j ,∀i ∈V (4.4)

y j ≥ xi, j ,∀(i, j) ∈ E ′ (4.5)

∑
i:(i, j)∈E ′

xi, j ≥ y j ,∀ j ∈V ′ \{0} (4.6)

∑
j:( j,i)∈E ′

f j,i = yi + ∑
j:(i, j)∈E ′

fi, j ,∀i ∈V (4.7)

xi, j ≤ fi, j ≤ (n+1)∗ xi, j ,∀(i, j) ∈ E ′ (4.8)

xi, j ∈ {0,1} ,∀(i, j) ∈ E ′ (4.9)

yi ∈ {0,1} ,∀(i) ∈V ′ \{0} (4.10)

fi, j ∈ {0,1, ...,n+1} ,∀(i, j) ∈ E ′ (4.11)

4.3 Using A* for ACSP/SCSP

A graph object is created to contain all the information including vertex colors and

edge weights for the ACSP / SCSP problem to be used in the A* algorithm. The graph

object stores all properties, such as vertices change with their colors, and edges with the

associated weight values. In order to conserve space, this graph object is shared by all the

nodes in the search space, without replication. In addition, each node contains the indexes

of the vertices on path from the start to the current vertex, along with the path cost g(n)

and completion estimate h(n). Note that in order to estimate the h(n) function for a child

node n generated by A*, we formulate an SCSP problem where the start node is n and

Cs is obtained by eliminating already seen colors from C. To describe another way, the

child node generated by A* is taken as the starting point on the graph for every time and

it is aimed to obtain heuristic predictions by giving information about both the remaining

colors so far and the colors seen so far.
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Goal criteria consists of verifying that the remaining set of colors to be visited is empty.

The children of a given node is created by A* determined according to edge connections

of graph node object. In the evaluation of h() = 0, it proceeds to the goal by calculating

the g() function according to the cost spent in travelling to each child node to which the

nodes are connected according to the graph structure. The goal criterion of A* algorithm

depends on the minimum cost of traversing all the colored nodes that are required to be

circulated as a color set in the ACSP or SCSP problem. In this case, when the child node

of each parent node is selected, it will check whether all colors are selected with the least

cost. The A* algorithm is expected to achieve all colors at minimum cost, as long as the

heuristic function underestimates the cost of reaching the actual goal at each step in the

graph baseline.

4.3.1 LP Approximation for the Heuristic Function

Instead of calculating the optimal result, LP finds the decision variables (xi, j, yi, j and

fi, j) of the probable paths shown as ILP formulation in (Bilge et al., 2015), and therefore

the LP solution introduced to the ACSP problem is used as the heuristic estimation method

to reach the optimal path of the A* algorithm.

ILP gives the optimal result in solving the problem. However, ILP determines

decision variables as integer values and takes exponential time, which quickly becomes

cost prohibitive for large data sets. On the other hand, it is important for us that LP

underestimates ILP in a short time and to a good extent. In this case, we underestimate

ILP in polynomial time utilizing LP. In other words, we aim to estimate the h() function

of the A* algorithm in polynomial time in less time than the time that ILP will lead us to

the optimal result. At that point, when performing an LP solution, integer value generates

the optimal or near-optimal estimates in polynomial time by giving real values between 0

and 1 rather than integer values of 0 or 1.

We utilize CPLEX Studio Version 12.8.0 to solve LP and ILP problems (CPLEX

Optimizer, 2019). This library requires us to instantiate an LP model with the problem

constraints as specified in Section 4.2 which covering the ILP Formulation of SCSP. Since

it would be prohibitive to create such an object from scratch for every node in our search
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space, we initialize it once for the root node, and for each subsequent child, we add

additional constraints to estimate the h() value, and then retract those additional constraints

back.

For LP, when the A* algorithm needs to calculate the LP solution for each control of

the child’s nodes through the successors, making sure that the path traversed from the start

vertex to the current vertex is included as part of the LP solution. Thus, the value of the

xi, j decision variable in the LP mathematical formulation of the problem is forced to be

1 for each edge already traversed. Since the forced xi, j decision values (to be xi, j = 1)

are systematically calculated inside of LP in advance as a real distance travelled, for A*

algorithm, estimate that is produced by LP, always consists of f () values. In other words,

there is no need to separately calculate g() and h(), since LP solution already provides

the f () value. The first created model for the LP solution is always stored permanently so

that, by reaching the child nodes prediction values, it can be directed in different ways to

achieve an optimal solution. The sample usage of A* with LP approximation for heuristic

is depicted on Figure 4.1.

While computing the f () for internal nodes in the search space, as an alternative to

the method of assigning 1 to edge variables for already traversed edges, another possible

approach is using the SCSP formulation directly, which eliminates the constraints for

colors that have already been visited. In this manner, to compute the h() function of

each selected node by the A* algorithm, the colors seen so far is subtracted from the color

set and the selected node is designated as the start vertex by utilizing the SCSP. For this

case, the SCSP generates an estimate of the remaining colors from the initial vertex to

produce solutions with minimal cost. While we have utilized SCSP for training our ANN

as described in Section 4.3.2, we have not fully explored it in the context of A*LP yet; we

believe that using SCSP might provide some computational performance improvements to

A*LP.

4.3.2 ANN Approximation for the Heuristic Function

The general working principle of A* relates to f () = g()+h() as mentioned in Chapter

2. Therefore, for providing significant progress on computation performance of A*, it

requires a heuristic function that makes zippy and reliable predictions.
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Figure 4.1. A*LP Search Demonstration

The purpose of the ANN in this problem is to estimate the h() function; in other

words, given the graph, edge weights, vertex colors, current vertex, and list of colors to

be visited, it must predict the cost of the optimal solution traversing those colors, starting

at the current vertex. Along with this manner, ANN layers in the system are regressed by

back-propagating in order to suit the properties of the problem structure and as a heuristic

tool in A*, it estimates solutions with shrinking the complex featured input size layer by

layer to only one output. In this case, compared to LP, the good side of ANN would be

that it can produce close and optimal predictions if it is well trained.
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Step by step walking through the optimal solution of A* is decided with state of start

node. When A* choose the child node as an optimal way of heuristic result, child node

becomes start node and all of the node color values that it has travelled so far are shown

as 0 in the color vector and the child in which it is found is evaluated as the starting node.

In other words, the colors are examined so far will be 0, while the colors that remain to

be visited will be indicated by the value 1. In this case, ANN’s prediction will be in the

direction of which colors we will search for from the starting node by figuring out the

binary color values. To illustrate this, initially, all color vector values will show 1, while

the first node will be the starting node, and we expect that the value it generates will be

close to the answer we want to optimally reach at the end of our problem. In this way,

ANN will generate heuristic estimates as a result of changing color values and initial node

values each time A* progresses. In this manner, we call interoperability of A* algorithm

and ANN as A*NN and we explain that A*NN possesses two sides:

• NN training side of the problem consists of SCSP solutions which includes random

starting vertex with the value of V = {1,2, ...,n}, seen colors so far with the binary

value of 1 and remaining colors not seen so far with the binary value of 0. In other

words, according to SCSP, the subset of all colors set will be depicted as 1 and SCSP

will answer the question of “From start vertex s, for obtaining colors subset Cs with

the binary value 1, what is the optimal and shortest path cost? ” for training.

• A* side of the problem shows opposite manner of the training. The child node

selected by A* substitutes of start vertex and the colors are seen so far will be of 0

and while remaining ones will be 1. Therefore, A* algorithm’s question should be

as follows : “Let the child node be starting point, what is the estimated optimal path

cost of finding remaining color or colors with the value 1?”

As in the data representation shown in Figure 4.1, each child node selection by A*

modifies the color vector with respect to the diagonal color vertex representation. In other

words, the selected child node color affects the color vector specified in the second part

and switches the binary color representation of input data. This process works oppositely

for both training side of ANN and prediction side of A*NN based on the colors seen and

remaining.
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4.4 Benchmark

Graph Dataset was generated by using C ++ Boost Library (Boost C Libraries, 2019)

for ease of display of graphs. In order to compare the values of the data and effectively

train the Neural Network given the availability of computational resources at this stage

of our research, all graphs contain 10 vertices. Once we demonstrate the efficacy of

our approach, we intend to expand our work to larger problem sizes in the future. The

vertices are randomly connected with each other utilizing 30 random weighted edges

whose weights are between 10 and 40. In addition, color values are randomly distributed

to all vertices to provide 5 different colors for different data representation. One hundred

thousand different graphs that formed raw graph data were created using this approach.

Moreover, for comparison purpose, one hundred test sets were produced that are totally

independent of raw graph dataset.

In addition to the graph dataset, we generated SCSP problem sets that specify the start

vertex, and list of colors to be visited, in order to train our ANN. So, processed raw data

forms our manual feature map to ANN and consists of whole graph features and solutions

along with partial ones of each.

By using ILP, the optimal shortest path to the SCSP problem of each graph can be

computed. So as to generate SCSP problem dataset, we partition the problem which colors

we should choose and by the way of this which vertices we need to examine through the

color combinations we choose as Cs ∈C. Before traversing the graph, we create a starting

point for graph by means of a randomly selected start vertex. In this way, partial solutions

are generated on graphs by modifying ACSP in terms of SCSP. In other words, for all

V = {1, . . . ,n} and start vertex s ∈ V , we always choose random vertex s, by the way of

this, the decision variable of SCSP will be X0,s = 1. For all C = {1, . . . ,k}, selected and to

be assumed visited colors Cs ∈C, we randomly choose subset color as r = {1, . . . ,k} and

Cs =Combinations(C,r).

The data files for SCSP problem set and raw dataset can be accessed via google drive

link (https://drive.google.com/drive/folders/1ePDtGMafMrNcKvU1EnRk0fS9qtnJ_

ue?usp=sharing). Accordingly, one sample graph with the encoding on this thesis is
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illustrated in Figure 4.2 and Figure 4.3. Figure 4.2(a) shows the raw graph data produced

by C ++ Boost Library , Figure 4.2(b) illustrates the color vector of input data along with

the starting vertex and optimal value of graph for training ANN. Notice that in Figure

4.2(b), selected colors are demonstrated as a 1 whereas remainings are 0. Figure 4.2(c)

depicts the adjacency matrix of the graph and the matrix diagonally consists of the color

values of vertices. Moreover, note that Figure 4.2(b) and Figure 4.2(c) together form

processed graph data for generating SCSP/ACSP problem data so as to train ANN.

In Figure 4.3, the vertices contain two values : the first one is the vertex number and

the other one is the color value. Between the connected vertices, each edge carries a cost

(weight) value. In accordance with Figure 4.2 (b), the optimal SCSP solution starting at

vertex 1 and visiting four colors (1, 2, 3, and 4) from the entire color wset is presented

with red vertices and a black colored path. Finally, we can see that the optimal solution

path cost shown by Figure 3 is equal to the optimal value in Figure 4.2.(b).

4.5 Training an ANN as a heuristic function

We generated the input data for the three parts of the graph’s raw features by combining

them. The first part is the adjacency matrix; the second part relates to the color values and

the last one consists of the numerical value of the start vertex.

The primary way to prepare the training dataset is to create a 10x10 adjacency matrix

from the raw data. The diagonal of the matrix takes a color value specifically between 1

and 5 for this problem. The additional five terms represent a binary value (0 or 1) which

indicates that the vertex has previously been selected (or not intended for) with respect to

the color values. This information is crucial to determine choosing optimal path or not

optimal one. Therefore, the network will figure out which vertex is selected via lights on

or off with respect to binary color value. Lastly, it will also be added to the training set by

procreating start vertex showing the beginning of traverse that is chosen in decimal.

The target values calculated by ILP will be given to the input layer together with the

adjacency weight matrix and color matrix before ANN is trained, as it forms the basis of

regression problems.

The input layer of the network includes the raw state of the graph information, the color
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(a) Raw graph data information

(b) Binary color vector

(c) Processed data adjacency matrix of raw graph data

Figure 4.2. SCSP Graph Data Representation

values indicating the state of selection of the vertices, and the start vertex with decimal

value, respectively. Thus, the conditions in which A* chooses each node and picks their

children are determined in the training dataset in order to illustrate the preferred pathways.
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Figure 4.3. Representation and solution of SCSP graph for 4 colors optimal path finding
within a 5 colored vertex.

According to this, we produce a predicting label as the cost of the subpaths likely to be

favored by the A* algorithm. Raw graphs previously created are computed in accordance

with the changes in the ILP formulation to the values given to the xi, j decision variables and

the color variables (depicted in Section 4.2), and to the node selection status of each of the

subpaths forming the non-simple path. In addition, two different non-optimal solutions are

created from raw data to show the preferences of inconsistent but conclusive non-optimal

paths in the training dataset and to stabilize the network. Non-optimal solutions are found

by solving instances of SCSP where the base and color subset are randomly selected.

Lastly, because of the complexity of problem representation and for avoiding the

overfitting configs, it is necessary to utilize an augmented size of data. By means of the raw

graph data processing method using SCSP formulation, we have created approximately

one million data samples for the purpose of training ANN. The data file for SCSP

problem set can be accessed via google drive link (https://drive.google.com/drive/

folders/1eIg63wvEx0YSAEQChnGH-o4EiL1Ivj7R?usp=sharing).

22

https://drive.google.com/drive/folders/1eIg63wvEx0YSAEQChnGH-o4EiL1Ivj7R?usp=sharing
https://drive.google.com/drive/folders/1eIg63wvEx0YSAEQChnGH-o4EiL1Ivj7R?usp=sharing


In this thesis, Multilayer Perceptron (MTL) is used as an ANN to learn and predict

the graph structured data. For training, Python Tensorflow library (Abadi et al., 2015)

simplifies an efficient area with the structure of its interface which has an user-friendliness,

however usage with A* brings about performance issues to solve SCSP problem.

Therefore, we utilized Python TensorFlow library (Abadi et al., 2015) for training and

by extracting calculated weights and biases’ values, wrote own interoperable code with

A* in C++. In addition to this, all experiments including training of ANN were executed

on machine with the properties of 2.50Ghz Intel(R) Core i7 CPU, 16Gb RAM and 8Gb

NVIDIA GeForce GPU.

Being successful in ANN training comes in the form of trial testing. Among the

theoretical knowledge of ANN, the excess number of data is crucial to achieve efficiency

in the use of complex data to avoid overfitting situation. In addition, it has been showed

in the studies that increasing both the depth and the neuron size of the network gives great

results about obtaining an efficient information from ANN (Bengio et al., 2007; Erhan

et al., 2009; Goodfellow et al., 2013).

In this study, when we evaluate according to mean absolute error and mean square

error, we found the best network structure as 106 x 340 x 170 x 85 x 44 x 22 x 11

x 5 x 1 (106 with input layer, different sizes of fully connected 7 hidden layer and 1

output layer for regression). Weight initialization for each dense layer is evaluated as a

normal distribution. In addition, batch normalization, as conducted by (Ioffe and Szegedy,

2015), is used shortly after the activation function for all hidden layers in the study to

saturate nonlinearity for each layer of the neural network. By the way of this, we reached

efficient performance on training error, while the other regularization methods such as

L1/L2 Normalization and Dropout did not meet expectations. Accordingly, the obtained

ANN structure is shown in Table 4.1.
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Table 4.1. ANN Architecture for SCSP Problem Set

Type Output Size Param #
Input Layer 340 36380
Batch Norm 340 1360
Hidden Layer 170 57970
Batch Norm 170 680
Hidden Layer 85 14535
Batch Norm 85 340
Hidden Layer 44 3784
Batch Norm 44 176
Hidden Layer 22 990
Batch Norm 22 88
Hidden Layer 11 253
Batch Norm 11 44
Hidden Layer 5 60
Batch Norm 5 20
Output Layer 1 6
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CHAPTER 5 : EXPERIMENTAL RESULTS

5.1 Training Results of ANN

The ANN model, which was developed according to the characteristics of the SCSP

problem, was trained using 750 epoch and a batch size as 70. Mean Absolute Error (MAE)

was used in the comparison of the training set and the validation set. 80% of the dataset

was used for training and the remaining 20% for validation purposes. Figure 5.1 shows

the training graph. In the graph, we see that the MAE decreases to 7 in the direction of

the training set while the validation set observed is at 7.2. The current values have been

effective in our study. However, in future studies, it is considered that better results can be

obtained by increasing the number of the training sets and the epochs on machines with

more computing power and capacity.

Figure 5.1. Training Error Graph of ANN
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Table 5.1. Solution Quality Comparison results

Max Min Mean Std
ILP 103.00 43.00 70.37 11.17
LP 87.05 41.36 60.78 10.63
LP/ILP 1.00 0.67 0.86 0.07
ANN 102.19 52.62 68.43 8.21
ANN/ILP 1.53 0.56 0.99 0.16

In this section, we also compared ANN and LP approximation qualities in order to

measure the closeness to the optimal solution of the problem. As previously mentioned,

the ACSP problem can be optimally solved using the ILP formulation. Thus, using a

problem set of one hundred samples, we measure the ratio of the LP estimate to the

optimal solution cost (as computed by ILP), as well as the ratio of the ANN estimate to the

optimal solution cost. These results are summarized in Figure 5.2 and Table 5.1. When

we consider these results, it is seen that LP always underestimates ILP as expected; while

ANN overestimates on occasion. However, the overestimates are limited in magnitude and

frequency: 75% of the samples are less than 1.07 times the cost of the optimal solution.

While it is possible to make adjustments to ANN so that it overestimates less often, this

might adversely impact the savings in the search space size for the A* algorithm. As

we will see in the next section, using ANN as a heuristic yields very close to optimal

results, so such an adjustment is not warranted in our view. Except for the maximum and

minimum values in Figure 5.2, the values for ANN are very akin to the optimum. Even if

the results do not always underestimate ILP, it will give us hints that if it works with A*, it

will always give very close results to the optimal, to solve notwithstanding that not always

with optimal results. Table 5.1 contains the values showing the closeness of the results

obtained by LP and ANN to the optimal results with ILP for 100 graph test data. If Figure

5.2 and Table 5.1 are interpreted together; on average, it can be said that ANN’s estimates

are almost always close to optimal values compared to LP. According to Table 5.1, ANN’s

proximity to ILP is 0.99, whereas LP remains 0.86.

Maximum results of Table 5.1 demonstrates that LP never overestimates the ILP

solutions.

In the same way, we observe the computation times of LP and ANN by looking at
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Figure 5.2. Solution Quality for ANN versus LP Estimate Ratios

Table 5.2. ANN versus LP CPU Time Comparison

Means Max Min Median Std

LP CPU TIME (ms) 29.3422 40.0000 13.5940 28.4380 5.6831
ANN CPU TIME (ms) 1.0731 1.4220 0.7500 1.0780 0.1317

the rspective CPU utilizations. Accordingly, Table 5.2 shows us the average CPU time

statistics that ANN and LP spend for a single forecast. It is seen that ANN runs 30 times

faster than LP.

5.2 Comparison of LP versus ANN as effective A* Heuristics

In this section, we consider the number of nodes expanded by the A* algorithm, as

a metric to evaluate the search space size. We take the uninformed heuristic h()=0 as a

baseline, and measure the ratio of search space for h() = 0 to that of h() = LP and h()

= ANN, respectively. For comparison, we use one hundred problem test set to analyse

the study. Accordingly, A*LP and A*NN search space reduction analysis with respect to

h() = 0 of A* is depicted in Figure 5.3.

Figure 5.3 shows the comparison of the two methods used in A*. According to the

results of 100 graph data, it is understood that A*NN reduces search space better than

A*LP.
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Table 5.3. A* Search Space Comparison

Max Min Mean Std
A*NN 66.46 2.22 5.87 6.63
A*LP 10.81 1.02 2.24 1.88

Table 5.4. A*NN Optimal Cost Comparison

Max Min Mean Median Std
A*NN to Optimal Ratio 1.1451 1.0000 1.0016 1.0000 0.0146

Figure 5.3. A* Search Space Comparison

Moreover, if Figure 5.3 and Table 5.3 are considered together, A*NN can reduce search

space of A* algorithm by the effect of 2 to 66 and on the average of 5.85, while A*LP can

force the pace about 11 times in the best case. Accordingly, by looking at the comparison

graph in Figure 5.3, we can say that A*NN intensely decreases the search space of A* at

an average rate between 5 and 6 times faster.

Furthermore, Table 5.4 involves the relationship between A* algorithm and ILP. In

this table, we compare the solution values of h() = 0, h() = LP and h() = NN, the heuristic

function of the A* algorithm, with the optimal solutions of the ILP. Accordingly, since

h() =0 and h = LP constantly underestimate solutions which are always optimal, we do not

insert the results into the Table 5.4. However, although A*NN in some cases overestimates
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solutions resulting from near optimal values, it can be said to be almost optimal with an

average value of 1.0016. The detailed results about A*NN Estimates and A* Search Space

Comparisons are in the appendix of this thesis.
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CHAPTER 6 : CONCLUSION

This thesis combines ANN with the traditional artificial intelligence search algorithm

A* utilizing the capacity of machine learning in the context of the ACSP problem and our

minor modification to it, called SCSP. We picked ACSP, because it is more complex than

the TSP and it is an NP-Complete graph theory problem in the direction to new interest

in the literature (Bilge et al., 2015; Akcan and Evrendilek, 2017; Akçay et al., 2018).

Customized to the ACSP problem, we produced efficiency results obtained by combining

the A* algorithm with LP approximation and ANN as heuristic functions.

The two methods obtained in this study -A*NN and A*LP- require partial solutions.

At this point, ACSP has been modified to SCSP so as to produce solutions for subsets of

the overall color set.

We first evaluated LP in order to figure out its approximation to the ILP in our problem

space, and demonstrated LP as a reasonable heuristic for reduction of the A* search space

in our problem space. By the way of comparison of h() = 0 in the A* algorithm, we

measured effects of LP approximation to the A* algorithm’s search space. Secondly we

trained ANN to be used as a heuristic function as an alternative to LP. Our results show

that ANN reduces the search space by six fold whereas LP reduces it by half. Furthermore,

computation time for ANN is 1.0731 milliseconds, whereas LP computation time is

29.3422 millisecond of cpu time. While A*NN is not guaranteed to produce optimal

results as it might overestimate the solution cost on occasion, our empirical results show

that it produces optimal or almost optimal solutions most of the time.

One limitation of our study is that our experiments are confined to small size graph with

ten vertices and 30 edges due to computational resource availability. However, we believe

A*NN will perform more favourably compare to ILP as the problem size increases. We

will undertake this as a topic of future research. Other future directions include attacking

NP-complete problems that are different from ACSP. We envision that studies aimed at

optimal solution utilizing A*NN may shed light on problems such as TSP, Clique Decision

Problem etcetera. Therefore, we consider that using ANN as a heuristic tool for such

different NP-complete problems can produce interesting outcomes.
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As another way; we can address larger graph problems using the partial solutions we

have achieved. The most straightforward way to do this is to apply the Divide and Conquer

principles.

The last method would be to train ANNs so as to predict the optimal path of graph

theory problems directly without utilizing A*. This is particularly challenging because

without A*, the solution will not be guaranteed to be a continuous path that visits all

required colors.
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APPENDICES

Appendix A-*NN Estimate Results

Table A.1. A*NN Estimate Results with Respect to Optimal Solution Cost of ACSP
Problem

Sample

No.
A*NN

Optimal

Solution

(ILP-LP-UCS)

A*NN/ILP

1 60 60 1.0000

2 75 75 1.0000

3 56 56 1.0000

4 63 63 1.0000

5 68 68 1.0000

6 72 72 1.0000

7 59 59 1.0000

8 79 79 1.0000

9 60 60 1.0000

10 53 53 1.0000

11 78 78 1.0000

12 75 75 1.0000

13 78 78 1.0000

14 51 51 1.0000

15 73 73 1.0000

16 84 84 1.0000

17 68 68 1.0000

18 58 58 1.0000

19 68 68 1.0000

20 66 66 1.0000

21 76 76 1.0000

22 69 69 1.0000

23 103 103 1.0000

24 68 68 1.0000
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Table A.1 continued from previous page

Sample

No.
A*NN

Optimal

Solution

(ILP-LP-UCS)

A*NN/ILP

25 72 72 1.0000

26 80 80 1.0000

27 65 65 1.0000

28 75 75 1.0000

29 73 73 1.0000

30 85 85 1.0000

31 61 61 1.0000

32 72 72 1.0000

33 74 74 1.0000

34 61 61 1.0000

35 78 78 1.0000

36 81 81 1.0000

37 44 44 1.0000

38 86 86 1.0000

39 50 50 1.0000

40 84 84 1.0000

41 73 73 1.0000

42 94 94 1.0000

43 63 63 1.0000

44 61 61 1.0000

45 62 62 1.0000

46 59 59 1.0000

47 73 73 1.0000

48 59 59 1.0000

49 75 75 1.0000

50 65 65 1.0000

51 62 62 1.0000

52 53 53 1.0000
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Table A.1 continued from previous page

Sample

No.
A*NN

Optimal

Solution

(ILP-LP-UCS)

A*NN/ILP

53 77 77 1.0000

54 71 71 1.0000

55 72 72 1.0000

56 64 64 1.0000

57 56 56 1.0000

58 77 77 1.0000

59 68 68 1.0000

60 66 66 1.0000

61 72 72 1.0000

62 66 66 1.0000

63 77 77 1.0000

64 72 72 1.0000

65 73 73 1.0000

66 78 78 1.0000

67 43 43 1.0000

68 58 58 1.0000

69 82 81 1.0123

70 63 63 1.0000

71 86 86 1.0000

72 55 55 1.0000

73 89 89 1.0000

74 58 58 1.0000

75 85 85 1.0000

76 64 64 1.0000

77 71 62 1.1452

78 87 87 1.0000

79 81 81 1.0000

80 65 65 1.0000
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Table A.1 continued from previous page

Sample

No.
A*NN

Optimal

Solution

(ILP-LP-UCS)

A*NN/ILP

81 66 66 1.0000

82 74 74 1.0000

83 68 68 1.0000

84 85 85 1.0000

85 90 90 1.0000

86 64 64 1.0000

87 79 79 1.0000

88 65 65 1.0000

89 73 73 1.0000

90 86 86 1.0000

91 73 73 1.0000

92 58 58 1.0000

93 67 67 1.0000

94 73 73 1.0000

95 63 63 1.0000

96 89 89 1.0000

97 69 69 1.0000

98 64 64 1.0000

99 96 96 1.0000

100 69 69 1.0000
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Appendix B-A* Search Space Results

Table B.1. A* Algorithm Search Space Comparison Results

Sample No. UCS (h()=0) A*LP A*NN

1 724 324 246

2 3087 2962 938

3 577 63 74

4 796 476 58

5 616 395 210

6 2067 656 280

7 739 289 210

8 1050 368 287

9 803 649 293

10 449 242 53

11 3390 1591 1135

12 593 68 143

13 8277 4876 2812

14 1059 905 299

15 1805 608 546

16 4006 3351 1180

17 1038 495 422

18 868 717 113

19 710 315 249

20 1312 489 204

21 3481 2519 1504

22 767 278 301

23 2601 1419 390

24 491 270 130

25 1325 704 407

26 2247 2211 612

27 609 225 129

28 1104 847 323
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Table B.1 continued from previous page

Sample No. UCS (h()=0) A*LP A*NN

29 432 367 132

30 3909 2792 812

31 997 100 261

32 329 138 148

33 1654 1318 452

34 866 477 285

35 3059 2811 799

36 2221 1466 508

37 281 26 33

38 6649 3955 2233

39 245 49 40

40 2833 1111 381

41 1426 1222 344

42 9359 5325 1353

43 969 848 121

44 981 769 128

45 1087 558 234

46 720 429 185

47 858 454 226

48 1463 1250 200

49 2902 2541 627

50 724 370 272

51 891 688 237

52 409 121 80

53 1861 209 28

54 3062 2693 498

55 1584 938 321

56 1069 436 178

57 954 625 222

58 1658 955 128
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Table B.1 continued from previous page

Sample No. UCS (h()=0) A*LP A*NN

59 936 398 248

60 745 561 191

61 1881 1311 538

62 2000 1716 631

63 919 226 366

64 572 481 85

65 1963 1085 228

66 1709 1190 226

67 510 235 28

68 471 75 74

69 2281 2199 546

70 557 317 63

71 4700 3593 850

72 400 145 75

73 1510 1315 575

74 987 594 182

75 2354 1504 590

76 444 296 131

77 852 439 75

78 4069 2279 646

79 2656 1762 629

80 817 238 197

81 869 672 143

82 3125 2887 544

83 2221 1260 429

84 4031 3337 1206

85 2625 2118 362

86 499 299 75

87 1906 1811 347

88 436 342 157
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Table B.1 continued from previous page

Sample No. UCS (h()=0) A*LP A*NN

89 1704 738 237

90 6044 3865 1144

91 3108 1098 537

92 1576 1098 254

93 429 349 75

94 842 448 129

95 1561 1437 371

96 2986 1080 408

97 1555 1205 317

98 317 178 44

99 7995 3132 1815

100 466 184 85
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