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A B S T R A C T

Recent developments in the next-generation sequencing based on RNA-sequencing (RNA-Seq) allow researchers
to measure the expression levels of thousands of genes for multiple samples simultaneously. In order to
analyze these kinds of data sets, many classification models have been proposed in the literature. Most of
the existing classifiers assume that genes are independent; however, this is not a realistic approach for real
RNA-Seq classification problems. For this reason, some other classification methods, which incorporates the
dependence structure between genes into a model, are proposed. Quantile transformed Quadratic Discriminant
Analysis (qtQDA) proposed recently is one of those classifiers, which estimates covariance matrix by Maximum
Likelihood Estimator. However, MLE may not reflect the real dependence between genes. For this reason, we
propose a new approach based on local dependence function to estimate the covariance matrix to be used in the
qtQDA classification model. This new approach assumes the dependencies between genes are locally defined
rather than complete dependency. The performances of qtQDA classifier based on two different covariance
matrix estimates are compared over two real RNA-Seq data sets, in terms of classification error rates. The
results show that using local dependence function approach yields a better estimate of covariance matrix and
increases the performance of qtQDA classifier.
1. Introduction

Dependence relation between random variables is one of the most
commonly studied subjects in statistical data analysis. It is an important
task to figure out the dependence structure of a data set and incorporate
it into a statistical model in data analysis field. Generally, one can
incorporate the dependence structure via covariance matrices which
play an important role in multivariate statistical models, data classifi-
cation, image processing, etc. A simple way to estimate the covariance
matrix is to use Maximum Likelihood Estimator. However, this simple
estimator may not reflect the complex dependence structures in med-
ical and biological sciences due to the high dependence between the
variables (attributes) in data sets. Hence, there have been a few recent
approaches proposed for improving the covariance matrix estimation
(Matteoli et al., 2010; Velasco-Forero et al., 2015) in the literature.

Caefer and Rotman (2009) developed a quasi-local covariance ma-
trix estimation to be applied on spectral data analysis. Instead of
estimating the whole covariance matrix they use the variance of neigh-
bors surrounding the reference point and they define dependence areas.

∗ Corresponding author.

That is, the points in highly variable areas will have higher variances
and the points in low variable areas will have less variances, accord-
ingly. Similar to the approach given in Caefer and Rotman (2009),
Oruc and Ucer (2009) proposed a new methodology to construct local
dependence map which can identify three regions: positive, negative
and zero dependence. They applied it on real medical data sets and
showed that local dependence is much more informative in some
instances.

Since it is known that RNA-Seq data sets are composed of many
genes which are highly correlated with a high dependence degree,
we claim that new samples will have an individual impact on the
estimation of the covariance matrix while classifying the new samples.
For this purpose, in this study, we propose a new type of covariance
matrix estimate, which is called local covariance matrix, that can be
implemented in qtQDA classifier. Integrating this new local covariance
matrix into the qtQDA classifier improves the performance of the
classifier. In this study, since the local covariance is updated for each
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new sample observation with a newly proposed method, the classifier,
qtQDA, becomes an adaptive algorithm and we call it Local-quantile
transformed Quadratic Discriminant Analysis (L-qtQDA). The source
code implementing the method is available on https://github.com/
Necla/LocalDependence.

2. Methodology

Classification of gene expression data has become an important re-
search area in the last decade (Algamal & Lee, 2015; Bielza et al., 2011;
Huang et al., 2012). Particularly in cancer research, true classification
of the sub-type of a patient with a particular cancer, leads a better
predictive and a customized treatment for that patient. Therefore,
classification of a patient to a cancer sub-type at gene expression level
has a crucial importance. Due to the discrete structure of RNA-Seq data,
classification of these kind of data is not as simple as other classification
models that are proposed for microarray gene expression data sets.

There are certain number of classifiers proposed especially for RNA-
Seq data in the literature (Goksuluk et al., 2019). The most recent one
is qtQDA classifier proposed by Koçhan et al. (2019). Since qtQDA
incorporates the dependence structure into the model, we apply qtQDA
in order to compare a differently estimated covariance matrix, local
covariance matrix, with the simple one used in qtQDA model. In the
following section we explain the qtQDA classifier in details.

2.1. Negative binomial marginals

Suppose that we have 𝑘 distinct classes and want to classify new
samples into one of those 𝑘 classes on the basis of 𝑚 genes. Let 𝐗(𝑘) =
[𝑋(𝑘)

1 , 𝑋(𝑘)
2 ,… , 𝑋(𝑘)

𝑚 ]𝑇 be a gene expression data matrix from 𝑘th class
here 𝑋(𝑘)

𝑖 is the number of reads (counts) for gene 𝑖. Assume that
ounts are marginally negative binomial distributed, i.e.
(𝑘)
𝑖 ∼ NB(𝜇(𝑘)

𝑖 , 𝜙(𝑘)
𝑖 ), (1)

here 𝜇(𝑘)
𝑖 = 𝐸[𝑋(𝑘)

𝑖 ] and 𝜙(𝑘)
𝑖 is the dispersion for gene 𝑖. It can be

asily calculated that

ar(𝑋(𝑘)
𝑖 ) = 𝜇(𝑘)

𝑖 + 𝜙(𝑘)
𝑖 (𝜇(𝑘)

𝑖 )2.

f 𝜙(𝑘)
𝑖 is different than zero then

ar(𝑋(𝑘)
𝑖 ) = 𝜇(𝑘)

𝑖 + 𝜙(𝑘)
𝑖 (𝜇(𝑘)

𝑖 )2 > 𝜇(𝑘)
𝑖

hich is consistent with known properties of RNA-seq data when there
re biological replicates (readers are referred to McCarthy et al. (2012)
or more details).

.2. Quantile transformation

In order to incorporate the dependence into the model, a quantile
ransformation process is applied :

1. Let 𝐙(𝑘) be an 𝑚-vector from a multivariate normal distribution:
𝐙(𝑘) ∼ MVN(𝟎,Σ(𝑘)), where 𝑍(𝑘)

𝑖 ∼ N(0, 1).
2. Then transform 𝑖th component of 𝐙(𝑘) into the 𝑖th component of

𝐗(𝑘)

𝑋(𝑘)
𝑖 = 𝐹−1

𝑘 {𝛷(𝑍(𝑘)
𝑖 )}, (2)

where 𝛷 is the standard normal distribution function, 𝐗(𝑘) is
the transformed random variable and 𝐹𝑘 is the NB(𝜇(𝑘)

𝑖 , 𝜙(𝑘)
𝑖 )

distribution function.

Note here that each class has its own different covariance matrix
which is expected to increase the performance of the classification.
2

.3. Classification

Suppose we observe a new sample 𝐱∗ = [𝑥∗1 , 𝑥
∗
2 ,… , 𝑥∗𝑚]

𝑇 from
nknown class 𝑦∗, where 𝑦∗ ∈ {1, 2,… , 𝐾} is the class label. Using
nverse of quantile transformation, we transform components of the
ew sample 𝐱∗ to a new vector 𝐳∗(𝑘) which is multivariate normally
istributed with parameters 𝜇 = 𝟎 and 𝛴 = Σ(𝑘). It is obvious that
his transformation is applied for each class separately. Then, by Bayes
heorem, posterior probability of 𝐱∗ belonging to the 𝑘th class is given
s
(

𝑦∗ = 𝑘|𝐱∗
)

∝ 𝑓𝑘
(

𝐳∗(𝑘)
)

𝜋𝑘, (3)

where 𝜋𝑘 is the prior probability and 𝑓𝑘 is the density

𝑓𝑘(𝐱) =
1

(2𝜋)𝑚∕2 |
|

𝛴(𝑘)|
|

1∕2
exp

{

−1
2
𝐱𝑇

(

𝛴(𝑘))−1 𝐱
}

, (4)

Using Eqs. (3) and (4), the quadratic discriminant score for qtQDA
can be defined as follows:

𝛿𝑘(𝐱∗) = −1
2
(

𝐳∗(𝑘)
)𝑇

Σ(𝑘)−1𝐳∗(𝑘) + log𝜋𝑘 (5)

Thus we classify new sample 𝐱∗ into one of 𝑘 distinct classes which
maximizes the Eq. (5).

2.4. Parameter estimation

In order to apply the model in practice, there exist some parameters
to be estimated in the classification model. Now, we explain how they
are estimated.

• Negative Binomial Parameters(mean and dispersion). Like qtQDA,
we use estimateDisp function in the R package edgeR. This
function estimates mean using maximum likelihood and calcu-
lates a matrix of likelihoods for each gene at a set of dispersion
grid points. Then weighted likelihood empirical Bayes method
is applied to obtain posterior dispersion estimates for each gene
(Chen et al., 2014; McCarthy et al., 2012).

• Covariance Matrix. In order to estimate the class specific covari-
ance matrices, we apply inverse quantile transformation given
in Koçhan et al. (2019). Unlike Koçhan et al. (2019), in this
study we use local dependence function explained in Section 3
in order to improve the covariance matrix estimation and we
call this estimation as local covariance matrix. Note here that
similar to Koçhan et al. (2019), we use the R package ‘‘corpcor’’ to
guarantee that local covariance matrix is symmetric and positive
definite for downstream analysis.

• Classification Error Rate (CER). To assess the performance of the
classifiers, we used Classification Error Rate, which is defined as
follows:

CER =
the number of misclassified samples

the total number of samples .

. Local dependence function

Let (𝑋, 𝑌 ) be a continuous bivariate random variable with joint cu-
ulative distribution function 𝐹 (𝑥, 𝑦) and with joint probability density

unction 𝑓 (𝑥, 𝑦). Then the Pearson correlation coefficient between 𝑋, 𝑌
s given as

(𝑋, 𝑌 ) =
𝐸 (𝑋 − 𝐸𝑋) (𝑌 − 𝐸𝑌 )

√

𝐸 (𝑋 − 𝐸𝑋)2
√

𝐸 (𝑌 − 𝐸𝑌 )2
(6)

Indeed, Eq. (6) is a way of measuring linear dependence between
two random variables and in some researches it is called measure of
association (Bairamov & Kotz, 2000; Bairamov et al., 2003). But in
some cases, this strength of association between two random variables

https://github.com/Necla/LocalDependence
https://github.com/Necla/LocalDependence
https://github.com/Necla/LocalDependence
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can vary locally. In order to define a local measure of the association
between two random variables (Bairamov & Kotz, 2000) proposed a
new local dependency function which replaces the expectations 𝐸𝑋
nd 𝐸𝑌 by conditional expectations 𝐸 (𝑋|𝑌 = 𝑦) and 𝐸 (𝑌 |𝑋 = 𝑥), re-

spectively. The Bairamov & Kotz local dependence function (Bairamov
& Kotz, 2000) is given as follows:

𝐿 (𝑥, 𝑦) =
𝐸 (𝑋 − 𝐸 (𝑋|𝑌 = 𝑦)) (𝑌 − 𝐸 (𝑌 |𝑋 = 𝑥))

√

𝐸 (𝑋 − 𝐸 (𝑋|𝑌 = 𝑦))2
√

𝐸 (𝑌 − 𝐸 (𝑌 |𝑋 = 𝑥))2
(7)

Let 𝜀𝑋 (𝑦) = 𝐸𝑋 −𝐸 (𝑋|𝑌 = 𝑦) and 𝜀𝑌 (𝑥) = 𝐸𝑌 −𝐸 (𝑌 |𝑋 = 𝑥). Then

𝐿 (𝑥, 𝑦) =
𝜈 + 𝜖𝑋 (𝑦) 𝜀𝑌 (𝑥)

√

𝜎𝑋 + 𝜀2𝑋 (𝑦)
√

𝜎𝑌 + 𝜀2𝑌 (𝑥)
(8)

here 𝜈 = 𝐶𝑜𝑣 (𝑋, 𝑌 ).
Thus, local dependence function 𝐿 (𝑥, 𝑦) which represents the de-

endence between 𝑋 and 𝑌 at any specific point (𝑥, 𝑦) is more robust
nd accurate if there exists a dependence in the model.

In order to estimate the covariance matrix from the data available
e need to estimate the local dependence function from the data.
herefore, Nadaraya (1964) and Watson (1964) proposed the following
stimates for the regression functions 𝐸 (𝑋|𝑌 = 𝑦) and 𝐸 (𝑌 |𝑋 = 𝑥):

𝐴(𝑛)
𝑋 (𝑦) =

∑𝑛
𝑖=1 𝑋𝑖𝐾

(

𝑦−𝑌𝑖
ℎ𝑛

)

∑𝑛
𝑖=1 𝐾

(

𝑦−𝑌𝑖
ℎ𝑛

) and 𝐴(𝑛)
𝑌 (𝑥) =

∑𝑛
𝑖=1 𝑌𝑖𝐾

(

𝑥−𝑋𝑖
ℎ𝑛

)

∑𝑛
𝑖=1 𝐾

(

𝑥−𝑋𝑖
ℎ𝑛

) (9)

where 𝐾 is an integrable kernel function with short tails and ℎ𝑛 → 0 is
a width sequence tending zero at approximate rates.

Since it is given in Silverman (1986) that the optimal choice for ℎ
is

ℎ𝑛 =
(

4�̂�5
3𝑛

)
1
5
≈ 1.06�̂�𝑛−1∕5 (10)

here �̂� is the standard deviation of the samples, we use Eq. (10)
n order to estimate the conditional expectations. Moreover, we use
riangular kernel function which is given as follows:

(𝑢) = 1 − |𝑢|, |𝑢| ≤ 1 (11)

Using those estimates given in Eq. (9), we suggest the following
stimate for local dependence function

𝐿𝑛 (𝑥, 𝑦) =
𝜈(𝑛) +

(

𝑋 − 𝐴(𝑛)
𝑋 (𝑦)

)(

𝑌 − 𝐴(𝑛)
𝑌 (𝑥)

)

√

1 +

(

𝑋−𝐴(𝑛)
𝑋 (𝑦)

)2

𝑠2𝑋

√

1 +

(

𝑌−𝐴(𝑛)
𝑌 (𝑥)

)2

𝑠2𝑌

= 𝑠𝑥𝑠𝑦𝐻
(𝑛) (𝑥, 𝑦)

(12)

here
(𝑛) = Cov (𝑋, 𝑌 ) ,

𝑋 = 1
𝑛

𝑛
∑

𝑖=1
𝑋𝑖,

𝑌 = 1
𝑛

𝑛
∑

𝑖=1
𝑌𝑖,

2
𝑋 = 1

𝑛 − 1

𝑛
∑

𝑖=1

(

𝑋𝑖 −𝑋
)2

𝑠2𝑌 = 1
𝑛 − 1

𝑛
∑

𝑖=1

(

𝑌𝑖 − 𝑌
)2

.

𝐻 (𝑛) (𝑥, 𝑦): local dependence function suggested in Bairamov and Kotz
(2000).

Note here that 𝑋 and 𝑌 are any two genes across samples.
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4. Results

4.1. Application on real data sets

In this section, we implement qtQDA based on two different es-
timates of covariance matrix. For qtQDA classifier, we use R pack-
age ‘‘qtQDA’’ which is available at https://github.com/goknurginer/
qtQDA. For the discriminant function in the qtQDA package, We use
trended dispersion estimate. Then, we compare the classification error
rates using two real RNA-Seq data sets. These are not only publicly
available data sets but also commonly used data sets in order to test
the performance of RNA-Seq classification methods.

The first data is cervical cancer data (see Witten et al., 2010). The
cervical cancer data is composed of 714 microRNAs and 58 samples
where 29 samples are tumor and 29 samples are non-tumor.

The second data is HapMap data (see Montgomery et al., 2010; Pick-
rell et al., 2010). Similar to cervical cancer data, the HapMap data also
includes two groups of samples; CEU and YRI where CEU represents
Utah residents with Northern and Western European Ancestry and YRI
represents Yoruba in Ibadan and Nigeria, respectively. There are 91
CEU samples and 89 YRI samples with a total number of 52,580 genes.

It is known that RNA-Seq technology measures the expression levels
of thousands of genes for multiple samples. However, not all genes
are relevant and informative. Therefore, a gene selection technique is
required not only to reduce the computing time but also to improve
the classification performance. We apply edgeR pipeline to select in-
formative genes which will be used in the classification algorithm.
Basically, a likelihood ratio test (LRT) is performed in edgeR to detect
differentially expressed (DE) genes between groups. After that, DE
genes are sorted according to the value of LRT statistic and finally, the
top 𝑚 genes are used for the classification process. In our study, the top
20, 50, 100, 200, 300, 500 DE genes are selected for both cervical cancer
data and HapMap data.

After conducting gene selection procedure, we randomly split the
data set into two sets: training set and test set. 70% of the data set
is randomly assigned to the training and the rest 30% of the data set
is assigned to the test set. Training set is used to train the classifiers
and test set is used to measure the classification error rate. The whole
procedure is repeated 300 times for different number of genes and the
average classification error rate is computed.

4.2. Performance comparison of two different approaches

In this section, we compare and analysis the results. It is obvious
to see from Table 1 that improving the covariance matrix estimate,
i.e using local dependence function to estimate the covariance matrix,
leads generally better results. Interestingly, for both data sets, qtQDA
performs better then L-qtQDA. However, for the cervical cancer data,
we obtain better performances except for 20, 60 and 200 genes selected
in gene selection process. For HapMap data, we obtain better perfor-
mances except for 200 and 500 genes selected in gene selection process.
Overall we can conclude that L-qtQDA performs generally better than
qtQDA.

In order to show the difference between the error rates of L-
qtQDA and qtQDA, we extended our experiment, run the algorithm for
different number of genes such as n = 10, 30, 40, 60, 70, 80, 90, 120 and
combine these results with the results given previously in the submitted
manuscript. Then in order to show the significance of our new method
we applied pairwise Wilcoxon Rank Sum test. The test results had
been used to collect evidence whether the classification error rates are
smaller for the new method than the qtQDA method. Since the p-values
(𝑝-value = 0.04538 for cervical cancer and p-value = 0.003324 for
HapMap) are less than 0.05, we can conclude that the error rates for
L-qtQDA and qtQDA are different and there is a significant evidence

that the error rates for L-qtQDA are less than qtQDA.

https://github.com/goknurginer/qtQDA
https://github.com/goknurginer/qtQDA
https://github.com/goknurginer/qtQDA
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Table 1
Classification error rates for cervical cancer and HapMap data sets.

Data # of genes qtQDA L-qtQDA

Cervical

10 0.0822 0.0787
20 0.0367 0.0372
30 0.0309 0.0294
40 0.0276 0.0265
50 0.0280 0.0265
60 0.0206 0.0207
70 0.0185 0.0185
80 0.0244 0.0243
90 0.0204 0.0204
100 0.0126 0.0124
120 0.0132 0.0132
200 0.0117 0.0122
300 0.0161 0.0159
500 0.0189 0.0170

HapMap

10 0.0146 0.0146
20 0.0172 0.0166
30 0.0079 0.0078
40 0.0194 0.0190
50 0.0064 0.0057
60 0.0483 0.0456
70 0.0542 0.0514
80 0.0640 0.0635
90 0.0615 0.0611
100 0.0448 0.0434
120 0.0430 0.0426
200 0.0120 0.0116
300 0.0074 0.0073
500 0.0106 0.0109

5. Conclusion

Incorporating the true/accurate covariance matrix into the classifi-
cation model is an important and crucial step particularly for cancer
prediction. In this study we investigated the impact of covariance
matrix estimated with the help of local dependence function on RNA-
Seq data classification. This new approach assumes the dependencies
between genes are locally defined rather than complete dependency.
We have shown that locally estimated covariance matrix decreases the
classification error rate which can have a significant impact on patients’
survival. Therefore, one should take the estimation of the covariance
matrix into account when it comes to classification of real RNA-Seq
data sets.

In qtQDA method the classification has been done using the Pearson
calculations for class specific covariance matrices whereas in L-qtQDA
correlation calculations are done by using local dependence function.
In Pearson calculations the output was a scalar that has been used to
estimate the covariance matrices, which means that if two genes are
correlated this correlation is a constant for any expression levels. On
the contrary, in the new method, the output was a function that has
been used to estimate the local covariance matrix, which means that
the correlation between two genes is a function that variates for differ-
ent expression levels. Therefore, incorporating local covariance matrix
yields better covariance estimates, which can improve the classification
performance.

Although the improvement in error rate is small (for qtQDA 0.019
and for L-qtQDA 0.017 when the number of genes is 500 in Cervical
cancer data), in real life situations, this difference can play a crucial
role, such as potentially increasing the survival of a patient for 0.2%.
Considering the accuracy of the classification of a cancer patient im-
pacts, this encourages to and embraces any improvement could have
an impact on patient’s survival. Moreover, in some cases, such as breast
cancer, there are a number of treatment options available for patients
and the effectiveness of these treatments relies on the accurate classifi-
cation of a patient into one of the breast cancer subtypes. Therefore, we
consider any increment as significant when it comes to classification.

Since we only used triangular kernel function and Gaussian band-
4

width in local dependency calculation, we note here that different
kernel functions and a different optimal bandwidth selection can also
be implemented and may improve the classification performances. The
only disadvantage of the L-qtQDA is that the algorithm is computa-
tionally intensive due to the estimation of the local covariance matrix.
Nevertheless, we believe that this new estimation technique will be
useful for classification of RNA-Seq profiles or other genomic studies.
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