
COMPARING METAHEURISTIC ALGORITHMS FOR

SOLVING CROWDSHIPPING PROBLEMS

YÜKSEL MERT CANKUŞ

Master’s Thesis

Graduate School
Izmir University of Economics

Izmir
2022

COMPARING METAHEURISTIC ALGORITHMS FOR

SOLVING CROWDSHIPPING PROBLEMS

YÜKSEL MERT CANKUŞ

A Thesis Submitted to

The Graduate School of Izmir University of Economics

Master’s Program in Computer Engineering

Izmir
2022

ABSTRACT

COMPARING METAHEURISTIC ALGORITHMS FOR SOLVING

CROWDSHIPPING PROBLEMS

Cankuş, Yüksel Mert

Master’s Program in Computer Engineering

Advisor: Asst. Prof. Dr. Kutluhan EROL

October, 2022

This thesis focuses on crowdsourced delivery systems and refers to its operational

decision problem as a crowdshipping problem formulates as an offline optimization

problem. In order to solve the crowdshipping problem, several metaheuristic

algorithms and heuristic operations are proposed. An experimental setup is designed

to assess the performance of proposed solution techniques. Results of conducted

experiments in this thesis are presented and analyzed in a comparative manner.

Results indicated that algorithms with less randomization outperform more

randomized algorithms with statistical significance. Less randomized outperforming

algorithms provide statistically similar results to each other.

Keywords: Crowdshipping, Crowdsourced Delivery, Last-Mile Delivery, Crowd

Logistics, Metaheuristics, Sharing Economy.

iii

ÖZET

METASEZGİSEL ALGORİTMALARIN KİTLE DESTEKLİ NAKLİYE

PROBLEMİ İÇİN KARŞILAŞTIRILMASI

Cankuş, Yüksel Mert

Bilgisayar Mühendisliği Yüksek Lisans Programı

Tez Danışmanı: Dr. Öğr. Üyesi Kutluhan EROL

Ekim, 2022

Bu çalışma, kitle destekli dağıtım sistemlerine odaklanmakta ve operasyonel karar

problemini bir çevrimdışı optimizasyon problemi olarak ele alıp kitle destekli nakliye

problemi olarak atıfta bulunmaktadır. Kite destekli nakliye problemini çözmek için

çeşitli metasezgisel algoritmalar ve sezgisel işlemler önerilmiştir. Önerilen çözüm

tekniklerinin performansını değerlendirmek için bir deney düzeneği tasarlanmıştır.

Bu tezde yapılan deneylerin sonuçları karşılaştırılmalı bir şekilde sunulmakta ve

analiz edilmektedir. Bu çalışmalardaki sonuçlar, daha az rastgeleliğe sahip

algoritmaların, istatistiksel olarak daha rastgele algoritmalardan daha iyi performans

gösterdiğini göstermiştir. Daha az rastgele, daha iyi performans gösteren

algoritmalar, istatistiksel olarak birbirine benzer sonuçlar vermiştir.

Anahtar Kelimeler: Kitle Destekli Nakliye, Kitle Destekli Rotalama, Son Mil

Dağıtımı, Kitle Destekli Lojistik, Metasezgizeller, Paylaşım Ekonomisi.

iv

ACKNOWLEDGEMENTS

Araştırma boyunca sabrı, yardımları ve yol göstericiliği için tez danışmanım

Kutluhan Erol’a en içten teşekkürlerimi ve dileklerimi sunmak isterim. Bu süreçte

bana desteklerini esirgemeyen aileme teşekkürlerimi sunarım.

v

TABLE OF CONTENTS
ABSTRACT .. iii

ÖZET ... iv

ACKNOWLEDGEMENTS .. v

TABLE OF CONTENTS ... vi

LIST OF TABLES ... viii

LIST OF FIGURES ...… xi

CHAPTER 1: INTRODUCTION ... 1

 1.1. Motivation .. 1

 1.2. Research Issues .. 2

1.2.1. Generalization ... 3

1.2.2. Pricing and Compensation ... 3

1.2.3. Heterogeneous and Asymmetric Constraints .. 3

 1.3. Approach .. 4

1.3.1. Problem Formalization ... 4

1.3.2. Solution Methodology ... 4

1.3.3. Experimentation and Analysis .. 4

 1.4. Organization .. 5

CHAPTER 2: RELATED WORK .. 6

CHAPTER 3: PROBLEM FORMULATION .. 8

CHAPTER 4: SOLUTION METHODOLOGY ... 12

 4.1. Heuristics ... 12

4.1.1. Removal Heuristics ... 13

4.1.2. Insertion Heuristics ... 14

4.1.3. Exchange Heuristics ... 15

4.1.4. Relocate Heuristics ... 16

 4.2. Solution Methods ... 16

4.2.1. Local Search (LS) ... 17

4.2.2. Simulated Annealing (SA) ... 17

4.2.3. Adaptive Large Neighborhood Search (ALNS, No Temp ALNS) 18

4.2.4. General Variable Neighborhood Search (GVNS) 20

CHAPTER 5: EXPERIMENTAL SETUP ... 23

 5.1. Instance Generation & Format .. 23

vi

 5.2. Algorithm Parameters .. 24

CHAPTER 6: RESULTS .. 25

CHAPTER 7: DISCUSSION .. 28

CHAPTER 8: CONCLUSION ... 30

REFERENCES ... 31

vii

LIST OF TABLES

Table 1. Formulation Overview .. 9

Table 2. Example Instance File ... 23

Table 3. Results ... 26

Table 4. Comparison Tests ... 28

viii

LIST OF FIGURES

Figure 1. Box Plot of Results .. 27

ix

CHAPTER 1: INTRODUCTION

1.1 Motivation

Last-mile delivery and other related operational activities such as delivery operations of
shipments from transportation hubs to private customer households in urban areas is an
important area of research as described in Boysen et al. (2021). However, many existing
last-mile delivery concepts and methodology do not address all the given macro-scale
world problems that presented as follows:

• The COVID-19 pandemic and its global effects are undoubtedly important for
the logistics sector as described by Raj et al. (2022).

• Inflationary effects on global prices caused by ongoing Russian invasion of
Ukraine following the pandemic hindered the purchasing power of households.
Current Last-Mile delivery operations do not provide an abundant source of
part-time jobs opportunities.

• Climate change and related environmental issues are requiring more ecofriendly
solutions in Last-Mile Delivery.

Although there are separate individual solutions related to the presented problems, they
do not solve the combination of all the mentioned problems and issues in a unified
frame. For example, literature covered by Ghaderi et al. (2022), aims to solve envi-
ronmental problems in isolation without addressing the other issues. Even though,
such approach separates a specific problem and its solution from others, addressing all
mentioned issues with minimal increase of complexity is preferable to integrate several
existing solution techniques with each other. Another example is that most of traditional
vehicle routing literature consider vehicles & couriers as full time employees. Since
described approach is highly classical, alternate constraints which enables part-time job
offers or constraints that represents the acceptance criterions of couriers regarding to
transportation offers are not extensively studied in the existing vehicle routing problem
literature involved in current Last-Mile delivery studies. In order to solve the combi-
nation of all the described caveats of the existing literature, a crowdsourced delivery
system is presented in my thesis.

Crowdsourced delivery systems, which is surveyed by Alnaggar et al. (2021), applies
"crowdshipping" idea of enabling crowds to participate in Last-Mile Delivery opera-
tions for compensation. Crowdshipping problem can be described as follows. A set
of payloads with different sizes are requested to be transported where each request
involves a pickup location and a delivery location. Those requests can be a flower de-
livery for an anniversary, an urgent delivery of a document or daily preplanned delivery
operations of cargos and medical equipments. Requests may be available for pickup

1

and/or delivery for specific time windows. Customers may or may not know the price
and acceptance information of their requests but they share their price expectations they
are willing to pay. Crowdsourced delivery system may charge different each customer
requests with different prices which can be declined by customer if charged price is
inconsistent with price expectation of each customer transporation request.

In order to satisfy the transportation requests, prospective individuals who are also
called "crowdshippers" would like to participate in the pickup and delivery process of
the mentioned requests in return of compensation. Parcitipating crowdshippers include
a university student who would like to earn extra money on their way to campus, a
taxi driver would like to earn more while returning from a successful taxi trip or even
a pedestarian using public transportation can be a crowdshipper. Each crowdshipper
share their origin and destination location of their original route, time availability
described in two time windows for origin and destination locations described with
earliest arrival and latest departure, capacity information and expected compensation
per extra km for their detour. Crowdsourced delivery system sends an offer relevant with
their compensation expectations to each crowdshipper. Crowdshippers can accept or
reject offers which is may or may not known to crowdsourced delivery systems before
offering. However, acceptance and rejection behaviour of each crowdshipper must
be relevant with their provided compensation expectation. A crowdsourced delivery
system aims to match given requests with crowdshippers, route and schedule pickup and
delivery task of crowdshippers with pricing and compensation decisions constrained
by the price and compensation expectations of both crowdshippers and customers.

Crowdsourced delivery systems enable crowdshippers to have part-time income which
provides an opportunity to stabilize inflationary shocks. Crowdsourced delivery sys-
tems are also beneficial for Last-Mile delivery operations, since the COVID-19 pan-
demic revealed that the combined positive increase in demand with negative supply
shocks stresses the capabilities of Last-Mile delivery operations. Crowdsourced de-
livery systems can provide more cost efficient and ecofriendly operations via enabling
routes that were not available to the system.

1.2 Research Issues

In addition to the difficulty of modeling and solving existing more traditional Last-Mile
Delivery concepts, crowdshipping-based problems have their own unique collected set
of issues.

2

1.2.1 Generalization

There are already many crowdshipping-based studies in the literature, but the modeling
of these studies is both partially related or unrelated to each other and very disconnected
from other models that can be counted as predecessors. In this thesis, described problem
require more generalized methodology in order to capture methodological aspects of
both crowdshipping-based studies and existing more traditional Last-Mile delivery
studies.

1.2.2 Pricing and Compensation

Unlike traditional routing problems, crowdshipping problem involves pricing and com-
pensation decisions which are subjected to expectations of different types of customers
and crowdshippers. Such pricing and compensation decisions requires and enables
adjustments on supply of the crowdshippers via compensation decisions and demand
of the delivery requests via pricing decisions. Adjustments done via pricing and com-
pensation mechanisms directly affects the complexity and profits of crowdshipping
problem because the crowdshipping problem is highly constrained via expectations of
both crowdshippers and requests. For example expected compensation of a university
professor may be higher than a university student for same exact route. A minimal
adjustment on compensation decision may satisfy the compensation expectations of an
university student which may not satisfy the compensation expectation an university
professor. Described adjustments on compensation may or may not change the prof-
itability of the operation, availability of crowdshippers, demand for delivery requests
and complexity of operational scenarios.

1.2.3 Heterogeneous and Asymmetric Constraints

Proceeding with pricing and compensation decisions, crowdshipping-based problems
have to address several types of decisions and constraints. Such heterogeneity of
decisions and constraints are impactful on many different aspects of crowdshipping-
based problems. For example:

• University students might like to visit the same university as a destination point
at different times.

• Some crowdshippers may not have sufficient capacity for all packets with close
proximity and profitability.

• Different crowdshippers may start at same origin location with different destina-
tion locations.

• University students may have different compensation expectations than university

3

professors.

All the problems mentioned and not limited by this list implies that even a minor
unsatisfied constraint affects the availability and abundance of scenarios.

1.3 Approach

This work treats crowdsourced delivery systems and its operational decisions as an
offline optimization problem referred as crowdshipping problem. In order to solve
proposed crowdshipping problem, metaheuristic algorithms are utilized to tackle in-
tractability aspect of the proposed formulation. Proposed metaheuristics are imple-
mented for benchmarking purposes and obtained results from experiments are presented
with analysis and discussion.

1.3.1 Problem Formalization

An offline optimization problem formulation is proposed in this thesis, based on a
formulation proposed by Le et al. (2021) which integrates several components of
crowdshipping problem formulations in the literature. The formulation proposed by my
thesis inspired by more traditional optimization problem formulation such as PDPTW
by Ropke and Cordeau (2009) and other works focuses on crowdshipping problems.
As a result, my formulation allows the adaptation of solution methods that has been
proposed for both traditional and crowdshipping-based problems.

1.3.2 Solution Methodology

The formulation proposed in this work is adapted from Le et al. (2021). However, au-
thors of the mentioned work do not provide an explicit solution approach to their formu-
lation. I adapt several heuristic operations and metaheuristic optimization algorithms
from other more traditional optimization problems for solving proposed crowdshipping
problem.

1.3.3 Experimentation and Analysis

In order to test the performance of mentioned solution metaheuristics, an experimental
procedure is presented in detail which involves instance generation, parameter set-
tings for proposed algorithms and experimental specifications. Results of the related
experiments are reported and analyzed in comparative manner in order to assess the
performance of metaheuristic algorithms.

4

1.4 Organization

General overview of this thesis and its approach to crowdshipping problem presented
as follows. Section 2 provides necessary related works about the formulation, solution
and bencmarking of crowdshipping problem. Section 3 describes more formal problem
description and formulation for crowdshipping. Section 4 describes technical details
for implementation of solution methodlogy. Section 5 describes experimental setup.
Section 6 presents the results of experiments described in Section 5. Section 7 provides
analysis and discussion about the provided results from Section 6. Finally, Section 8
provides a conclusion section.

5

CHAPTER 2: RELATED WORK

This section provides relevant literature about both formulation and solution works
about the crowdshipping problem provided in this thesis. Survey works by Alnaggar
et al. (2021); Laporte et al. (2015); Mourad et al. (2019) can be visited for more detailed
and through treatment of the literature. Formulation approaches for crowdshipping
problems that exists in the literature heavily relies on the more traditional routing
problems such as Traveling Salesperson Problem(TSP), Vehicle Routing Problem(VRP)
and Pickup and Delivery Problem(PDP). To give a general definition of the problems,
the TSP problem can be considered as a route optimization problem where a travelling
salesperson, who will start and finish his route in the same city, visits all cities with
the lowest total distance. Continuing from the previous example, we can think of the
VRP problem as the multi-salesperson case of the TSP problem where each city is
visited by at least one salesperson, and the PDP problem as the VRP problem variation
with the pickup and delivery operations. Especially formulations regarding to PDP
literature, for example Dumas et al. (1991), shows resemblance to most of the related
crowdshipping-based formulations in the literature.

A notable example for formulating crowdshipping is Arslan et al. (2019), which pro-
vides solid framework for crowdsourced delivery operations via providing a dynamic
pickup and delivery problem formulated as a matching problem such as in Stiglic et al.
(2015). Even though the mentioned work is exceptional, the authors of the mentioned
work did not treat pricing and compensation aspects in their mathematical formula-
tion for crowdsourced delivery problem. Including pricing and compensation aspects
in formulation generalizes real world scenarios involves acceptance criterias of both
customers and crowdshippers. Solution methodology presented in Arslan et al. (2019)
involves solution of routing subproblems formulated as Traveling Salesperson with
Time Windows and Precedence constraints (TSP-TWPC) as in Mingozzi et al. (1997).
Solution methodology and problem formulations are supplemented via theoretical in-
sight from Stiglic et al. (2015) which are formulated as formal observations.

Another approach to formulate crowdsourced delivery problem is to introduce occa-
sional drivers(OD) to more traditional and well studied optimization problems. Intro-
ducing occasional drivers(OD) to formulate crowdshipping problems is a highly ac-
cepted approach among the literature. Examples for introducing occasional drivers(OD)
to mathematical formulation of crowdshipping include but not limited to related works
such as Ghaderi et al. (2022); Archetti et al. (2016); Macrina et al. (2017); Santini
et al. (2022); Voigt and Kuhn (2022); Dahle et al. (2017); Dahle et al. (2019); Torres
et al. (2022); Yıldız (2021); Gdowska et al. (2018). In general, in the aforementioned
studies, occasional drivers are modeled as an extension of other drivers, and they are

6

put forward as occasional to be used optionally. The main reason behind not following
same formulation in this work is that generalization of both classical and occasional
drivers can be achieved by more generalized formulations, parameter fixations and
instance designs.

The mathematical program for crowdshipping problem that is proposed in this thesis is
based on modifications done to formulation proposed by Le et al. (2021). Modifications
to mentioned original work is based on changes to objective function and elimination
of decision variables by fixating those decision variables to given parameters, which
are related to compensation and pricing procedure of crowdshipping system. The mod-
ification done to objective value to reformulate the compensation part of the objective
value to include only extra detours taken from original route crowdshipper are included
in compensation process for convenience of the notation. The other modification is to
eliminate decision variables which are designed to represent pricing and compensation
decision in order to reduce complexity of mathematical formulation.

Because most of the crowdshippind-based formulation are not presented with solu-
tion techniques, several metaheuristic solution algorithms which were proposed for
other more traditional optimization problems are adapted in this work to tackle crowd-
shipping problem. The Simulated Annealing algorithm is based on its simplest form
which a prospective reader can refer to Delahaye et al. (2019). The General Variable
Neighborhood Search (GVNS) algorithm proposed in this work based on Alcaraz et al.
(2019) where adaptation of GVNS from de Armas and Melián-Batista (2015);De Ar-
mas et al. (2015). The Adaptive Large Neighborhood Algorithm proposed in this work
is adapted from Ropke and Pisinger (2006). The reason for choosing the mentioned
metaheuristic algorithms is that they can be coded structurally similar to each other and
they utilize the proposed heuristic operations very similarly. In addition, all of them
are trajectory-based algorithms which implies that population-based algorithms are not
used.

Set of heuristics are adapted from different works for proposed metaheuristics. Insertion
and Deletion heuristics are adapted from Ropke and Pisinger (2006). Inter&Intra
Relocate and Exchange heuristics are adapted from Ma et al. (2021). The main reason
for choosing these heuristic operations is that those heuristics and adaptations of those
heuristics have been extensively used in the literature. Additionally, those heuristics
are applicable to other traditional optimization problems.

7

CHAPTER 3: PROBLEM FORMULATION

Let 𝑛 be the number of requests and 𝑚 be the number of crowdshippers. The
crowdshipping problem is defined on a graph 𝐺 = (𝑉, 𝐸) with set of nodes 𝑉 =

𝑃 ∪ 𝐷 ∪ {𝜏1, .., 𝜏𝑚} ∪ {𝜏1, .., 𝜏𝑚} and set of edges 𝐸 ⊆ 𝑉 × 𝑉 where 𝑃 = {1, .., 𝑛}
is the set of all pickup nodes, 𝐷 = {𝑛 + 1, .., 2𝑛} is the set of all delivery nodes,
𝑀 = {1, .., 𝑚} is the set of all crowdshippers and for each crowdshipper 𝑘 ∈ 𝑀 origin
and destination nodes of crowdshipper defined as 𝜏𝑘 = 2𝑛 + 𝑘 and 𝜏𝑘 = 2𝑛 +𝑚 + 𝑘 . 𝑄𝑘

is the capacity of crowdshipper 𝑘 ∈ 𝑀 . For each node 𝑖 ∈ 𝑉 a service time 𝑠𝑖, a time
window 𝑡𝑤𝑖 = [𝑒𝑎𝑖, 𝑙𝑑𝑖] where 𝑒𝑎𝑖 is the earliest arrival and 𝑙𝑑𝑖 is the latest departure,
a load of packages 𝑙𝑖 at node 𝑖 ∈ 𝑃 ∪ 𝐷 where 𝑙𝑖 is positive for pickup nodes and
negative for delivery nodes are defined. 𝐸𝑇𝑃𝑘

𝑖
is the expected payment per distance for

crowdshipper 𝑘 ∈ 𝑀 for each extra distance taken by the crowdshipper. 𝑊𝑇𝑃𝑖 is the
maximum amount of price for packet 𝑖 ∈ 𝑃, travel distance 𝑑𝑖 𝑗 where (𝑖, 𝑗) ∈ 𝐸 .

There are four types of decision variables, where 𝑥𝑘
𝑖, 𝑗

is a binary variable that represents
traversal of crowdshipper 𝑘 ∈ 𝑀 at edge (𝑖, 𝑗) ∈ 𝐸 , 𝑆𝑘

𝑖
is a non-negative integer that

represents arrival time of crowdshipper 𝑘 ∈ 𝑀 at node 𝑖 ∈ 𝑉 , 𝐿𝑘
𝑖

is a non-negative
integer that represents the load of crowdshipper 𝑘 ∈ 𝑀 at node 𝑖 ∈ 𝑉 , 𝑧𝑖 is a binary
variable that represents status of packet 𝑖 ∈ 𝑃 and 𝑧𝑖 = 1 if it is placed in the request
bank which signifies that the request will not be served by any crowdshipper.

8

Table 1. Formulation Overview

Sets:
𝑃 set of all pickup nodes, 𝑃 = {1, 2, ..., 𝑛}
𝐷 set of all delivery nodes, 𝐷 = {𝑛 + 1, 𝑛 + 2, ..., 2𝑛}
𝑀 set of all crowdshippers, |𝑀 | = 𝑚

Indices:
𝑖 Index of the request by its pickup node, 𝑖 ∈ 𝑃
𝑘 Index of the crowdshipper, 𝑘 ∈ 𝑀

Parameters:
𝑛 Number of requests
𝑚 Number of crowdshippers

𝜏𝑘 , 𝜏𝑘 Start and end stop of crowdshipper 𝑘 , 𝜏𝑘 = 2𝑛+ 𝑘 and 𝜏𝑘 = 2𝑛+𝑚 + 𝑘
𝑒𝑎𝑖, 𝑙𝑑𝑖 Time window associated with each request where 𝑒𝑎𝑖 is for earliest

arrival and 𝑙𝑑𝑖 is for latest departure.
𝑙𝑖 load of package at node 𝑖 which is positive for pickup node 𝑖 ∈ 𝑃 and

negative for delivery node 𝑖 ∈ 𝐷
𝑊𝑇𝑃𝑖 Maximum price that a sender is willing to pay (WTP) ∀𝑖 ∈ 𝑃.
𝐸𝑇𝑃𝑖 Minimum compensation that crowdshipper 𝑘 expects to be paid (ETP)

per km, ∀𝑘 ∈ 𝑀
𝑄𝑘 Capacity of crowdshipper 𝑘

Variables:
𝑥𝑘
𝑖, 𝑗

Binary variable for traversal from node 𝑖 ∈ 𝑁 to node 𝑗 ∈ 𝑁 depicted
as an edge travesal as (𝑖, 𝑗) ∈ 𝐸 of crowdshipper 𝑘 ∈ 𝑀

𝑧𝑘
𝑖

Binary variable for unassigned requests. 𝑧𝑖 = 1 for unassigned re-
quests resides in request bank, 𝑧𝑖 = 0 otherwise.

𝑆𝑘
𝑖

Non-negative integer variable representing the time that crowdshipper
𝑘 starts at node 𝑖.

𝐿𝑘
𝑖

Non-negative integer variable representing the upper bound for the
load of packages that crowdshipper 𝑘 carrying after serving node 𝑖

9

The mathematical model is depicted below:

Objective:

max
𝑥𝑘
𝑖, 𝑗
,𝑆𝑘

𝑖
,𝐿𝑘

𝑖
,𝑧𝑖

∑︁
𝑖∈𝑃

𝑊𝑇𝑃𝑖 (1 − 𝑧𝑖) −
∑︁
𝑘∈𝐾

(
∑︁

(𝑖, 𝑗)∈𝐸
𝑑𝑖 𝑗𝑥

𝑘
𝑖 𝑗 − 𝑑𝜏𝑘𝜏𝑘)𝐸𝑇𝑃𝑘 (1)

s.t. ∑︁
𝑘∈𝑀

∑︁
𝑗∈𝑉

𝑥𝑘𝑖, 𝑗 + 𝑧𝑖 = 1,∀𝑖 ∈ 𝑃 (2)∑︁
𝑗∈𝑉

𝑥𝑘𝑖, 𝑗 −
∑︁
𝑗∈𝑉

𝑥𝑘𝑗 ,𝑛+𝑖 = 0,∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝑀 (3)∑︁
𝑗∈𝑃∪𝜏𝑘

𝑥𝑘𝜏𝑘 , 𝑗 = 1,∀𝑘 ∈ 𝑀 (4)∑︁
𝑖∈𝐷∪𝜏𝑘

𝑥𝑘𝑖,𝜏𝑘 = 1,∀𝑘 ∈ 𝑀 (5)∑︁
𝑖∈𝑉

𝑥𝑘𝑖, 𝑗 −
∑︁
𝑖∈𝑉

𝑥𝑘𝑗 ,𝑖 = 0,∀𝑖 ∈ 𝐷,∀𝑘 ∈ 𝑀 (6)

𝑥𝑘𝑖, 𝑗 = 1 → 𝑆𝑘𝑖 + 𝑠𝑖 + 𝑡𝑖, 𝑗 ≤ 𝑆𝑘𝑗 ,∀(𝑖, 𝑗) ∈ 𝐸,∀𝑘 ∈ 𝑀 (7)

𝑒𝑎𝑖 ≤ 𝑆𝑘𝑖 ≤ 𝑙𝑑𝑖,∀𝑖 ∈ 𝑉,∀𝑘 ∈ 𝑀 (8)

𝑆𝑘𝑖 ≤ 𝑆𝑘𝑛+𝑖,∀𝑖 ∈ 𝑉,∀𝑘 ∈ 𝑀 (9)

𝑥𝑘𝑖, 𝑗 = 1 → 𝐿𝑘𝑖 + 𝑙𝑖 ≤ 𝐿𝑘𝑗 ,∀(𝑖, 𝑗) ∈ 𝐸,∀𝑘 ∈ 𝑀 (10)

𝐿𝑘𝑖 ≤ 𝑄𝑘 ,∀𝑖 ∈ 𝑉,∀𝑘 ∈ 𝑀 (11)

𝐿
𝜏𝑘
𝑖

= 𝐿
𝜏𝑘
𝑖

= 0,∀𝑖 ∈ 𝑉,∀𝑘 ∈ 𝑀 (12)

𝑥𝑘𝑖, 𝑗 ∈ {0, 1},∀(𝑖, 𝑗) ∈ 𝐸,∀𝑘 ∈ 𝑀 (13)

𝑧𝑖 ∈ {0, 1},∀𝑖 ∈ 𝑃 (14)

𝑆𝑘𝑖 ≥ 0,∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝑀 (15)

𝐿𝑘𝑖 ≥ 0,∀𝑖 ∈ 𝑃,∀𝑘 ∈ 𝑀 (16)

𝑄𝑘 ≥ 0,∀𝑘 ∈ 𝑀 (17)

The objective function maximizes the total profit of the system. Constraint (2) ensure
that each request either visited by a carrier or placed in the request bank. Constraint
(3) ensures that if a carrier visited a pickup node, that carrier has to visit the delivery
node of visited pickup node. Constraints (4) and (5) ensure that carrier starts at origin
and ends at destination stop. Constraint (6) generates a route between origin and
destination stop. Constraint (7) ensure that each node has to be visited within its
time window. Constraint (8) ensure that pickup node of a packet has to be visited
before its delivery node. Constraints (9), (10), (11) ensure the consistency of load

10

along the route. Constraint (12) disables excess load at origin and destination stops
of the crowdshippers. Constraints (13), (14), (15), (16) and (17) are for describing
non-negative integer and binary values of the decision variables.

Note that provided formulation has capability to generalize traditional routing opti-
mization problems such as TSP, VRP and PDP given as an example. For all provided
traditional generalized problems, objective function term of 𝑊𝑇𝑃𝑖 = 0,∀𝑖 ∈ 𝑃 and
decision variable 𝑧𝑖 = 0,∀𝑖 ∈ 𝑃.

• TSP: TSP case described as where number of crowdshippers equal to |𝑚 | = 1,
sole crowdshipper starts and end at same location 𝜏0 = 𝜏0 and all pickup nodes
are also delivery nodes such as 𝑑𝑖,𝑛+𝑖 = 0,∀𝑖 ∈ 𝑃

• VRP: VRP case can be summarized as where all crowdshippers start and end at
same location 𝜏𝑘 = 𝜏𝑘 ,∀𝑘 ∈ 𝑀 where all pickup nodes are also delivery nodes
such as 𝑑𝑖,𝑛+𝑖 = 0,∀𝑖 ∈ 𝑃.

• PDP: PDP is almost the same problem with crowdshipping where all crowdship-
pers start and end at same location 𝜏𝑘 = 𝜏𝑘 ,∀𝑘 ∈ 𝑀 .

11

CHAPTER 4: SOLUTION METHODOLOGY

The formulation presented in previous section generalizes several NP-complete prob-
lems which implies that crowdshipping problem formulated in this thesis is also in
NP-complete. Such computational decision problems makes exact methods to be im-
plausible in real-life scenarios because of the combinatorial explosion. Approximation
algorithms can also be utilized for the formulation proposed in this thesis but any
particular approximation scheme may not apply to other generalized classical rout-
ing problems. Hence, metaheuristics based on route modification and construction
heuristics are utilized in this thesis.

Metaheuristics algorithms that are utilized in thesis accepts initial solutions as an input
and iteratively improves on given initial solution. Each solution is represented as a set
of routes. Each route is represented as a sequence of nodes. Improvements to the initial
solutions are conducted by heuristic operations that manipulate sequence order of the
routes and location changes of the nodes.

4.1 Heuristics

This section describes three removal, three insertion, four exchange and four relocation
heuristics. Insertion and Deletion heuristics treats the route of crowdshipper as a
sequence of locations and insertion/deletion operations related with route sequence.
Exchange heuristics involves swap operations and Relocate heuristics involve com-
bined insertion & deletion heuristic application crowdshippers route where Inter and
Intra terminology refers to the number of crowdshippers that involved in process. In-
ter operations describes that two crowdshippers are involved in operation and Intra
operations states that only one crowdshippers route is modified in heuristic application.
All Insertion and Removal heuristics are Intra operations which is not explicitly stated
in order to provide terminological relevance to original reference to Ropke and Pisinger
(2006).

All Intra heuristics selects and evaluates all possible modifications according to a
specific measure. Evaluation results of possible modifications are serialized and sorted
in an abstract data such as list which is utilized in this work and referred as 𝐿. Sorting
metric is provided in description of the given Intra heuristic but all sortings done via
best-improving to worst-improving order. Final stage of the Intra heuristics involve
the selection of a modification from the constructed list 𝐿. A random number 𝑦 ∈
[0, 1] is calculated for selection process and 𝐿 [𝑦𝑝 |𝐿 |] represents the selection rule of
modification in the list 𝐿 where 𝑝 ≤ 1 is the randomization parameter which higher
values of 𝑝 results in more greedy selections and lower values are associated with
more random actions at 𝑝 = 1 gives most randomization in selection process. Inter

12

operations differs from Intra operations by selecting of two crowdshippers instead of
one crowdshipper.

Inter heuristics select a target crowdshipper and a candidate crowdshipper randomly.
An anchor request is selected randomly from target crowdshipper. The remaining
procedure is identical to Intra heuristics. Every single exchange and relocate operations
between anchor request are serialized and sorted in a list 𝐿 and selected with 𝐿 [𝑦𝑝 |𝐿 |]
rule.

4.1.1 Removal Heuristics

Removal heuristics randomly selects a crowd-shipping route and selects 𝑞 number of
requests to be removed from the route of selected crowdshipper and returns removed
requests as output. If the 𝑞 value is bigger than the length of the crowdshippers
route, all requests in crowdshippers route are removed. The randomization parameter
𝑝 is utilized in removal heuristics and described previously. Removal heuristics are
sequential.

Algorithm 1 Removal Heuristic(𝑆 ∈ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠, 𝑞 ∈ 𝑁+, 𝑝 ∈ 𝑅+)
1: Initialize removed request bank 𝑅 for output
2: while q > 0 do
3: All request candidates for removal stored in array 𝐿 and sorted by defined

metric
4: choose a random number 𝑦 ∈ [0, 1)
5: select to be removed request such that 𝑟 = 𝐿 [𝑦𝑝 |𝐿 |]
6: remove request 𝑟 from solution 𝑆 and add it to request bank 𝑅
7: q = q - 1
8: end while
9: return (𝑆, 𝑅)

Shaw Removal Heuristic As proposed by Shaw (1997),Shaw (1998) and adopted
by Ropke and Pisinger (2006), Shaw Removal Heuristic probabilistically inclined to
select more similar requests in order to obtain more diverse and perhaps more profitable
solutions. Because general intuition suggests that removing very different requests are
most likely to be inserted in positions such that results in similar or worse objective
values. In order to measure relatedness, same measure as in Ropke and Pisinger (2006)
is utilized. Relatedness measure is a weighted sum of distance , time and capacity
terms with weights 𝜙,𝜒 and Ψ. It is calculated as:

𝑅(𝑖, 𝑗) = 𝜙(𝑑𝐴(𝑖),𝐴(𝑗) + 𝑑𝐵(𝑖),𝐵(𝑗)) + 𝜒(|𝑇𝐴(𝑖) − 𝑇𝐴(𝑗) | − |𝑇𝐵(𝑖) − 𝑇𝐵(𝑗) |) + Ψ(𝑙𝑖 − 𝑙 𝑗)

13

where 𝐴(𝑖), 𝐵(𝑖) and 𝑇𝑖 denotes the pickup location, delivery location and arrival time
of request 𝑖, and 𝑙𝑖 is the load of crowdshipper at location 𝑖.

Worst Removal Heuristic The Worst Removal Heuristic removes requests with the
least decrease in profits. Each possible candidate for removal operation is evaluated by
the minimum decrease in profits.

Random Removal Heuristic The random removal heuristic randomly removes a
requests from a randomly selected crowdshippers route. As described in Ropke and
Pisinger (2006), setting 𝑝 = 1 of Worst Removal Heuristic or Shaw Removal Heuristic
is one way to implement Random Removal Heuristic which can be done in a more
computationally efficient manner.

4.1.2 Insertion Heuristics

Insertion heuristics take set of requests𝑈 and inserts these requests in possible candidate
crowdshipper routes. For each request in 𝑈 all candidates are evaluted. Insertion
Heuristics are sequential which implies that an insertion heuristic sequentially selects a
crowdshipper route and inserts a single request to the selected crowdshippers route one
by one. A drawback of sequential insertion is that, after inserting a request from request
bank 𝑈 may prevents other requests to be inserted in routes of other crowdshippers.
This complication will give rise to infinite loops if the Insertion Heuristic tries to
insert every request in 𝑈 without backtracking, hurting computational performance of
Insertion Heuristic and still possibility of infinite loop is not prevented. In order to
overcome this complication, max number of insertion trials is given as an input 𝑡.

Algorithm 2 Insertion Heuristic(𝑆 ∈ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠,𝑈 ∈ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠,𝑞 ∈ 𝑁+ ,𝑝 ∈ 𝑅+)
1: for 𝑟𝑒𝑞 ∈ 𝑈 do
2: sort feasible vehicle candidates on array 𝐿 for insertion with defined metric
3: choose a random number 𝑦 ∈ [0, 1)
4: select request to be inserted such that 𝑟 = 𝐿 [𝑦𝑝 |𝐿 |]
5: insert request 𝑟 to solution 𝑆 and remove it from𝑈

6: end for

Random Insertion Heuristic The Random Removal Heuristic randomly inserts given
requests in randomly selected crowdshippers routes. Similar to Random Removal
Heuristic, Random Insertion Heuristic is the special case of other insertion heuristics
where 𝑝 = 1.

Greedy Insertion Heuristic The greedy insertion heuristic evaluates and considers
every insertion candidate crowdshipper for given requests in most profitable positions

14

of candidate crowdshipper routes.

Regret Insertion Heuristic The regret insertion heuristic calculates the profit differ-
ence between inserting at most profitable location with k’th most profitable location. If
Regret Insertion Heuristic value of 𝑘 is defined as 𝑘 = 2, evaluation metric of insertion
heuristic is the profit difference between the most profitable location and the second
most profitable location.

4.1.3 Exchange Heuristics

Exchange heuristics swaps the places of pickup and delivery stops of requests within
a single crowdshipper’s route or between two distinct crowdshippers’ routes. To be
more specific, given an anchor request 𝑅𝐴 with pickup stop 𝑃𝐴 and 𝐷𝐴 and a candidate
request 𝑅𝐶 with pickup stop 𝑃𝐶 and 𝐷𝐶 , locations of 𝑃𝐴 with 𝑃𝐶 and locations with
𝐷𝐴 and 𝐷𝐶 are exchanged.

Algorithm 3 Exchange Heuristic(𝑆 ∈ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠, 𝑝 ∈ 𝑅+)
1: randomly select vehicle(s)
2: randomly select an anchor request 𝑟 from vehicles
3: sort each possible exchange operation on array 𝐿 via defined metric
4: choose a random number 𝑦 ∈ [0, 1)
5: select request to be exchanged such that 𝑐 = 𝐿 [𝑦𝑝 |𝐿 |]
6: exchange request 𝑐 with anchor request 𝑟

Random Intra-Exchange The Random Intra-Exchange heuristic randomly selects
two requests from a randomly selected crowdshipper’s route and swaps them.

Greedy Intra-Exchange The Random Intra-Exchange heuristic randomly selects a
request from a randomly selected crowdshipper’s route and swaps the selected request
with another request of selected crowdshipper that results in higher profit.

Random Inter-Exchange The Random Intra-Exchange Heuristic randomly selects a
pair of crowdshippers and then randomly selects, an anchor request assigned to the first
crowdshipper. After the selection of crowdshippers and the anchor request, Random
Intra-Exchange Heuristic swaps the anchor request with a randomly selected request
assigned to the second crowdshipper.

Greedy Inter-Exchange The Greedy Intra-Exchange Heuristic randomly selects a
pair of crowdshippers, and then randomly selects an anchor request assigned to the first
crowdshipper. After the selection of crowdshippers and the anchor request, Greedy
Intra-Exchange Heuristic considers the anchor request and each of the requests assigned

15

to the second crowdshipper and calculates the profits for each potential swap operation.
Finally, Greedy Intra-Exchange Heuristic swaps the two requests with the highest
increase in profits.

4.1.4 Relocate Heuristics

Relocation heuristics remove a request from a randomly selected target crowdshipper
and inserts that request to a selected candidate crowdshipper’s route. For Intra-Relocate
heuristics, the target and the candidate crowdshippers are identical. For Inter-Relocate
heuristics, the target and the candidate crowdshippers are different. Relocate Heuristics
can easily be implemented via utilizing insertion heuristics.

Algorithm 4 Relocate Heuristic(𝑆 ∈ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠, 𝑝 ∈ 𝑅+)
1: randomly select vehicle(s)
2: randomly select an anchor request 𝑟 from vehicles
3: remove selected request 𝑟 from solution 𝑆
4: sort each possible reinsertion location pair on array 𝐿 via defined metric
5: choose a random number 𝑦 ∈ [0, 1)
6: select location pair from 𝐿 such that (𝑝, 𝑑) = 𝐿 [𝑦𝑝 |𝐿 |]
7: reinsert request 𝑟 at selected location (𝑝, 𝑑)

Random Intra-Relocate The Random Intra-Relocate heuristic randomly selects a
request and changes the order in its crowdshipper’s route.

Greedy Intra-Relocate The Random Intra-Relocate Heuristic randomly selects a
request and changes the order in its crowdshipper’s route to the most profitable location.

Random Inter-Relocate The Random Inter-Relocate Heuristic removes a randomly
request in a randomly selected crowdshipper and randomly reinserts the selected request
in another randomly selected crowdshipper.

Greedy Inter-Relocate The Random Inter-Relocate Heuristic removes a random
request in a randomly selected crowdshipper and reinserts the selected request in another
randomly selected crowdshipper in the most profitable location of the randomly selected
crowdshipper’s route.

4.2 Solution Methods

This subsection introduce solution methods used in experiments which are Local Search
(LS), Simulated Annealing(SA), Adaptive Large Neighborhood Search(ALNS) and
General Variable Neighborhood Search(GVNS). All the algorithms mentioned were
chosen because they are structurally similar to each other and can be converted to

16

each other with minor changes. Similar structural similarities can be demonstrated by
examining the pseudocode. For example, while the temperature mechanism is the same
in both ALNS and SA algorithms, their heuristic selection mechanism are different.
All proposed solution methods require an initial feasible solution, which is constructed
via Greedy Insertion Heuristic that takes all unassigned requests as an input𝑈.

4.2.1 Local Search(LS)

The simple Local Search algorithm utilizes insertion and removal heuristics in a greedy
fashion with given randomization parameter 𝑝. The number of requests that will
be removed is denoted by 𝑞 and determined via random selection between 4 and
𝑚𝑎𝑥(5, b𝑛), where b determines the maximum percentage amount of the 𝑛 number of
requests can be taken into account for each reinsertion iteration.

Algorithm 5 Local Search(𝑆 ∈ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠, 𝑝 ∈ 𝑅+)
1: 𝑆 = 𝑆

2: while time limit not exceed do
3: q = a random number selected between [4,max(5, b𝑛)]
4: U = remove q requests from 𝑆 via Worst Removal Heuristic with parameter 𝑝
5: reinsert removed requests U in 𝑆 via Greedy Insertion Heuristic with parameter
𝑝

6: if 𝑜𝑏 𝑗 (𝑆) > 𝑜𝑏 𝑗 (𝑆) then
7: 𝑆 = 𝑆

8: end if
9: end while

10: return S

4.2.2 Simulated Annealing(SA)

The Simulated Annealing algorithm randomly removes and inserts requests in every
iteration via Random Removal Heuristic and Random Insertion Heuristic. As suggested
in original SA, a temperature value 𝑇 is utilized for accepting less profitable solutions.
Each non-improving solution is accepted with probability 𝑒−

𝑓 (𝑠)− 𝑓 (𝑠
𝑇 . The initial tem-

perature value 𝑇𝑖𝑛𝑖𝑡 and cooling factor 𝑐 are provided as input parameters to simulated
annealing algorithm. For each iteration temperature value is updated as 𝑇 = 𝑇 · 𝑐.

17

Algorithm 6 Simulated Annealing(𝑠 ∈ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠, 𝑐 ∈ [0, 1], 𝑇 > 0)
𝑆 = 𝑆

while time limit not exceed do
q = a random number selected between [4,max(5, b𝑛)]
U = remove q requests from 𝑆 via Random Removal Heuristic
reinsert removed requests U in 𝑆 via Random Insertion Heuristic
if 𝑜𝑏 𝑗 (𝑆) > 𝑜𝑏 𝑗 (𝑆) then

𝑆 = 𝑆

else with probability 𝑒−
𝑜𝑏 𝑗 (𝑆)−𝑜𝑏 𝑗 (�̄�)

𝑇

𝑆 = 𝑆

end if
𝑇 = 𝑇 · 𝑐

end while
return S

4.2.3 Adaptive Large Neighborhood Search(ALNS, No Temp ALNS)

The adaptive large neighborhood search is adapted from Ropke and Pisinger (2006). Un-
like other proposed algorithms, ALNS heavily relies on large moves rather than iterating
over small moves with combined randomized perturbations. Such large neighborhood
moves are conducted via applying destroy and repair operations, based on ruin and
recreate method proposed by Schrimpf et al. (2000). The ALNS algorithm utilizes all
proposed removal and insertion heuristics, removal heuristics are regarded as destroy
methods and insertion heuristics are regarded as repair methods. The primary reason
behind treating removal and inserting heuristics as large neighborhood operation is that
removal and insertion heuristics modify more requests than other heuristics that has
been proposed in this work. The ALNS algorithm takes an initial solution as an input
and improves the given solution via utilizing set of insertion and deletion heuristics via
deleting and inserting randomly selected 𝑞 ∈ [4, 𝑚𝑎𝑥(5, 𝑛b] number of requests for
each iteration where 𝑛 is the number of requests and b ∈ [0, 1] is an input parameter
to limit maximum number of requests will be taken into account for each iteration.
Insertion and deletion heuristics independently has two set of weights for the roulette
wheel selection. For each type heuristic, given the 𝑘 number of specific heuristic type,
weights of given type of heuristic represented as

𝑤 𝑗∑𝑘
𝑖=𝑘 𝑤𝑖

Adjustment procedure of the weights is performed in each iteration and divided into
segments for entire search procedure where each segment represents 100 iterations.
For each segment, weight update rule is dependent on weights of heuristic 𝑖 at segment
𝑗 which is 𝑤𝑖 𝑗 , the score parameter 𝜋𝑖, the counter parameter \𝑖 to keep the track of

18

the number of times heuristic 𝑖 attempted during last segment and a reaction factor 𝑟 as
step size of the weight adjustment. Given parameters, weight update rule is

𝑤𝑖, 𝑗+1 = 𝑤𝑖, 𝑗 (1 − 𝑟) + 𝑟 𝜋𝑖
\𝑖

Adjustment procedure of the weights 𝑤 𝑗 relies on 𝜋𝑖 which is calculated via three
parameters 𝜔1, 𝜔2 and 𝜔3. Each parameter is associated with score values that will be
added to 𝜋𝑖 in order to measure and update the performance of selected heuristics. The
first parameter 𝜔1 associated for heuristic was able to find a new global best solution.
Second parameter 𝜔2 associates with unexplored solutions with improvements which
resides to a heuristic that was able to find a solution which is not accepted before
with better profits than the current solution. Third parameter 𝜔3 is associated with
unexplored and accepted solutions given that an accepting mechanism(which will be
introduced in later) accepts a solution which is not accepted before with less profits.

Two variants of ALNS mentioned in this work differs from each other with their
accepting mechanisms. The first variant of ALNS utilizes a temperature mechanism
with initial temperature 𝑇𝑖𝑛𝑖𝑡 , current temperature 𝑇 and cooling factor 𝑐 ∈ [0, 1] where
temperature mechanism can accept worse solution 𝑆 to more profitable current solution
𝑆 with probability 𝑒−

𝑓 (𝑆)− 𝑓 (�̄�
𝑇 . The current value of temperature is updated via cooling

mechanism 𝑇 = 𝑇𝑐 for each iteration. The second variant of ALNS(No Temp ALNS)
simply follows the same procedure without the temperature mechanism.

19

Algorithm 7 Adaptive Large Neighborhood Search(𝑠 ∈ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠, 𝑟, 𝜋, 𝜔, 𝑐 ∈ [0, 1],
𝑇 > 0)
𝑆 = 𝑆

𝑆 = 𝑆

Initialize weights 𝑤
Initialize counters \, scores 𝜋, iterations 𝑖𝑡𝑒𝑟 and parameters 𝜔
Allocate memory for visited solutions as 𝑣𝑠
while time limit not exceed do

q = a random number selected between [4,max(5, b𝑛)]
apply Removal Heuristic and Insertion Heuristic to 𝑆 via roulette wheel selection
if 𝑜𝑏 𝑗 (𝑆) > 𝑜𝑏 𝑗 (𝑆) then

𝑆 = 𝑆

if 𝑆 ∉ 𝑣𝑠 then
𝑆 = 𝑆

update scores 𝜋 with 𝜔1
else

update scores 𝜋 with 𝜔2
end if
add 𝑆 to visited solutions 𝑣𝑠

else with probability 𝑒−
𝑜𝑏 𝑗 (𝑆)−𝑜𝑏 𝑗 (�̄�)

𝑇

𝑆 = 𝑆

if 𝑆 ∉ 𝑣𝑠 then
𝑆 = 𝑆

update scores 𝜋 with 𝜔3
end if
add 𝑆 to visited solutions 𝑣𝑠

end if
if 𝑖𝑡𝑒𝑟%100 then

update weights 𝑤
reset counters \ and scores 𝜋

end if
𝑇 = 𝑐 · 𝑇

end while
return S

4.2.4 General Variable Neighborhood Search (GVNS)

The General Variable Neighborhood Search adapted from (Armas and Melian-Batista).
The GVNS algorithm takes an initial feasible solution as an input and iteratively applies
Shaking process followed by the Variable Neighborhood Descent (VND) that improves
the solution obtained from the Shaking process. For each iteration of GVNS, an input
parameter ℎ𝑚𝑎𝑥 controls the maximum number of consequent non-improving iterations
which is also implemented in VND process as a nested strategy.

20

Algorithm 8 General Variable Neighborhood Search(𝑠 ∈ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠,ℎ𝑚𝑎𝑥 ∈ 𝑁)
1: while time limit not exceed do
2: while ℎ < ℎ𝑚𝑎𝑥 do
3: apply Shaking to the solution 𝑆
4: apply VND to 𝑆 and obtain 𝑆
5: if 𝑜𝑏 𝑗 (𝑆) > 𝑜𝑏 𝑗 (𝑆) then
6: 𝑆 = 𝑆

7: ℎ = 1
8: else
9: ℎ = ℎ + 1

10: end if
11: end while
12: end while
13: return S

Shaking Process The Shaking process applies heuristics as a random perturbation,
in order to escape local optimal solutions. This process randomly selects two ran-
dom heuristics from the randomized heuristic set of Random Intra-Exchange, Random
Intra-Relocate, Random Inter-Relocate, Random Inter-Exchange and combined Ran-
dom Insertion Heuristic with Random Removal Heuristic. The selected heuristics will
be applied to the current solution 𝑆 to obtain 𝑆 as the output of Shaking procedure.

Algorithm 9 Shaking(𝑠 ∈ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠)
1: randomly select two heuristics from the heuristic set
2: apply selected heuristics to 𝑠 to obtain 𝑠
3: return 𝑠

Variable Neighborhood Descent The General Variable Neighborhood Descent pro-
cess is the exploitation procedure of the GVNS. The VND process iteratively selects
and applies a randomly selected heuristic from the predefined set of greedy heuris-
tics which consists of Greedy Intra-Exchange, Greedy Intra-Relocate, Greedy Inter-
Relocate, Greedy Inter-Exchange and combined Worst Removal Heuristic & Greedy
Insertion Heuristic. The maximum iteration parameter ℎ𝑚𝑎𝑥 will be passed from GVNS
as an input to the VND. For each iteration an iteration counter ℎ will be kept. Each
improving solution will reset the counter ℎ or otherwise increments it by 1 for non-
improving solutions until counter ℎ reaches the maximum iteration ℎ𝑚𝑎𝑥 .

21

Algorithm 10 Variable Neighborhood Descent(𝑠 ∈ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠,ℎ𝑚𝑎𝑥 ∈ 𝑁)
1: while time limit not exceed do
2: while ℎ < ℎ𝑚𝑎𝑥 do
3: apply Shaking to the solution 𝑆
4: apply VND to 𝑆 and obtain 𝑆
5: if 𝑜𝑏 𝑗 (𝑆) > 𝑜𝑏 𝑗 (𝑆) then
6: 𝑆 = 𝑆

7: ℎ = 1
8: else
9: ℎ = ℎ + 1

10: end if
11: end while
12: end while
13: return S

22

CHAPTER 5: EXPERIMENTAL SETUP

5.1 Instance Generation & Format:

Experiments are conducted with three set of instances to measure the performance of
proposed solution technique for proposed crowdshipping problem formulation. Each
set of instances concerns coupled number of requests and crowdshippers as instance
size which are 50&50,75&75,100&100. Each set of instances consists of 100 randomly
generated instances.

Instance Generation: Coordinates of pickup and delivery locations of requests and
origin and destination locations of crowdshippers are randomly generated between
latitude interval of [38◦𝑁, 38◦5′𝑁] and longtitude interval of [27◦𝑊, 27◦5′𝑊] which
covers the city of Izmir, Turkey. Distances between coordinates calculated via Haversine
Formula. ETP and WTP values are based on Le and Ukkusuri (2019a), Le and Ukkusuri
(2019b), Le et al. (2021) where ETP values are randomly generated between $0.5 and
$1 and WTP values are randomly generated between $5 and $10. All time windows
are randomly generated between [0, 86400] time interval which represents 24-hour
by seconds. Load values of requests are randomly generated between [10, 100] and
capacity values of crowdshippers are randomly generated between [100, 1000]. All
randomly generation process of instances are based on uniform distributions.For each
instance in all instance sets, an initial solution is generated and provided to metaheuristic
algorithms. Iterations of all algorithms are timeboxed as 100, 150 and 300 seconds
based on respective instance sizes of 50 & 50, 75 & 75, 100 & 100.

Table 2. Example Instance File

id type x1 y1 x2 y2 ea1 ld1 ea2 ld2 lc EW
0 C 38.473 27.378 38.364 27.243 873 6589 18346 21488 707 0.8
1 C 38.443 27.290 38.391 27.315 3096 6085 14996 15069 109 0.6
0 R 38.026 27.462 38.421 27.046 3287 3290 10069 10410 92 8.0
1 R 38.295 27.160 38146 27.334 459 1201 9267 9512 57 5.0

Instance Format: Each instance contains id, row type ,coordinate info, time window,
ETP & WTP and load & capacity related information.The first column in the file
specifies the id of the crowdshipper and the request. Crowdshipper’s id information
are serialized first and then request’s id information serialized. Columns "x1" and
"y1" specify origin coordinates for crowdshippers and pickup coordinates for requests.
Columns "x2" and "y2" specify destination coordinates for crowdshippers and delivery
coordinates for the requests. Earliest arrival column "ea1" and latest departure column
"ld1" specify the time windows associated with origin locations for the crowdshippers

23

and time windows associated with pickup locations for the requests. Earliest arrival
column "ea2" and latest departure column "ld2" specify the time windows associated
with destination location for the crowdshippers and time windows associated with
delivery location for the requests. The "lc" column represents capacity information
for crowdshippers and load information for requests. The "EW" column represents
"expected to pay" parameter for crowdshippers and "willing to pay" information for
requests which are presented in Section 3.

5.2 Algorithm Parameters:

Initial solutions constructed via Greedy Insertion Heuristic with 𝑝 = 2. Local Search
algorithm takes initial 𝑞 value as 𝑞 = 5 with 𝑞 update value of 𝜖 = 0.4 and all greedy
heuristics takes 𝑝 value as 𝑝 = 2. All of ALNS algorithm parameters except cooling
rate 𝑐 = 0.99 and initial temperature value 𝑇𝑖𝑛𝑖𝑡 = 10 are copied from Ropke and
Pisinger (2006) where segment number defined as 100 iterations, 𝑝 value of heuristics
are 𝑝 = 2, Shaw Removal Heuristic values are 𝜙 = 0.33, 𝜒 = 0.33, Ψ = 0.33, weight
update probability value is 𝑟 = 0.1, scores value of 𝜋𝑖 calculated via 𝜔1 = 33, 𝜔2 = 9,
𝜔3 = 13, epsilon value of 𝑞 selection is 𝜖 = 0.4 and regret value of Regret Insertion
Heuristic is 2. All parameters of the second ALNS version without temperature and
cooling mechanism are exactly same with first version of ALNS. Simulated Annealing
algorithm utilizes same cooling rate, initial temperature and 𝜖 values with ALNS which
are 𝑐 = 0.99, 𝑇𝑖𝑛𝑖𝑡 = 10 and 𝜖 = 0.4. The GVNS algorithm utilizes ℎ𝑚𝑎𝑥 = 10 and
𝜖 = 0.4 and VND process of GVNS utilizes 𝑝 = 2.

24

CHAPTER 6: RESULTS

This section provides the results of described and conducted experiments in Section 5.
In Table 3 depicts mean and standart deviation values of the solution’s objective values
by each algorithm for every instance set. In Figure 1 provides a box plot in order to
observe differences among all algorithms for each instance set. In Table 4 presents
one-way ANOVA comparison test results. For further evaluation, two type of result
algorithms are introduced:

Chameleon: This is a hypothetical algorithm that mimicks the objective value of best
performing algorithm for each trial conducted on each experiment set. The purpose
of constructing this hypothetical algorithm is to see how much worse other algorithms
can perform than a hypothetical best algorithm.

Init: Constructs initial solutions via iterative use of Greedy Insertion Heuristic. This
is used to see how well other algorithms are making progress compared to the greedy
construction algorithm.

Table 3. Results

Instances Algorithm Mean Std
50&50 Chameleon 54.95 17.08

GVNS 54.19 16.98
LS 54.09 16.79

No Temp ALNS 53.86 16.64
ALNS 50.90 16.69

SA 49.07 15.46
Init 47.73 16.03

75&75 Chameleon 103.98 21.17
LS 101.60 20.52

No Temp ALNS 101.31 21.41
GVNS 101.27 21.08
ALNS 94.80 20.86

SA 88.91 19.55
Init 87.65 19.92

100&100 Chameleon 157.53 25.4
LS 152.79 24.96

GVNS 152.67 26.28
No Temp ALNS 151.04 25.42

ALNS 143.27 27.12
SA 133.13 24.53
Init 132.33 24.81

25

Figure 1. Box Plot of Results

As presented in Table 3 and Figure 1, GVNS performed best in first experiment set and
Local Search algorithm performed best in second and third experiment sets. Overall
objective values of algorithms increase as size of experiment sets increase. In addition
to increase in objective values, standart deviation of all algorithms increase with the
instance size. Mean objective values of the results produced by Simulated Annealing
and No Temp ALNS algorithm were almost identical with the Init algorithm in all
experiment sets. For all experiment sets, mean objective values of Local Search, No
Temp ALNS and GVNS algorithms are close to each other and to the Chameleon
algorithm.

26

Table 4. Comparison Tests

Instances Algorithms Init Chameleon
f-score p-value f-score p-value

50&50 GVNS 7.574 0.006 0.0966 0.756
LS 7.428 0.007 0.126 0.723

No Temp ALNS 6.966 0.009 0.204 0.651
ALNS 1.865 0.173 2.827 0.094

SA 0.359 0.549 6.425 0.012

All Algorithms 1.948 0.101

75&75 LS 23.331 2.742e-06 0.632 0.427
GVNS 21.626 6.081e-06 0.801 0.371

No Temp ALNS 21.402 6.756e-06 0.763 0.383
ALNS 6.027 0.015 9.335 0.002

SA 0.200 0.655 26.788 5.598e-07

All Algorithms 7.249 1.121e-05

100&100 LS 33.284 3.047e-08 1.747 0.187
No Temp ALNS 27.342 4.332e-07 3.209 0.074

GVNS 31.204 7.645e-08 1.741 0.188
ALNS 8.770 0.003 14.584 0.0002

SA 0.053 0.817 47.246 7.963e-11

All Algorithms 10.742 2.353e-08

Conducted comparison tests include results of "All Algorithms" rows to represent
comparison test conducted with all proposed algorithms. Comparison tests based
on "All Algorithms" rows reveals that for 50&50 instance set, performance of all
algorithms are statistically similar where claim of statistically significant similarity are
not applicable for 75&75 and 100&100 instance sets.

In order to test the validity of previous claims, set of statistical comparison tests based
on one-way ANOVA is conducted to prove whether the performance differences of
algorithms are statistically significant. Based on conducted comparison tests, neither
Simulated Annealing nor ALNS algorithms show statistically significant differences
from the Init. Remaining algorithms produced statistically significant improvements
over the Init algorithm.

27

CHAPTER 7: DISCUSSION

Provided in results section, several key findings are observed:

- Top three best performing algorithms (LS,GVNS,No Temp ALNS) show no statisti-
cally significant differences from one and another.

The main reason for this finding may be that the algorithms mentioned show less ran-
domness compared to other algorithms that shows worse performance. The mentioned
algorithms are different from each other in terms of both heuristic selection, availability
of the operations and exploration mechanism. The only common aspect of working
principles in these algorithms is the possibility that they have chosen the greedy ex-
ploitative heuristics in a consistent and repetitive way as in the Local Search algorithm
with controlling this selection with the 𝑞 parameter.

- Top three best performing algorithms (LS,GVNS,No Temp ALNS) are as good as
the hypothetical Chameleon algorithm.

This finding shows that the best working algorithm works as well as a hypothetically
possible Chameleon algorithm described in Results section. Main reason behind such
observation is that there is not much significant improvement in working principles by
switching between algorithms. This observation shows that well designed heuristics are
more important than the algorithms for producing much better and consistent results.

- The two worst performing algorithms (SA, ALNS) do not provide statistically sig-
nificant improvement on the hypothetical Init algorithm.

This finding can be interpreted with the difference "lack of temperature mechanism" of
ALNS and No Temp ALNS algorithms. This interpretation also shows that the ALNS
algorithm, which is more randomized than the ALNS algorithm, performs worse, and
the SA and ALNS algorithm gives worse results due to excessive randomization and
prevents it from giving better results than a greedy solution construction algorithm that
only repeats the greedy insertion operation. The main reason for this is that no matter
how big the cooling factor is, when it randomly selects a worse solution in the initial
steps, it is more difficult to return to a improving solution rather than to even declining
to a worse solution.

Given key findings, best performing algorithms LS, GVNS and No Temp ALNS were
able to improve initial solutions compared to worst performing algorithms SA and
ALNS. Such results are attributed to lack of temperature mechanism in best performing
algorithms because lack of temperature mechanism was able to increase performance
of ALNS algorithm without changing any algorithmic aspect of ALNS. Not limited
to previous discussion SA algorithm were not able outperform ALNS in second and

28

third instance sets which implies that the algorithmic differences between SA and
ALNS do provide an increase in improvement capability of ALNS algorithm which
do exists in other version of ALNS with no temperature mechanism. This implies
that algorithmic difference between ALNS and SA which is included in no temperature
version of ALNS and not attributed to other best performing algorithms clearly indicates
that other algorithmic aspects do not provide such importance more than temperature
mechanism.

Mentioned findings can support further evaluations with instance sets with more crowd-
shippers and requests since increasing the size of instance sets strengthens previously
mentioned key findings. More concrete discussion of the results is not possible since
unavailability of handcrafted instances with optimal solutions. Randomized nature
of instance generation procedure in this thesis may generate instances with caveats.
Randomly generated instances can have highly symmetric formation of solution space
where abundance of feasible solution with similar quality or highly constrained search
space formation.

29

CHAPTER 8: CONCLUSION

The main focus of this thesis was on crowdsourced delivery systems where partial or
total request deliveries are outsourced to crowdshippers in return of compensation for
prospective crowdshippers extra effort. Such systems enable previously unavailable
routes to traditional delivery operations, which may provide more cost efficient oper-
ational scenarios. In order to design operational decision problems of crowdsourced
delivery systems, an offline optimzation problem referred as crowdshipping problem is
formulated in this thesis. The formulation proposed in this thesis is a modified version
of integrated formulation of crowdshipping problem done by Le and Ukkusuri (2019b).
Modification involves elimination of two decision variables and reformulation of ob-
jective value. Unavailability of solution techniques and heuristics for the formulation
proposed in this work, several metaheuristic algorithms and heuristic operations are
provided to solve crowdshipping problem formulated in this thesis. In order to measure
the relative solving quality of metaheuristics, an experimental setup is utilized and dis-
cussed. Experimental setup involves instance generation procedure, parameter fixation
and design specifications of experiments conducted in this thesis. Results obtained
from the experiments are presented with statistical comparison tests to comparative
treatment of proposed algorithms. Given key findings, best performing algorithms LS,
GVNS and No Temp ALNS on the average performed at similar levels and to the hypo-
thetical Chameleon algorithm that mimics the results of most successful algorithm for
each trial. Worst performing algorithms SA and ALNS were not able improve initial
solutions provided by the Init. Conclusion drawn from the differences between worst
performing and best performing algorithms were the temperature mechanism utilized
in SA and ALNS was not beneficial and other algorithms with less randomization pro-
vide similar results were able to improve initial solutions. This indicates that designing
handcrafted heuristics might be promising as future work.

30

REFERENCES

Alcaraz, J. J., Caballero-Arnaldos, L. and Vales-Alonso, J. (2019), Rich vehicle

routing problem with last-mile outsourcing decisions, Transportation Research Part

E: Logistics and Transportation Review 129, pp. 263–286.

Alnaggar, A., Gzara, F. and Bookbinder, J. H. (2021), Crowdsourced delivery: A

review of platforms and academic literature, Omega 98, pp. 102139.

Archetti, C., Savelsbergh, M. and Speranza, M. G. (2016), The vehicle routing

problem with occasional drivers, European Journal of Operational Research 254(2),

pp. 472– 480.

Arslan, A. M., Agatz, N., Kroon, L. and Zuidwĳk, R. (2019), Crowdsourced

delivery—a dynamic pickup and delivery problem with ad hoc drivers,

Transportation Science 53(1), pp. 222–235.

Boysen, N., Fedtke, S. and Schwerdfeger, S. (2021), Last-mile delivery concepts: a

survey from an operational research perspective, Or Spectrum 43(1), pp. 1–58.

Dahle, L., Andersson, H. and Christiansen, M. (2017), The vehicle routing problem

with dynamic occasional drivers, International conference on computational

logistics, Springer, pp. 49–63.

Dahle, L., Andersson, H., Christiansen, M. and Speranza, M. G. (2019), The pickup

and delivery problem with time windows and occasional drivers, Computers &

Operations Research 109, pp. 122–133.

De Armas, J. and Melián-Batista, B. (2015), Variable neighborhood search for a

dynamic rich vehicle routing problem with time windows, Computers & Industrial

Engineering 85, pp. 120–131.

De Armas, J., Melian-Batista, B., Moreno-Perez, J. A. and Brito, J. (2015), Gvns for

a real-world rich vehicle routing problem with time windows, Engineering

Applications of Artificial Intelligence 42, pp. 45–56.

Delahaye, D., Chaimatanan, S. and Mongeau, M. (2019), Simulated annealing:

From basics to applications, Handbook of Metaheuristics, New York: Springer, pp.

1-35.

Dumas, Y., Desrosiers, J. and Soumis, F. (1991), The pickup and delivery problem
31

with time windows, European journal of operational research 54(1), pp. 7–22.

Gdowska, K., Viana, A. and Pedroso, J. P. (2018), Stochastic last-mile delivery with

crowdshipping, Transportation research procedia 30, pp. 90–100.

Ghaderi, H., Tsai, P.-W., Zhang, L., Moayedikia, A. (2022), An integrated

crowdshipping framework for green last mile delivery, Sustainable Cities and Society

78, pp. 103552.

Laporte, G., Meunier, F. and Wolfler Calvo, R. (2015), Shared mobility systems, 4or

13(4), pp. 341–360.

Le, T. V. and Ukkusuri, S. V. (2019a), Influencing factors that determine the usage

of the crowd-shipping services, Transportation Research Record 2673(7), pp.

550–566.

Le, T. V. and Ukkusuri, S. V. (2019b), Modeling the willingness to work as crowd-

shippers and travel time tolerance in emerging logistics services, Travel Behaviour

and Society 15, pp. 123–132.

Le, T. V., Ukkusuri, S. V., Xue, J. and Van Woensel, T. (2021), Designing pricing

and compensation schemes by integrating matching and routing models for

crowdshipping systems, Transportation Research Part E: Logistics and

Transportation Review 149, pp. 102209.

Ma, Y., Hao, X., Hao, J., Lu, J., Liu, X., Xialiang, T., Yuan, M., Li, Z., Tang, J.,

Meng, Z. (2021), A hierarchical reinforcement learning based optimization

framework for large-scale dynamic pickup and delivery problems, Advances in

Neural Information Processing Systems 34, pp. 23609–23620.

Macrina, G., Di Puglia Pugliese, L., Guerriero, F., Laganà, D. (2017), The vehicle

routing problem with occasional drivers and time windows, International

conference on optimization and decision science, Springer, pp. 577–587.

Mingozzi, A., Bianco, L. and Ricciardelli, S. (1997), Dynamic programming

strategies for the traveling salesman problem with time window and precedence

constraints, Operations research 45(3), pp. 365–377.

Mourad, A., Puchinger, J. and Chu, C. (2019), A survey of models and algorithms

for optimizing shared mobility, Transportation Research Part B: Methodological

123, pp. 323–346.
32

Raj, A., Mukherjee, A. A., de Sousa Jabbour, A. B. L., Srivastava, S. K. (2022),

Supply chain management during and post-covid-19 pandemic: Mitigation

strategies and practical lessons learned, Journal of business research 142, pp.

1125–1139.

Ropke, S. and Cordeau, J.-F. (2009), Branch and cut and price for the pickup and

delivery problem with time windows, Transportation Science 43(3), pp. 267–286.

Ropke, S. and Pisinger, D. (2006), An adaptive large neighborhood search heuristic

for the pickup and delivery problem with time windows, Transportation science

40(4), pp. 455–472.

Santini, A., Viana, A., Klimentova, X. and Pedroso, J. P. (2022), The probabilistic

travelling salesman problem with crowdsourcing, Computers & Operations

Research 142, 105722.

Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., Dueck, G. (2000), Record

breaking optimization results using the ruin and recreate principle, Journal of

Computational Physics 159(2), pp. 139–171.

Shaw, P. (1997), A new local search algorithm providing high quality solutions to

vehicle routing problems, APES Group, Dept of Computer Science, University of

Strathclyde, Glasgow, Scotland, UK 46.

Shaw, P. (1998), Using constraint programming and local search methods to solve

vehicle routing problems, International conference on principles and practice of

constraint programming, Springer, pp. 417–431.

Stiglic, M., Agatz, N., Savelsbergh, M., Gradisar, M. (2015), The benefits of

meeting points in ride-sharing systems, Transportation Research Part B:

Methodological 82, pp. 36–53.

Torres, F., Gendreau, M. and Rei, W. (2022), Crowdshipping: An open vrp variant

with stochastic destinations, Transportation Research Part C: Emerging

Technologies 140, 103677.

Voigt, S. and Kuhn, H. (2022), Crowdsourced logistics: The pickup and delivery

problem with transshipments and occasional drivers, Networks 79(3), pp. 403–426.

Yıldız, B. (2021), Express package routing problem with occasional couriers,

Transportation Research Part C: Emerging Technologies 123, 102994.

33

