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ABSTRACT 

VARIATIONS ON STRUCTURED SPARSITY FOR MACHINE LEARNING 

Oktar, Yiğit 

Ph.D. in Computer Engineering Advisor: Asst. Prof. Dr. Mehmet Türkan August, 

2020 

Dictionary learning is conventionally utilized as a feature learning method. 

Such framework is commonly used in reconstructive signal processing tasks. Learnt 

features can also be used as inputs to further classification and clustering schemes. 

Using block-sparsity, sparse framework can be cast as a clustering problem directly. 

In its conventional form, learning of linearly non-separable cases is not possible, due 

to inability of distinguishing two classes within the same subspace. With sum-to-one 

and non-negativity constraints on the sparse codes and still assuming block-sparsity, 

one can arrive at superproblems of k-means, called k-flats, k-simplexes, and k-

polytopes. A polytope is defined to be an intact object composed of many same 

dimensional Simplexes. K-polytopes experimentally reaches the capacity of 

ensemble k-means and surpasses the capacity of kernel k-means. K-polytopes is 

futher generalized through the concept of simplicial learning cast as a one-class 

learning method, in which intact





ness is dropped and heterogeneous dimensionality is allowed. Due to 

combinatorial nature of the problem, an evolutionary approach is taken. Such 

adaptation solves linearly non-separable cases easily and appears to be a reliable 

method. Still an important shortcoming remains due to assuming orthogonality of 

dimensions. Convolution is a practical solution to the problem of orthogonality 

presented. Using convolutional case, a shift-invariant k-means version is formulated 

and unsupervised feature learning performance of convolutional dictionary learning 

is evaluated. With these new modifications and considerations, sparse and redundant 

representations framework appears to be a crucial tool for machine learning. 

Keywords: Sparsity, Polytope, Simplicial, Convolution, Machine learning
ÖZET 

MAKİNE ÖĞRENİMİ İÇİN YAPISAL SEYREKLİK ÜZERİNE 
ÇEŞİTLEMELER 

Oktar, Yiğit 

Bilgisayar Mühendisliği Doktora Programı Danışman: Dr. Öğr. Üyesi Mehmet 

Türkan Ağustos, 2020 

Seyrek ve bol gösterimler için sözlük öğrenimi genelde bir öznitelik öğrenimi 

yöntemidir. Bu yöntem yapıcı sinyal işleme uygulamalarında sıkça kullanılır. Öğre-

nilen öznitelikler, makine öğrenimi için sınıflandırma ve kümeleme yöntemlerine de 
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girdi olarak verilebilir. Kalıp seyreklik kullanarak, seyreklik sistemi bir kümeleme 

problemine çevrilebilir. Olağan durumda, aynı alt uzaydaki iki sınıfın ayırt edile-

memesinden dolayı, doğrusal olarak ayrılmayan durumların öğrenimi olası değildir. 

Bire toplam ve eksi olamama koşullan ile kalıp seyreklik birlikte kullanıldığında, k- 

flats, k-simplexes, k-polytopes olarak adlandırılacak çeşitli k-means 

üstproblemleıine ulaşılır. Polytope aynı boyut sayısına sahip simplekslerden oluşan 

bütün bir cisimi belirtir. K-polytopes deneysel olarak k-means topluluklan kadar iyi 

ve çekirdek k- means’ten daha iyi sonuçlar verir. Bütünsellik bırakıldığı ve boyutsal 

heterojenlik olduğu takdirde, k-polytopes bir tek sınıf öğrenim yöntemi olan 

simpleksel öğrenim ile genelleştirilebilir. Kombinasyonel doğası gereği, çözüm için 

evrimsel yöntem seçilmiştir. Bu çeşit bir uyarlama doğrusal ayrılmayan durumları 

kolayca öğrenebilmekte ve de güvenilir bir yöntem olarak görünmektedir. 

Boyutların birbirine dik olduğu varsayıldığı için hala eksiklikler vardır. Evrişim 

diklik sorununa pratik bir çözüm sağlar. Evrişimli durum kullanılarak, kaydırmaya 

değişimsiz k-means problemi sunulmuş ve evrişimli sözlük öğreniminin denetimsiz 

öznitelik öğrenimi başarımı değerlendirilmiştir. Bu eklentiler ve değerlendirmeler 

sonucunda, seyrek ve bol gösterimler sistemi çok önemli bir makine öğrenimi 

yöntemi olarak karşımıza çıkmaktadır. 

Anahtar kelimeler: Seyreklik, Polytope, Simpleksel, Evrişim, Makine öğrenimi
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CHAPTER 1: SUMMARY 

1.1 Introduction 

Machine learning is a currently very popular subdomain of artificial intelli-

gence. Machine learning algorithms learn models based on observed data. An algorithm 

is a recipe for a machine to be executed step by step. As opposed to conventional 

algorithms, machine learning algorithms fit models to the data observed, thus provide 

an abstraction layer between the data and the machine, much like the human learning 

process. In short, machine learning algorithms aim to learn models based on observed 

data, later to be used for predictions without being hardcoded to perform the task 

(Bishop, 2006). 

Two main types of such algorithms are fisted as supervised and unsupervised. In 

supervised setting, algorithm builds a model of data that contain both the inputs and 

the desired outputs, referred to as the training data. Then, according to the model it can 

then predict the output of a new input. Two versions of supervised algorithms include 

classification and regression. In classification, outputs or labels are restricted to be a set 

of values, whereas in regression outputs represent a range of values. In unsupervised 

learning, outputs are absent in the data, in other words there are no labels. Therefore, 

algorithms tend to analyze data only based on the input values. For example, in cluster 
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analysis, observations with similar input values are grouped together to form clusters, 

based on some similarity metric chosen. 

Another type of machine learning algorithms is fisted as feature learning, aiming 

at finding better representations of data (Bengio et al., 2013). Classic example of this 

domain includes Principal Component Analysis (PCA) (Pearson, 1901). These al-

gorithms try to preserve the information in the data but transform it into a more useful 

form, as a preprocessing step before classification or clustering. Feature learning can 

itself be supervised or unsupervised, depending on whether it requires labels or not. 

The framework that is adopted in this thesis, namely sparse and redundant 

representations equipped with dictionary learning is conventionally listed as a feature 

learning method. In fact, sparse and redundant representations are most commonly 

utilized in reconstructive signal processing tasks such as compression (Akbari et al., 

2016) , denoising (Nejati et al., 2016; Zhuang and Bioucas-Dias, 2018), and inpainting 

(Zhuang and Bioucas-Dias, 2018). However, they can also be used as preprocessing tools 

for further classification and clustering schemes for machine learning (Elham- ifar and 

Vidal, 2013). In this thesis, examples of adapting sparse framework as direct 

applications of clustering and classification problems are presented through variations 

on structured sparsity (Huang et al., 2011), a notion to be introduced in Sect. 1.1.2. First 

of all, a more formal introduction to sparse representations is given. 

1.1.1  Sparse Representations 

Sparse representations are widely used in reconstruction tasks. They model the 

data through a few linear combinations attained from an overcomplete set of elements 

or basis, often referred to as the dictionary. This dictionary can either be fixed analyti-

cally or be adapted to the data at hand through learning. Conventional optimization of 

dictionary learning for sparse representations is given in Eqn. (1), 

argminV' ||yi - Axj||| subjectto H^Ho < q, Vi, (1) 
A>(x»} i 

where A is the overcomplete dictionary and Xj denotes the sparse representation of yj, 

Vi. While minimizing the reconstruction error of y* over A, each sparse vector x* may 
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have maximally q number of nonzero components due to ^0-norm constraint. In 

literature, approximate iterative solutions by sparse coding and dictionary update have 

been proposed to this nonconvex problem and its variants (Elad et al., 2010; Gribonval 

et al., 2015). 

1.1.2  Structured Sparsity 

In this original version of the problem, any of the atoms in the dictionary can be 

picked. In other words, there is no constraint on which parts of the sparse codes to be 

filled. Instead of picking atoms individually, if groups of them are to be picked collec- 

tively then this corresponds to structured sparsity and direct connections to 

clustering problem can be made when groups appear in blocks (Eldar and Mishali, 

2009; Eldar and Bolcskei, 2009) and this is the topic of Chapter 2. Therefore, as of 

now structured sparsity can be seen as an additional constraint on sparse 

representations that make them appear closer to problems in the machine learning 

domain. 

There are three main objectives of this thesis. First objective is to formulate 

a general sparsity based clustering framework that can effectively learn linearly non- 

separable cases as in Chapter 3. Such a framework is based on structured sparsity 

and additional constraints on sparse codes. In Chapter 4, this framework is further 

generalized to provide a direct solution to the classification problem by the 

introduction of one-class learning. The last objective is to show the importance of 

spatial information in machine learning of signals through convolutional sparse 

representations, and provide insight for future studies in this light as in Chapter 5. 

1.2 Contributions and Organization of Thesis 

1.2.1 Chapter 2: Clustering and sparsity 

Chapter 2 introduces the problem of clustering in a formal manner. Famous 

challenges in clustering are listed. The notorious phenomenon, namely the curse of 

dimensionality is introduced as a challenge in high dimensional real-world machine 
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learning applications. The problem of overfitting is another well-known challenge, in 

which some kind of memorization is observable instead of learning. Noise and out-

liers issue is another notable challenge in clustering. Then, feature extraction, feature 

selection, and combinatorial feature selection methods are mentioned to alleviate 

these problems. All these methods are performed within original or reduced number 

of dimensions. Then, concept of sparse representations is introduced as a way of 

feature transformation with the benefit of expanded dimensions. Sparse 

representations are resilient to noise and outliers when certain conditions are met, 

and also by manipulating level of sparsity, problem of overfitting can be addressed. 

A detailed mathematical overview of sparse representations is then given and 

sparsity concept is then tied with clustering. There are two ways to relate sparse rep-

resentations with the clustering problem. First, sparse representations can be seen as a 

feature transformation method as a preprocessing step for clustering. More interest-

ingly, structured sparsity in the form of block sparsity, corresponds to a subspace clus-

tering scheme directly. However, the dual of sparsity concept namely the dictionary 

may not be proper to designate subspaces as clusters. Therefore, adaptive dictionaries 

are needed to shape the state-model entity into well-formed clusters. In this light, 

dictionary learning problem is introduced and formulated in a formal manner. Most 

notably, MOD (Engan et al., 1999) and K-SVD (Aharon et al., 2006) are two well known 

approximate iterative solutions to the problem. After establishing the necessary back-

ground information, examples from literature are given that use sparse representations 

framework as a direct tool for clustering to solve segmentation (Ramirez et al., 2010), 

and denoising (Dong et al., 2011) problems. 

Later in the chapter, related concepts from signal processing and machine 

learning perspectives are given. Compressive sensing and multiple measurement 

vectors approach are mentioned under the hood of signal processing perspective. On 

the other hand, support vector machines, decision trees, and neural networks are 

reviewed from the machine learning perspective. The chapter concludes with a 

discussion of shortcomings of conventional sparse representations and proposals to 

overcome those issues. One issue is related to random initializations and addressed in 

Appendix A. The other issue is more fundamental and is about learning linearly non-



5

 

 

separable cases to be addressed both in Chapter 3 and 4. 

1.2.2 Chapter 3: K-polytopes as a superproblem of k-means 

Chapter 3 builds on top of Chapter 2 and presents the well-known /c-means 

problem in the context of sparse representations. A motivation to generalize k- means 

arises when one considers its drawbacks even assuming an optimal solution. Namely, 

/c-means cannot learn linearly nonseparable cases (i.e. clusters with noncon- vex 

shapes) and the number of clusters is hardcoded. Kemelization and ensembling are two 

approaches that solve nonlinearity issue, but they do not utterly generalize /c-means 

problem as a superproblem. Through special constraints applied on sparse 

representations, one can arrive at certain superproblems of /c-means. K-flats (Canas et 

al., 2012), for example, is a superproblem of /c-means, and one of the contributions of 

the chapter is to show that it can be implemented within a sparse framework. In this 

chapter, /c-simplexes and /c-polytopes problems are additionally introduced as 

superproblems of /c-means in which piecewise-linear models can be learned. 

In this light, first of all block-sparsity concept is mathematically defined, and 

the concept of subdictionary arises. Each assignment block, corresponds to a sub-

dictionary that can be thought of as a central prototype that claims an entity (or not) 

depending on the reconstruction error, much like a centroid claiming the closest point 

to itself. Therefore, sparse coding with block sparsity corresponds to assigning entities 

to respective central prototype, whereas dictionary update corresponds to updating the 

central prototypes as in an iterative solution. Proposed formulations originate from the 

fact that /c-means problem can be represented within a sparse framework. In fact, in 

/c-means there are k many blocks with sizes 1 and sparse codes are restricted to be 1 

also. In that case, dictionary atoms directly designate centroids, and no further atom 

normalization should be carried out. Generalizing to bigger blocks when there are no 

constraints on the magnitudes of sparse codes corresponds to k g-subspaces, when the 

block size is q. A sum-to-one constraint on sparse codes forces subspaces into (q — 1)- 

dimensional flats. A further non-negativity constraint forces (q — 1)-dimensional flats 

into (q — 1)-dimensional simplexes. In this regard, one can arrive at /c-simplexes su-

perproblem. A solution to /c-simplexes problem is given, in which data points are first 
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assigned to closest simplex. In sparse coding perspective, this corresponds to finding 

the positive barycentric coordinates of the projection point. After acquiring all sparse 

codes, a dictionary update then updates the simplexes. A complexity of 0(m3) is 

determined for this type of solution, where m is the number of data points. 

However, there are two drawbacks of /c-simplexes formulation. First of all, 

there is no constraint on the size of simplexes and a single simplex is still of convex 

shape. Therefore, /c-simplexes is further generalized into Zc-polytopes formulation 

where simplex edge size is now limited and a prototype can be now piecewise-linear. A 

definition of the word poly tope is given as an intact object composed of many simplexes. 

Intactness is important here, as it defines a single object. In /c-simplexes there is only a 

single projection object. However, in fc-polytopes there are many candidate simplexes 

to test for within a polytope. Therefore, an additional hypergraph data structure is kept 

to define the shape of the polytope, where each valid simplex within the polytope can 

only be g-dimensional, corresponding to a hyperedge relating q many vertices within 

the hypergraph. Note that, for a simplex to be valid it should at least receive some 

amount of projections. 

Chapter 3 includes a solution to /c-polytopes problem, consisting of subdivision, 

pruning, and merging subroutines. Subdivisions are needed when the edge size of a 

simplex is above the limit. Similarly, pruning is needed when the simplex does not 

require any or enough projections. Topologically important merging process is needed 

to fix excessive pruning and subdivisions. A detailed complexity analysis of /c-polytopes 

gives out a complexity of 0(m3) again. 

Most importantly, performance of /c-polytopes is compared against k-means, 

A;—flats, Gaussian mixture models (Reynolds, 2015), kernel A-means (Dhillon et al., 

2004), and ensemble A-means (Iam-on and Garrett, 2010). It appears that ensemble /c-

means is the most general method in literature and proposed method matches the 

performance of ensemble A-means even surpassing it at certain cases. It is also exper-

imentally validated that, if the minimum intercluster margin is known, A-polytopes is 

also able to recover the number of clusters accurately in another set of experiments. 

The chapter concludes with a discussion considering the case in which clusters are not 

homogeneously ^-dimensional but heterogeneous and also a discussion on supervised 
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setting leading to the formulation in Chapter 4. 

1.2.3 Chapter 4: Evolutionary simplicial learning 

Chapter 4 generalizes A-polytopes formulation, which is only about clustering, 

into a general framework that can be applied to many other tasks, such as one-class 

learning, or multi-class classification. In its final form, called evolutionary simplicial 

learning, the proposed framework learns more general piecewise linear constructs, 

namely an arbitrary union of simplices to the data at hand through evolution. 

Chapter 4 starts with an introduction to one-class learning. It is possible to cate-

gorize one-class learning methods by the type of the model targeted. In one approach, 

enclosing hypersurfaces (i.e. decision boundaries) are targeted. As an opposing ap-

proach, graph based methods seek skeletons within. Most importantly, dictionary 

learning can also be regarded as an inner-skeleton method. In fact, in sparse repre-

sentations based classifier (SRC) models, data is classified accordingly favoring the 

most reconstructive or representative dictionary (Wei et al., 2013). This form of SRC is 

defined as generative-only. While there are parallels between inner-skeleton and 

generative methods, there is a relationship between decision-boundary and discrimina-

tive approaches. A method can both be generative and discriminative at the same time 

and discriminative dictionary learning methods are examples of such approach (Jiang 

et al., 2013; Song et al., 2019). 

A crucial point is that SRC methods are not capable of learning linearly non- 

separable cases, as a linear generative dictionary learning method is incapable of dis-

tinguishing two classes within the same subspace. In other words, SRC is insensitive to 

intensity/magnitude of a pattern. In that case, simplicial learning is introduced both as 

a generative-only method and as a generalization of /c-polytopes concept of Chapter 3 

that can learn any linearly non-separable case in theory. In this light, definitions of a 

polytope, a simplicial complex, and a simplicial are given as generalizations of piece- 

wise linear constructs. Polytope refers to an intact object composed of homogeneously 

dimensional simplexes. A simplicial complex is a formal set of simplices satisfying 

following two conditions: (i) every face of a simplex from this set is also in this set and 

(ii) the non-empty intersection of any two simplices is a face of these two simplices. A 
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simplicial is instead defined as an arbitrary union of simplices, being the most flexible 

structure. 

There are various recent studies involving these structures (Luo et al., 2017; 

Belton et al., 2018). Not surprisingly, Chapter 4 uses a sparse representations frame-

work to formulate simplicial learning in an efficient manner. Three ingredients in sim-

plicial learning, similar to &-polytopes formulation are, sum-to-one constraint, non-

negativity, and group sparsity this time instead of block-sparsity. A single hypergraph 

data structure is kept, to keep track of groups, or valid simplexes within the simplicial, 

each hyperedge relating arbitrary number of vertices this time. 

However, there is no direct restriction on the number of simplices or the di-

mensions of those simplices. Additional penalty terms are needed to keep number and 

dimensionality of simplices small for a compact solution. An evolutionary process seems 

feasible for this problem that looks combinatorial in nature. In this regard, a fitness 

function is needed to guide the search process. An optimization process only for the 

number and the dimensionality of simplices is not enough. Volume, or more formally 

content of the simplices must be considered also. Luckily, content of an arbitrary 

simplex can be calculated using Cayley-Menger determinant (Michelucci and Foufou, 

2003). Because of allowed heterogeneous dimensionality, an important issue arises, 

namely how to effectively compare the content of a triangle and a line-segment as an 

example. In this light, an approximated cumulative discrete content formula is devised, 

introducing exponential penalty to content through dimensionality. However, a direct 

addition of this term to the sum of squared errors is not practical. Therefore, devising 

a formula involving logarithmic scale is chosen as the final option. 

Having pinned down the fitness function, mutations and breeding processes 

then perform the actual search. Mutations are performed on the hypergraph data 

structure kept as an incidence matrix of zeros and ones. Breeding process extracts two 

subsimplicials from two simplicials each and merges them together. While breeding 

determines the core dimensionality, mutations instead fine tune the simplicial to the 

data at hand. An important implementation detail is that, while starting as a single 

point is enough for low dimensional datasets, in high dimensional cases a procedure 

involving fc-means is used as a subroutine to designate an initial simplicial. 
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Proposed method is tested in two phases of experiments. At first, the per-

formance is evaluated in a one-class classification task for outlier detection. In 17 

datasets considered, 12 competing methods are reported involving ESL. ESL not only 

presents best average Area Under the Curve (AUC) Receiver Operating 

Characteristics (ROC) performance it has the least standard deviation, and it seems as 

the most reliable method among considered ones for this performance measure. In 

second phase, multi-class experiments are performed. In challenging synthetic data sets 

created, involving linearly non-separable cases requiring intensity/magnitude 

distinction, ESL easily outperforms all other dictionary learning methods considered, 

such as Sparse Representation based Classification (SRC) (Wright et al., 2008), Label 

Consistent 

K-SVD (LCKSVD1 and LCKSVD2) (Jiang et al., 2013), Dictionary Learning with 

Structured Incoherence (DLSI) (Ramirez et al., 2010), Fisher Discrimination Dictio-

nary Learning (FDDL) (Yang et al., 2011), Dictionary Learning for Commonality and 

Particularity (DLCOPAR) (Kong and Wang, 2012) and Low-rank Shared Dictionary 

Learning (LRSDL) (Vu and Monga, 2016, 2017). In real-world tasks of digit classifi-

cation (USPS (Hull, 1994) and MNIST (LeCun et al., 2010)), ESL performs as a superior 

generative method nearly performing at the capacity of Gaussian SVM. Chapter 4 

concludes with a discussion of possible probabilistic and discriminative modifications. 

1.2.4 Chapter 5: The problem of orthogonality 

Even with all these enhancements, an important shortcoming remains in the 

case of inputs that contain ’spatial’ information. In conventional consideration, each 

dimension of data is assumed to be independent from another, as a result of 

vectorization process. More technically, the bases are assumed to be orthogonal (as in 

n-dimensional Euclidean space). However, neighboring or close data cells in digital 

signal forms such as sounds, images, or videos most probably have certain dependency, 

which is referred to as ’spatial’ information throughout Chapter 5. Convolutional 

neural networks have advantage in such cases as they preserve and process the ’spatial’ 

information. Chapter 5 offers an overview of this orthogonality problem from the 

perspective of sparse representations through convolutional case, and provides further 
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insight for future studies on this topic. 

Chapter 5 opens up with a discussion on how many possible spatial configura-

tions a signal could have been in going back from a n-sized vector format. The result is 

dk(n)n\ where dk(n) is the k-th Plitz function, which gives the number of ordered 

factorizations of n as a product of k terms, designating a /c-dimensional signal. 

The chapter goes on to explain that orthogonal consideration is problematic for 

classical problems such as /c-means also. Considering /c-means to be applied on images, 

an orthogonal vectorized distance calculation between two images might not be natural. 

Similarly, in Computer Graphics domain, for natural interpolation between two 

rotation matrices, quaternions are used for spherical linear interpolation instead of 

naive linear interpolation (Jafari and Molaei, 2014). 

These ideas lead to shift invariant formulation of /c-means as a more natural 

clustering problem of images. Convolutional sparse representations are utilized to for-

mulate the shift invariant /c-means problem, and a solution to this problem is then 

given, through OMP and MOD as subroutines. Convolutional dictionary learning is 

listed as a generalization of this formulation, as a general unsupervised feature ex-

traction method. Performance of convolutional dictionary learning as an unsupervised 

feature extraction method is validated many times in literature (Zeiler et al., 2010; 

Garcia-Cardona and Wohlberg, 2018). However, the main aim of this chapter is to pro-

vide an extensive comparison with classical orthogonal consideration. An important 

note is that, a shift from l0 to h constraint is applied in sparse representations to take 

care of computational complexity and information loss problems. 

Two sets of experiments are performed using the SPORCO library (Wohlberg, 

2017) for the needs of convolutional dictionary learning. A modified version of MNIST 

is created in which each image uniformly randomly received a shift in each axes from 

a mean of 2,4, 8, and 16 pixels respectively. It is observed that, shift invariant /c-means 

formulation is very resilient to shifts, while /c-means, kernel /c-means, and ensemble /c-

means performances drop to random guess performance in case of big shifts. 

In another set of experiments, unsupervised feature extraction performance of 

CDL is measured. Competing methods are Histogram of Oriented Gradients (HOG) 

(Dalai and Triggs, 2005), Local Binary Patterns (LBP) (Ojala et al., 1996), and Gabor 
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Feature Extraction (GFE) (Haghighat et al., 2015), while dictionary learning has 3 

versions to be tested. DL is global only method where atom size is that of image size. In 

patch-based dictionary learning (PDL), smaller patches are extracted in a sliding 

window manner in a local only manner. Convolutional dictionary learning (CDL) 

method can be regarded as a both global and local method. Experimental results 

suggest that CDL is superior to both DL and PDL when the data set contains enough 

samples. GFE, as an unsupervised simulation of first layers of a CNN perform the best, 

CDL is the second best, very close to the performance of HOG. A level below, DL, PDL, 

and LBP perform similarly. 

The chapter goes on with certain possible variations on neural networks. A 

sparsely overlapping block-wise connected continuous layered network is proposed as 

an alternative to a ID CNN. Geometric algebra (Wang et al., 2019) and multilinear (Lu 

et al., 2011) approaches to machine learning are mentioned, noting that these methods 

should also work for ID signals to start with. 

1.2.5 Chapter 6: Conclusion and perspectives 

In Chapter 6, conclusions are drawn based on the main ideas and contributions 

of the work, and various future perspectives are presented for the domain of sparse 

representations to be applied on machine learning. 

1.3 Conclusion 

Dictionary learning for sparse and redundant representations conventionally 

appears as a feature learning method in the domain of machine learning. However, 

using structural constraints, namely using block-sparsity, it can be cast as a clustering 

problem directly. In conventional form, learning of linearly nonseperable cases is not 

possible. Through additional magnitude constraints on sparse codes, one can arrive at 

superproblem of /c-means, such as /c-simplexes, or fc-polytopes that can learn linearly 

non-separable cases. Simplicial learning is a further modification of /c-polytopes 

concept for the problem of classification through the introduction of once class learn-

ing. Due to combinatorial nature of simplicial learning, an evolutionary approach is 

taken. Evolutionary simplicial learning can easily handle linearly non-separable cases 
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and surpass the capacity of classical dictionary learning methods considered. 

Due to considering dimensions as orthogonal to each other via vectorization 

process, there are still problems for machine learning of signals. Convolution operator 

is a practical tool that can preserve spatial information in this regard. Through con-

volutional sparse representations a shift-invraint /c-means problem is formulated and 

solved. Furthermore, unsupervised feature learning capacity of convolutional dictio-

nary learning is evaluated. With all these modifications and considerations, sparse and 

redundant representations framework appear to be an indispensable tool in advancing 

machine learning research. 
CHAPTER 2: CLUSTERING AND SPARSITY 

2.1 Introduction 

As a subdomain of machine learning, clustering is an approach to unsupervised 

learning. There is no labeling required, unlike classification tasks. In broad terms, 

clustering can be expressed as exploring the unknown. The wide range of clustering 

applications includes search engines, social networks, visual tasks such as image seg-

mentation, and DNA analysis. Search engines need to cluster information in order to 

be able to retrieve relevant data in the times of querying. Social networks inherently 

appear in a clustered nature. Image segmentation is a visual application of clustering. 

Not surprisingly, molecular biology is a promising domain for clustering applications, 

due to its aim of discovering the unknown world (Kiselev et al., 2019). 

Clustering can simply be defined as the task of grouping entities in terms of a 

similarity measure. Here, the critical issue is to understand what is meant by “similar”. 

Similarity is in a sense the inverse of a distance metric between two entities. The shorter 

the distance, the more similar the entities, and vice versa. It is important hence to note 

that, clustering results will be crucially dependent on the similarity notion chosen. A 

conventional distance metric is the squared Euclidean distance between two data points 

x and y which is defined as dist(x, y) = ||x — y |||. Many other similarity measures, e.g., 

(Borgefors, 1986; Maesschalck et al., 2000), could be utilized to tackle the broad range 
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of domain specific clustering problems. 

Clustering methods are usually categorized under four main groups. The first 

group is based on the cluster formation methodology including top-down, bottom-up, 

and analytic optimization techniques (Gordon, 1987). A second group lists methods 

depending on the cluster model acquired such as hierarchical (Sibson, 1973), centroid 

(as in k-means (Lloyd, 1982)), distribution such as expectation maximization (Carson 

et al., 2002), density (Ester et al., 1996; Kriegel et al., 2011), subspace, group, and graph-

based models (Felzenszwalb and Huttenlocher, 2004; Novak et al., 2010). Thirdly, 

depending on the relationship type between entities and clusters, hard or soft clustering 

can be distinguished by defining binary or fuzzy relations, respectively. A final 

clustering group, based on the nature of cluster-cluster relations, defines the distinction 

between overlapping versus disjoint partition groups in general. 

2.1.1 Challenges in Clustering 

Clustering problem is not a trivial task, especially in the case of high dimen-

sional data, found in most real-world applications. Conventional clustering methods 

usually fail in such scenarios. This phenomenon is referred to as the curse of dimen-

sionality (Parsons et al., 2004). The problem here can be described with a synthetic 

example where there is a set of data originally in a low-dimensional space, which is 

gradually expanded with irrelevant information within some additional dimensions. As 

such dimensions are incrementally added, the inherent distribution of original data will 

gradually become obscure because of the increased volume, and that statistically sound 

subset becomes sparser in higher dimensions. This is especially problematic in the case 

of clustering, which employs some conventional distance metrics, as with each 

additional dimension, such functions will lose their discriminative power. 

In addition, large amounts of data does not mean that learning algorithms will 

be successful. The problem of overfitting (Hawkins, 2004) usually occurs when the model 

being captured is excessively complex because of very high dimensional feature space. 

Also, the data at hand may not be very representative of the whole ground-truth model. 

In that case, learning algorithms tend to fit a model to data samples at hand, thus 

missing the true underlying structure. In other words, some kind of memorization 
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occurs instead of learning. 

Noise and outliers are additional challenges to be tackled in practical signal 

processing and learning tasks. Especially, non-Gaussian noise is common in applica-

tions that involve measurements. Outliers, on the other hand, are inconsistent observa-

tions among the general population. Combined with certain output constraints, these 

peculiarities pose great challenges for problems involving both linear and non-linear 

systems. The effects of these additional considerations are best investigated in some 

recent studies as (Stojanovic et al., 2016; Stojanovic and Nedic, 2016). 
2.1.2 Remedies for Challenges 

Because raw data is usually in a crude form, as explained, clustering approaches 

require a preprocessing step to cope with high dimensions and undesired sampling 

issues. Various preprocessing techniques have been proposed to increase performance 

in cases of high dimensions, e.g., (Hinton and Salakhutdinov, 2006; Yan et al., 2007; 

Baudat and Anouar, 2000; Jolliffe, 2002). They generally reshape the sample space 

through transformations or eliminations to observe the dataset in a refined way that 

would be more suitable for further processing. In an example, Principal Component 

Analysis (PCA) (Jolliffe, 2002) is a method that transforms sample attributes into a 

form that would have the highest variance, thus more suitable for discrimination tasks 

with an additional benefit of reduced dimensions. In general, this concept can directly 

be generalized as feature transformation. However, it is important to note that such 

techniques do not discard irrelevant features, i.e., all features are preserved and 

reshaped through (non)linear combinations. As an extended approach, dimensionality 

reduction via feature selection performs elimination of irrelevant features and 

considers what seems to be the most important subset of features abiding by certain 

optimality criteria. Both of these techniques help future classification or clustering 

tasks to achieve more accurate representations in return. 

Although feature selection can simply be used as a solution to high dimensional 

problems, elimination process however might lead to some loss of important informa-

tion that have strong meaning in different context, i.e., in different subspaces. In this 

light, subspace search (Parsons et al., 2004), a combinatorial approach to subset se-

lection, can be performed as an extension of feature selection where many subsets of 
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features are distinctively analyzed while keeping original dimensions intact. A class of 

clustering methods has been proposed which includes searching for clusters in sub-

spaces rather than the original space, thus referred to as subspace clustering (Parsons 

et al., 2004). Considering data points in isolated but relevant dimensions eliminates the 

interference of irrelevant dimensions, hence provides a solution to the clustering 

problem. Observing data in many alternate subspaces can provide means to clustering 

certain groups in certain subspaces, and the rest in different ones. The whole data can 

effectively be partitioned through merging the solutions in these subspaces, in a way
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Dictionary Transformed
 dataOriginal data 

A X = Y 

Figure 1. Sparse and redundant representations implement a transformation Y = AX 

that increases the dimensionality of feature space from N to M and searches 

for suitable subspaces within the new M-dimensional feature space. 

that would not be possible by observing all dimensions at once. In general, subspace 

clustering problem can be formulated by defining the number of subspaces, subspace 

dimensions and a corresponding basis when supplied with a set of data points that fie 

within a union of subspaces. 

Note that it is also possible to take an extended approach to subspace search 

within expanded dimensions through sparse and redundant representations (Elad, 2010), 

which implements a transformation that increases the dimensionality of feature space, 

as illustrated in Fig. 1, and then searches for suitable subspaces within this new feature 

space. This chapter focuses on the sparsity-based clustering methods, considering 

sparse and redundant representations as a both feature transformation and a 

“structure” of clustering with the help of adaptive (learned) overcomplete dictionaries. 

Having considered the challenge of high dimensional data, it is also important 

to mention certain techniques to overcome the problem of overfitting. In the case of 

clustering, a common way to deal with overfitting is to minimize within cluster variance 

(Demiriz et al., 1999). More generally, overfitting occurs when the model accommodates 

more parameters than needed (Everitt and Skrondal, 2002). In the sparse and 

redundant representations framework, the sparsity measure directly corresponds

r

M features 

(transformed) 
N features 

(original) 
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to parameter quantity, and can be manipulated easily. For example, by keeping the 

sparsity constraint strict enough, a model based on a few parameters can be formed, 

exhibiting less overfitting. 

In the case of noise and outliers, it has been shown that under certain conditions, 

it is highly probable that sparse and redundant representations admit a local minimum 

around the reference signal-generating model (Gribonval et al., 2015). This means 

sparse representations are indeed resilient to noise and outliers when certain criteria 

are met, such as appropriate scaling of dimensions, number of measurements, and 

model parameters. In practical applications, the nature of noise may not be Gaussian, 

but exhibit high levels of outliers. There are successful studies which overcome such 

situations with flexible structures for noise handling, e.g., a method based on a hybrid 

norm for minimizing the data fitting error term (Barazandeh et al., 2017), a nonpara- 

metric scheme minimizing some norms of residual and original signals (Mayiami and 

Seyfe, 2012). Furthermore, sparse and redundant representations are widely used in 

signal denoising applications, which provides the potential for robust models, even in 

the presence of (non-)Gaussian noise and outliers (Elad and Aharon, 2006; Shao et al., 

2014; Zhu and Vogel-Heuser, 2014). 

The rest of this chapter is organized as follows. Section 2.2 first overviews the 

problem of sparse representations, and then relates the clustering problem to the 

sparsity constraint, namely, to sparse coding. Following this, Sec. 2.3 introduces the 

principles of dictionary learning for sparse representations, and then connects the 

clustering problem to learned dictionaries. Section 2.4 then discusses related concepts 

to sparsity-based clustering. Finally, Sec. 2.5 mentions shortcomings of the standard 

formulation proposed in this chapter for general machine learning, and paves way to 

upcoming chapters.
2.2.1 Sparse representations: An overview 

Sparse representations have become a key research topic with various 

applications in signal and data processing, e.g., denoising (Elad and Aharon, 2006; 

Protter and Elad, 2009), modeling (Peyre, 2009), restoration (Mairal et al., 2008b,c), 

compression (Bryt and Elad, 2008; Peotta et al., 2006), and even more (Fadili et al., 

2007; Mairal et al., 2008a; Liao and Sapiro, 2008). Put simply, sparse representations 
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represent most or all information contained in a data with a weighted linear 

combination of a small number of elements or atoms chosen from an overcomplete 

or redundant basis or dictionary. Such a dictionary is a set of atoms whose number 

is much larger than the dimension of the data space. Any entity then admits an 

infinite number of representations, and the sparsest such solution has interesting 

aspects for various data processing tasks. 

The main objective is to obtain a sparse approximation of a given input data 

y e RN. Given a full rank matrix A e M.NxM ^ ^ one tries to optimize the 

solution of 

y = Ax subject to min||x||0 (2) 

where x e RM denotes the sparse representation of y and ||x||0 is the ^0-norm of x, i.e., 

the number of non-zero components in x. The matrix A is the dictionary and its 

columns (atoms) are assumed to be normalized in any norm. 

In general, sparse representations for any set of data can be imposed in the 

form of a matrix factorization as Y = AX, where Y denoting the original data with N 

features and K samples, and X as the sparse representation matrix of Y in the new 

M-dimensional feature space as depicted in Fig. 1. Assuming that A is fixed, the £0-

norm constraint on the columns of X forces each data sample to use only a small 

number of feature templates (atoms). Hence, sparse codes, namely the columns of X, 

together with the atoms they use, define a subspace. 

In practice, the whole problem can be relaxed as an approximate convex opti-

mization while fixing A and solving for x* for each yj Mi independently, by 

minimizing
the total approximation error over all samples by 

K 
argmin^ ||yj — Axilla subjectto ||xj||0 < k Vi, (3) 
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which is known as the sparse coding problem. Here, the parameter k defines the max-

imum sparsity allowed for the representation of yi during the sparse coding process. 

There is no known technique for obtaining the exact solution under general 

conditions on the fixed dictionary A, except for the exhaustive combinatorial 

approach. Searching for this sparsest representation is hence unfeasible. This 

problem is computationally intractable (Davis et al., 1997) and thought to be NP-

hard (Tillmann, 2015). A wide variety of pursuit algorithms (Chen et al., 1998; 

Mallat and Zhang, 1993; Pad et al., 1993; Blumensath and Davies, 2008) have been 

introduced as heuristic greedy methods aiming at approximate solutions with 

tractable complexity. 

For the £0-norm constraint, greedy approaches are the most appropriate as 

the above problem in this form is NP-hard. Matching Pursuit (MP) (Mallat and 

Zhang, 1993) and Orthogonal MP (OMP) (Pati et al., 1993) are most widely used 

examples to these iterative methods. On the other hand, it has been shown that for 

many high dimensional cases, £i-norm constraint (instead of £0-norm) is sufficient to 

ensure the sparsest solution (Donoho, 2006). Note that the very same problem with 

¿i-norm constraint can then be solved via regular linear programming tools, such as 

interior point (Nesterov and Nemirovskii, 1994) or regression shrinkage (Tibshirani, 

1996). Basis Pursuit (BP) (Chen et al., 1998) is the generalized term for ^-norm 

constrained version, as an approximation to the original problem. 

Note that, since the transformed feature space in X has higher dimensions 

than that in Y, this feature transform can also be coined as “dimensionality 

expansion”, as opposed to dimensionality reduction such as in PCA. This is an 

advantage because, through dimensionality expansion, it is possible to utilize the 

subspace clustering approach at large.

Sparse coding can be thought of as a method of information localization. In 

this sense, sparse representations and the clustering problems are usually 

complementary, as clustering itself includes a form of information localization. 

However, note that the sparsity constraint alone does not imply clustering. For 

example, random sparsity is an expression of information being localized to a certain 
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extent, but clustering would not be evident at all for such a case. Thus, sparsity 

property needs indeed to be structured in order to be significant in informative sense. 

By nature, in most real world examples sparsity property and clusters are usually 

observable together. As an example, in social networks, not everyone is friends with 

everyone else, and people appear to be in certain friendship groups. Similarly 

protein-protein interactions in molecular biology are selective, while proteins of 

same functional domain and cellular location tend to cluster (Schwikowski et al., 

2000). A striking sparsity example can be given for the brain. The brain, that 

fundamentally based on compartmentalization, not only has spatial but also 

temporal sparsity. Neurons are active in relatively small number of time periods, and 

also, the activated population of neurons are spatially sparse, i.e., only a small 

portion of neurons are active at any time (Barnes et al., 1990). 

At this stage, there are two possible directions towards a solution for the main 

topic, namely for the clustering problem. Firstly, it is possible to supply sparse rep-

resentations (i.e., sparse codes) acquired to any existing data clustering method -as 

extracted features- to be further processed as exemplified in (Elhamifar and Vidal, 

2013) . In this simple case, sparse representation framework remains as a tool of 

feature transformation and/or selection, as a preprocessing step for clustering. 

Secondly, it is possible to formulate the sparsity concept as a clustering problem 

directly through additional structural constraints on sparse and redundant 

representations. 

2.2.2.1 Sparsity as a feature transform 

The first option is to use the transformed feature space, namely sparse codes, 

as an input to any existing data clustering algorithm. As a special case, if the 

dictionary is chosen as the data itself, i.e., A = Y, the result is a formulation as YX = 

Y. In this

form, X contains information about a kind of self-similarities among the original 



21

 

 

data. However, the diagonal entries of X has to be forced to be zero to prevent the 

trivial solution of YI = Y, where I represents the identity matrix with suitable 

dimensions. The columns of the dictionary are usually normalized, arriving at a final 

formulation as YX = Y where Y denotes Y with normalized columns. In an example, 

this logic is utilized to solve the problem of segmenting multiple motions in videos 

(Elhamifar and Vidal, 2009, 2013). After solving for X through ¿’i-norm constraint 

optimization, a similarity matrix is further calculated by |X| + |XT|, which is then 

processed by spectral clustering for final segmentation. Experiments on chosen video 

sequences show that this approach is exceptionally successful in this clustering task. 

If above YX = Y is solved for X with a greedy approach, such as MP or OMP 

with an £0-norm constraint where k = 1, then the non-zero coefficient with the index 

j within Xj, will show that y* and y, are the most similar in terms of directionality; 

in other words y* and yj are highly correlated in terms of angular similarity. This 

can be regarded as an alternative similarity measure to Euclidean distance. Note also 

that for any sparsity constraint with k > 1, this formulation can be generalized as 

directional decomposition of the data. 

As a relevant note, there is in fact a whole field of directional statistics (Mar- 

dia and Jupp, 2009; Mardia, 2014), in which data points are represented as scaled 

directions -contrary to points in cartesian coordinates- and their distributions are 

examined from that perspective. In that regard, Von Mises-Fisher probability 

formulation deals with distributions on circles, spheres, or in general n-dimensional 

hyperspheres (Fisher, 1953). In relation to the clustering problem, cosine similarity 

or angular distance as its inverse, can be used alternatively. Spherical k-means 

(Zhong, 2005) aims to maximize the cosine similarity objective, thus it is equivalent 

to k-means clustering on a unit hypersphere. Von Mises-Fisher directional 

distributions can also be used as a probabilistic approach for clustering (Banerjee et 

al., 2005; Gopal and Yang, 

2014). 
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Figure 2. An example sparse coding case: (left) a portion of the dictionary is shown 

with colored columns (atoms), and (right) example sparse code-pattems 

colored with the same color as the atoms used during coding. There are 

two disjoint subspaces (green and blue code-pattems), and there also 

exists non-structural code-pattems (green-yellow and blue-yellow). 

2.2.2.1 Structured sparsity as a means of clustering 

Instead of using sparse codes as features for the existing clustering 

algorithms, sparse code appearance patterns can directly be utilized for clustering. 

While noting that there is no structural constraint on code-pattems in the 

conventional sparse coding approaches, additional structural code-pattem 

constraints can easily be injected and then manipulated so that subspaces can 

directly be designated as clusters. As a simple example, Fig. 2 depicts a coding case 

where, as well as two disjoint subspaces as desired (green and blue code-pattems), 

there also exists non-structural patterns (green and yellow, blue and yellow). 

Structural constraints can enforce the condition that all sparse code-pattems appear 

in disjoint subspaces, which will naturally designate structured clusters. 

As a structured sparsity technique, group sparsity enforces grouping of the 

elements belonging to the sparse-code vectors by allowing coefficients to fill the 

vector group-by-group. The sparse code is conceptually partitioned into overlapping 

or disjoint groups, and an additional norm constraint is used on this group level. In 

this kind of structure, there is a cascade of norm constraints, usually two-layered, as 

opposed to a single, general one in the conventional sparse coding approaches. As an 
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example, l\- norm constraint based well-known lasso (Tibshirani, 1996) method can 

be extended to group lasso (Meier et al., 2008) with an £2-norm constraint on the 

group level. 

Considering the sparsity concept as a cascade of norm constraints forced on 

sparse codes on multiple levels leads to the possibility of multiple norm combinations, 

and also to other structural variations. An example is sparse group lasso (Friedman 

et al., 2010), which extends group lasso through a global ^-norm constraint in 

addition to ¿’i-norm group sparsity and £2-norm within group constraints. Such an 

enforcement yields sparsity both on the group and global levels, whereas group lasso 

alone does not enforce sparsity within a group. As a second example, strong group 

sparsity (Huang and Zhang, 2010) has ('i-norm within group constraint, and the 

support selected is restricted to that lying within the smallest possible subset of non-

overlapping groups. Through a generalization, any structure can further be imposed 

on the sparse code set. In a recent study (Huang et al., 2011), group sparsity was 

extended through a subset imposing cost function while defining the coding 

complexity for that sparse subset. Note that by manipulating such cost functions, a 

range, including block, hierarchical or even graph sparse code-pattems can be 

enforced. It is important to keep in mind that structured sparsity is a sparse coding 

approach that will work particularly well if the data itself has that specific structural 

nature (Huang and Zhang, 2010). Without initial structure, the structured coding 

will much be less meaningful. 

Most relevant to the clustering problem, block sparsity (Eldar and Mishali, 

2009; Eldar and Bolcskei, 2009; Elhamifar and Vidal, 2009) is a specific case of 

disjoint group sparsity where groups appear in blocks. A block sparsity of level 1 

corresponds to some designation of disjoint subspaces. In such case, these subspaces 

can directly be assigned as clusters and that will correspond to a non-overlapping 

subspace clustering scheme as depicted in Fig. 3.
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Figure 3. A block sparsity example illustrating the designation of disjoint 

subspaces which are assigned as clusters: house (green) and face (blue) 

clusters. The dictionary and the data represented in the sparse domain 

are shown on the top-row. 

2.3 Dictionary Learning and Clustering 

2.3.1 Dictionary learning: An overview 

A crucial question in sparse representations is the choice of the dictionary. 

Possible choices include various sets of analytic waveforms such as overcomplete 

DFT, DCT, wavelets. However, both the sparsity and the quality of the 

representation depend on the used dictionary, and most importantly its suitability 

for the data and the problem at hand. Therefore, the underlying main idea of 

dictionary learning for sparse representations suggests that the data can be better 

approximated sparsely as a weighted linear combination of a set of preleamed 

dictionary atoms, rather than off-the-shelf overcomplete bases or dictionaries, e.g., 

(Elad and Aharon, 2006; Protter and Elad, 2009; Peyre, 2009; Mairal et al., 2008b,c; 

Bryt and Elad, 2008; Fadili et al., 2007). The
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sparsity constraint associated with the learning problem generally leads to a solution 

which can fit any practical application by means of pursuit algorithms with ^0-norm 

and 4-norm sparsity measures. 

The objective is to obtain an explicit dictionary matrix A which is optimally 

representative of a given set of training samples under some strict sparsity 

constraints. Formally, given a set of training data with N features and J samples 

stored in the columns of a matrix T, the search for an optimum dictionary A involves 

solving the constrained minimization as 

argmin ||T — AZ||^, subject to ||zj||0 < k Mj (4) 
A,Z 

where the sparse matrix Z e R M x J  has its columns zj  as the sparse representation 

vectors of the corresponding training samples t j  M j .  Note that the constraint on A 

is implicitly assumed to be valid to obtain unit norm atoms. Here ||. ||F denotes the 

Frobenius norm. 

The problem in Eqn. 4 is combinatorial and highly non-convex, and thus a 

local minimum can be expected (Rubinstein et al., 2010a). Alternatively, this 

formulation can be rewritten as a joint optimization with respect to the dictionary A 

and sparse vectors zj  M j  while including the sparsity constraint in the formula as a 

penalty term 

 

which is not jointly convex but convex with respect to one of its variables when the 

other one is fixed (Elad and Aharon, 2006). ct, here represents the sparsity 

regularization parameter for t j  M j .  

In this way, the whole problem can be factorized into two approximate convex 

optimization steps as: a) sparse coding: optimizing Zj Mj by fixing A; b) dictionary 

update: optimizing A by fixing zj Mj. A solution can be reached by iteratively solving 

these two steps. 
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While sparse codes zj Mj can be calculated in the sparse coding step as dis-

cussed in Sec. 2.2, the problem is then to optimize A by minimizing the representation 

error of the training samples. This optimization is known as the dictionary update 

problem, and it can be formulated as 
j 

arg min I>-AzÆ (6) 
A . 1 

3=1 

The above described optimization problem can be solved using various tech-

niques. Non-parametric dictionary learning methods, such as Method of Optimal Di-

rections (MOD) (Engan et al., 1999) and K-SVD (Aharon et al., 2006), have been 

developed, resulting in non-structural learned dictionaries. There are also paramet-

ric learning structures for such as translation invariant dictionaries (Blumensath and 

Davies, 2006; Jost et al., 2006; Aharon and Elad, 2008; Engan et al., 2007), multiscale 

dictionaries (Mairal et al., 2008c; Sallee and Olshausen, 2003), unions of orthonormal 

bases (Lesage et al., 2005; Sezer et al., 2008) and sparse dictionaries (Rubinstein et al., 

2010b). Moreover, for various data and signal processing tasks, the literature 

provides online learning algorithms (Mairal et al., 2010; Skretting and Engan, 2010), 

task-driven learning approaches (Mairal et al., 2011), tree-structured hierarchical 

methods (Monaci et al., 2004; Nakashizuka et al., 2009; Jenatton et al., 2011), and 

iteration- tuned schemes (Zepeda, 2010; Zepeda et al., 2011). 

2.3.2 Dictionary learning linked with clustering 

As mentioned above, a chosen fixed dictionary may not always be appropriate 

for clustering the data at hand, especially when the data under investigation is of an 

unknown nature. This situation is exemplified in Fig. 4, which builds on top of the 

previously selected example, depicting that sparse codes are not structured, but lie 

apparently on intersecting subspaces. There is no obvious cluster-like appearance in 

sparse codes. However, it is possible to acquire disjoint subspaces through adapting 

the dictionary to the data at hand, by learning a more suitable dictionary. 

Constraining block sparsity structure onto sparse codes using the sparse 

coding step, followed by a dictionary learning step, basically corresponds to learning 

a block- sparse model for the data. This is a form of non-overlapping clustering, 
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where distinct subspaces are defined by adaptive subdictionaries together with the 

supporting block of 

i ® u 2 II© 
 

Figure 4. The chosen dictionary may not always be appropriate for clustering the 

data. An example sparse decomposition depicts that sparse codes are not 

structured, but lie on intersecting subspaces. 

sparse codes. Examples from literature prove that such an approach is a successful 

alternative to self-similarity (Sprechmann and Sapiro, 2010). As an example in 

(Ramirez et al., 2010), subdictionaries are modeled to learn a subspace for each 

cluster in an image segmentation task. Initially, data samples are assigned to best 

representing subdictionary according to a certain representation quality that 

includes a data fidelity term and a sparsity promoting term. Then, these assignments 

are fixed, and solutions for better adapted subdictionaries are calculated with an 

additional incoherence term. This proves to be an efficient and effective solution for 

the image segmentation problem targeted. A successful denoising application 

example can also be given in (Dong et al., 2011). Here, the concept of double-header 

¿’i-optimization is introduced with an additional £i-norm restriction that enforces 

best representing centroid for each cluster through an adaptive dictionary. 

Simultaneous centroid enforcement and sparse coding create a noise-resilient 

structure. Encouragingly, this denoising application is reported to match the state-
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of-the-art BM3D (Dabov et al., 2007) performance. In fact, denoising is a very 

suitable domain for such clustering formulations. Yet in another denoising study in 

(Huang et al., 2014), authors successfully aim at the decomposition of images into 

multiple semantic layers through unsupervised clustering based on self-learning, 

allowing detection and removal of undesired patterns such as Gaussian noise and 

rain strikes. 
2.4 Related Concepts 

2.4.1 Signal processing perspective 

Compressive sensing (CS) aims at reducing the number of measurements 

needed to describe a signal while exploiting its compressibility. It can mathematically 

be expressed by 

z = <by = = ©x (7) 

where $ 6 IH N x M  is the stable measurement matrix with N < M, and it is responsible 

of dimensionahty reduction from y E MM to z E RN such that z designates less number 

of measurements taken. The main goal is to recover the original compressible signal 

y, or equivalently the sparse signal x, from z. Note here that E RM xM  is an 

orthonormal sparsifying basis for obtaining fc-sparse representation signal x such 

that y = tPx and x = \PTy. k largest coefficients in x are kept while discarding the 

smallest for k << M (Baraniuk, 2007). The solution to this problem involves two steps. 

First, a suitable $ has to be designed, and then a reconstruction algorithm is needed 

to recover y from z. For stability, a sufficient condition is that © = satisfies the 

restricted isometry property (RIP) (Candes et al., 2006). An alternative approach for 

stability is to ensure that the matrix # is incoherent with the sparsifying basis How-

ever, in practice, the signal y at hand may not be sufficiently sparse in an 

orthonormal basis, but in a redundant and overcomplete dictionary. Through a 

generalization, then can be replaced with a highly overcomplete and coherent 

dictionary A tying the gap between CS and sparse representations (Candes et al., 

2011). 

Considering compressible signals in a “structured nature” paves way to 
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model- based CS. These methods significantly decrease the bound of required 

measurements to N = 0 ( k )  for tree-sparse and (in the limit) for block-sparse signals, 

whereas standard CS models can robustly recover fc-sparse compressible signals 

from N  = 0 ( k  log( M / k )) measurements. Such approaches to CS have helped to 

decrease the required amount of measurements for robust recovery of signals in 

applicable domains. Similar methods can also be used for CS recovery of clustered 

signals (Baraniuk et al., 2010; Cevher et al., 2009; Yu et al., 2012). 

Up to this point, sparse and redundant representations have been considered 

through a single measurement vector (SMV) framework, in which each signal is con-

sidered individually, even though sparse representations solution is obtained for 

multiple signals. In the multiple measurement vectors (MMV) approach, on the other 

hand, multiple signals are simultaneously considered by processing multiple sparse 

vectors together while selecting a column (an atom) from the dictionary A. The 

optimization of MMV can be formulated as 

arg min R(X.) subject to Y = AX (8) 
x 

where R(X) represents the number of rows in X containing non-zero entries (Cotter 

et al., 2005; Chen and Huo, 2006). 

The perspective of MMV is especially powerful when solutions have an initial 

common sparsity profile. However, dictionary learning with MMV approach will be 

extremely ill-posed because all-zero rows in X may cause corresponding dictionary 

atoms either to disappear or to diverge during the dictionary update step. However, 

this approach can be successfully used to discard certain atoms from a highly 

overcomplete dictionary to obtain a more compact representation. As a final relevant 

note, algorithms similar to ones used for MMV recovery can be adapted for the block 

sparsity structure, thus can be linked to clustering (Davenport et al., 2012; Yuan and 

Lin, 2006; Eldar et al., 2010; Eldar and Mishali, 2009). 

2.4.2 Machine learning perspective 

Three conceptually different machine learning methods are reviewed in 
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relation with sparse representations. These methods include support vector machines 

to be mentioned along large margin modeling (Steinwart and Christmann, 2008), 

decision trees as examples of symbolic machine leaming(Quinlan, 1986), and neural 

networks as a connectivist approach. 

Large margin modeling can be defined as finding hyperplanes which 

maximize the margin between classes (Cortes and Vapnik, 1995; Tsochantaridis et 

al., 2005; Ce- vikalp et al., 2010). Such a model is composed of a bias, weight vectors 

and support vectors. Support vectors are selected as data points which lie closest to 

hyperplanes, and these are sufficient to express the whole data set. In other words, 

support vectors lie on the margin and, for certain applications, carry all the relevant 

information about the data. Thus, the solution is sparse in nature. It has been shown 

that a slight modification of ¿i-norm sparsity optimization method, namely Basis 

Pursuit, is equivalent to Support Vector Machines (SVMs) (Steinwart and 

Christmann, 2008), which are large margin formulations (Girosi, 1998). Building on 

top, large margin clustering is also possible through maximizing inter-cluster 

margins (Xu et al., 2004; Zhang et al., 2009). Therefore, drawing parallels between 

the two variants of this approach can lead to a more generalized theory that is able 

to capture the gist of the sparsity concept analytically, since both variants can be 

thought as mathematically constructive methods. 

Symbolic machine learning is traditionally associated with ID3 decision tree 

learning (Quinlan, 1986). In general, the symbolic approach to machine learning can 

be thought as inductive learning, in which certain rules are inversely deduced from 

the observed data. However, symbolism has a broader presence in the Al world in 

general, as a means of high-level abstraction over numerical units, often introducing 

human- readable representations (Haugeland, 1989). In line with this definition, 

model-based clustering can be classified as an approach to symbolism. For example, 

centroids in k-means, as rather shallow symbols, with a distance rule for assignments, 

define an abstract object that provides partitioning. Similarly, large margin 

modeling can be seen as another shallow symbolic approach; in this case, support 

vectors with their strict boundaries provide an abstraction layer. In this sense, 

symbols, as abstracted objects, provided with rules for decisions can be regarded as 
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sparse representations, since this approach allows a relatively small number of 

symbols to express enormous amounts of data. It is important to note that the shallow 

analogies given here may not be common, as symbols generally need to be very high-

level abstractions, as in (Gowda and Diday, 1992,1991). 

Connectivist approaches, such as traditional neural networks (Du, 2010), tend 

to process data in pure numerical units. Perceptron is a generalization of a single 

neuron cell that works on the numerical unit level (Rosenblatt, 1958). However, with 

only a single layer, perceptrons are not capable of learning the nonlinearity. A multi-

layer generalization of perceptrons solves this problem, while also introducing a 

possibility for sparsity through the activation function (Rosenblatt, 1961). However, 

such generalization still depends on numerical units for computation. Convolutional 

Neural Networks (CNNs) provide an abstraction over multi-layer structure, in which 

a degree of “symbolism” is introduced, as apparent from the human-readable filters 

that are formed within the nodes (Krizhevsky et al., 2012). Note that connectivism, 

rather than enabling deep understanding, simply replicates the evolved structure of 

the human brain, unlike analytic approaches. As a recently popularized approach, 

clustering with deep learning (Schmidhuber, 2015; Hershey et al., 2016) at this stage 

may be successful, but currently it is not sufficient to provide a deep analytic 

understanding of inner-working procedures of sparse structures and clustering 

peculiarities. 

2.5 Shortcomings and a proposal 

One shortcoming of conventional dictionary learning for sparse 

representations is about initialization. In cases where systems are restricted to 

random initializations, a supposedly optimal state update based on such an improper 

dictionary might hamper the system from start conveying undesired effects to later 

iterations. Such shortcoming is addressed in a standalone manner in Appendix A, in 

which intermediate error codes are used to boost dictionary learning process 

especially in cases of random initializations. 

However, there is a deeper problem that haunts sparse representations to be 
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applied as a standalone machine learning tool itself, besides being a feature transfor-

mation method. This problem is related to atom normalization, mentioned along with 

dictionary learning step. If normalization is not applied, the system diverges eventu-

ally. Because of normalization and lack of positional information, conventional 

dictionary learning, as a standalone tool, is not able to learn linearly non-seperable 

datasets. For example, assuming two clusters as in Fig. 5, conventional sparse 

representations will not be able to learn the example given as atoms when normalized 

become unit directions and most importantly lose positional information. Two 

solutions are proposed to overcome this problem, namely superatoms or structural 

centroids.  
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By shifting 

the original data into 

N + 1 

dimensions and giving 

the data points 

positions in the extra 

dimension, the notion 

of superatom can be introduced. Superatoms 

will be normalized rays passing through the origin as exemplified on the right of Fig. 

5. When sparsity is one, they are lines piercing the data space, effectively are points. 

When number of nonzeros are two, it corresponds to shooting planes intersecting the 

data space as an arbitrary line with possible offsets. By this procedure, positional 

behavior can be attained. 

However, a neater and a more systematic solution is possible by restricting 

magnitudes of sparse codes, instead of normalizing the atoms (or superatoms). This 

is the topic of next chapter, where a generalization of k-means is systematically for-

mulated within a sparse representations framework in which a centroid can now be 

structural, namely can be any piecewise linear construct, such as a line-segment, a 

triangle, a polygon, or a connected composition of these, instead of only being a point. 

 

-6 -4 -2 0 2 4 6 

Figure 5. On the left, a drawback of normalizing the atoms is presented. Two classes 

cannot be discriminated. Superatoms on the right overcome this problem. 

-6
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CHAPTER 3: A-POLYTOPES CONCEPT 

3.1 Introduction 

It has already been proven that under certain circumstances dictionary 

learning for sparse representations is equivalent to conventional /c-means clustering. 

Through additional modifications on sparse representations, it is possible to 

generalize the notion of centroids to higher orders as noted in Sec. 2.5. Using higher 

dimensional, nonconvex prototypes may alleviate the curse of dimensionality while 

also enabling to model nonlinearly distributed datasets successfully. In this light, a 

systematic generalization of /c-means is targeted in this chapter. 

A motivation to generalize /c-means emerges when one considers its 

shortcomings irrespective of its implementation, i.e., even assuming a globally 

optimal solution. First of all, it is possible to model only spherically shaped clusters; 

therefore, it will fail when clusters have nonconvex shapes. As another shortcoming, 

the number of clusters to search for has to be supplied by the user. A generalization 

in this context has to overcome one or both of these drawbacks without deviating too 

much from the original problem formulation. 

To address the first issue, kemelized generalizations of /c-means have already 

been proposed (Scholkopf et al., 1998; Dhillon et al., 2004). However, cluster model 

shapes then depend on the kernel function chosen and this type of generalization fails 

to address the second issue. Ensemble clustering approaches (Fred and Jain, 2002; 

Hore et al., 2009; Iam-on and Garrett, 2010), based on multiple runs of /c-means can 

additionally model arbitrarily shaped clusters, but still do not provide a solution to 

the number of clusters issue. Another generalization attempt is /c*-means (Cheung, 

2003) where ellipse-shaped models can be learned while also discovering the cluster 

count. On the other hand, there have been studies that specifically target the second 

issue. In X-means (Pelleg and Moore, 2000), certain information criteria are used to 

find the inherent number of clusters using /c-means as a subroutine. Mean shift 

clustering (Cheng, 1995) is another related generalization where number of clusters 
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is not pre-specified, but it runs much slower. These generalizations basically fail to 

address both issues in a unified way. Note here also that although these proposals 

include /c-means as a subproblem, they do not utterly generalize the original problem 

definition. In other words, they are not superproblems of /c-means, but approach the 

/c-means problem in generalized manners. 

Through elevating the notion of centroids (central prototypes) to higher 

dimensions, it is possible to generalize the problem definition itself. In the related Zc-

planes approach (Bradley and Mangasarian, 2000), planes are chosen as central 

prototypes instead of points. More generally, (/-dimensional flats (e.g., 0-flat is a 

point, 1-flat is a line, 2-flat is a plane) can be chosen as central prototypes (Tseng, 

2000; Canas et al., 2012). One may notice that /c-means is a Zc-flats problem, because 

a centroid point is a 0-flat, namely a zero-dimensional flat. Hence, /c-means might as 

well be called k-0-flats. 

The fact is that a central prototype can be of higher dimensions having an 

arbitrary shape. By replacing the keyword “the centroid point” with any geometrical 

construct one can arrive at many other formulations such as Zc-lines, /e-triangles, k- 

rectangles, or even k-polygons. To consider these novel concepts in a structured way 

(instead of going case-wise), one needs to adopt a unifying framework. An interesting 

aspect of this line of generalization is its close relation with sparse and redundant 

representations. Mathematically, it can be shown that both /c-means and /c-flats are 

of the form of dictionary learning with additional constraints on sparse representa-

tions (Szlam and Sapiro, 2009). Thus, a modified sparse representations framework 

appears to be a promising candidate for unification as already mentioned in Sec. 2.5 

In this chapter, two superproblems of /c-means, namely /c-simplexes and Zc- 

polytopes are formulated through a novel sparse representations framework. This 

framework, not only generalizes /c-means to provide solutions to both issues men-

tioned above, but also introduces a new geometric perspective to sparse 

representations by breaking it away from its subspace-centric viewpoint through the 

usage of positional and bounded (possibly nonconvex) spaces. This conceptual 

breakthrough has a superior value on its own although a rather naive solution to /c-

polytopes is presented. In this quest, structured sparsity, more specifically block-



36

 

 

sparsity concept mentioned in 
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previous chapter has to be mathematically formulated. 

3.1.1  Formulating block-sparsity 

In the conventional sparse representations framework, a constrained 

optimization problem is solved as already given in Eqn. 4. As noted before, there is 

no structural constraint on code-pattems in the conventional sparse coding 

approaches. Most relevant to the clustering problem, block sparsity (Eldar and 

Mishali, 2009; Elhamifar and Vidal, 2009) is yet a specific case of disjoint group 

sparsity where groups appear in blocks. This optimization problem is formulated in 

Eqn. (9) as 

argmin^Hyj - [Ax... AK ... Afc]x<|^ s.t. 
A.{xd i (9) 

(IWIo < V*) A (Ak g Knxq, VK) A (k ^ k* => x? = 0), 

where K* indicates the index of the optimal sub-dictionary for the data point y T h e  

constraint k / k* 4 xf = 0 ensures the block sparsity, and x£ represents sparse 

coefficients other than the assignment block, i.e., that are all forced to be zero. In 

fact, a sub-dictionary here can be thought of as a central prototype that claims an 

entity (or not) depending on its reconstruction error, much like a centroid claiming 

the closest points to itself. Therefore, sparse coding with block sparsity determines 

which entities will be assigned to which central prototypes. To extend this analogy, 

dictionary update hence corresponds to updating the central prototypes (i.e., sub-

dictionaries) which follows the assignment step. 

3.1.2  K-means within a sparse framework 
A close relationship between sparse representations and /c-means clustering has been 
drawn in k-SVD (Aharon et al., 2006). As formulated in Eqn. (10), the sparse code 
Xj,Vi, has only one non-zero entry because of the constraint ||xj||0 = 1, corresponding 
to the simplest case of block sparsity, namely blocks of size 1. If those sparse-code 
entries are forced to be positive and sum-to-one, then it is a direct formulation of the 
classical /c-means clustering problem. Dictionary elements (atoms) here directly 
designate centroids. 

axgmin ^||yi -Ax.il ! s.t. 
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A’{xi} i (10) 
||xj||0 = 1 A ||xi||i = 1 A 0 < x., V*. 

In the recent years, many different paths based on above equation have been 

taken to ameliorate its drawbacks by either relaxing these restrictions or introducing 

additional terms (Yu et al., 2009; Wang et al., 2010; Zhang et al., 2015). On the con-

trary, the proposed study tries to generalize this equation to higher-order blocks 

while respecting all these original constraints. 

3.2 K-simplexes 

For a general block-sparse formulation in Eqn. (9), x.,Vi, is restricted to be 

block sparse with a block size of q and there are k such blocks. Hence, this setup 

directly corresponds to /c-subspaces of dimension q (Szlam and Sapiro, 2009). In 

other words, central prototypes are subspaces. By definition, a subspace is a flat that 

passes through the origin, and /c-subspaces will most probably fail if there are more 

than one cluster within the same subspace. In that case, flats having arbitrary offsets 

will have more flexibility for the problem of clustering. On the other hand, there has 

not been a keen consideration on how to exactly formulate /c-flats within the sparse 

representations framework. One of the contributions of this chapter is to show that 

this is possible through introducing a sum-to-one constraint, i.e., lTx. = 1, within the 

block-sparsity setting, and this will pave the way to formulating /c-simplexes. 

  

k - means = 1 / / / 

/c-subspaces < q  X X X 
Zc-flats < q  +  1 / X X 

Zc-simplexes < 9 + 1 / / / 

Table 1. Clustering frameworks and respective 
constraints. 

■i 0 lTx. = 1 x. i = l 0 < x. 
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txa 4- t2b / 

(a) Subspace

 

Figure 6. A simple example of how additional constraints on sparse codes affect the 

solution of sparse representations, (a) The conventional sparsity 

constraint together with (b) sum-to-one (ti + t2 = 1) and (c) sum-to-one 

and nonnegativity (ti + ¿2 = 1 and ti, t2 > 0) constraints. 

Consider that there are two arbitrary vectors a and b in an arbitrary space 

of dimension TZn. These vectors basically correspond to two specific points in a two- 

dimensional subspace of lZn. Within this subspace, the expression £a + (1 — t) b traces 

the line passing through both a and b, where t is any real number. In a more specific 

case, if t and 1 — t are restricted to be non-negative, then the aforementioned equation 

represents a local line-segment connecting these a and b points. Note here that if this 

expression is written in the form of a matrix-vector multiplication as [a b] [t (1 — t)]T, 

it is apparent that column vectors a and b correspond to dictionary atoms and the 

vector corresponds the weighting coefficients of the sparse representations 

framework, where sum-to-one constraint is also satisfied. A depiction of these cases 

is given in Fig. 6. 

Let us now consider three linearly independent vectors and sum-to-one con-

straint on the weighting coefficients. In this case, a plane passing through these three 

vector points will be traced, and a triangle will be the geometric equivalent with an 

additional non-negativity constraint. Generalizing this, it is possible to observe that 

the constraint lTx, = 1 replaces a (/-dimensional subspace with a (q— 1)-dimensional 

flat lying within that subspace, and further with a (q — 1)-dimensional simplex within 

(c) Simplex 

ta + (1 — t)b

(b) Hat
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that flat with the additional 0 < x*. On top of this generalization, in a block-sparse 

formulation, each block corresponds to one of these single geometric object systems. 

Hence, each sub-dictionary represents a prototype, and if there are k number of sub
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dictionaries then one arrives at fc-subspaces, fc-flats and fc-simplexes, respectively. 

A summary of these clustering frameworks with their corresponding constraints are 

presented in Table 1. A-simplexes appear to be the most consistent generalization 

that respects the original constraints in /c-means. 

In fact, when k number of g-dimensional simplexes are simultaneously to be 

fit to the data, the optimization problem takes the form of Eqn. (11) involving also 

block sparsity as 
argmin V"' ||y® - [Ax... A* ... Afc]x<||| s.t. 

A>(x»} i 

(||x*||o <9 + 1 A ||xj||i = 1 A 0 < Xj, Vi) A ^ 

(A, € Knxiq+1\ Vk) A (k ^ k* => x? = 0), 

where there are k simplexes being used in total, AK denotes the nth simplex and each 

AK has q + 1 columns therefore simplexes are of dimension q. Note that ||xj||i = 1 and 

0 < Xj together imply lTXj = 1 just as in the case of /c-means. As mentioned before, 

the restriction of K ^ K* =>• xf = 0 ensures block sparsity where K* is the closest 

simplex for the data point y*. For the case when q = 0, this boils down to the 

formulation of k-means given in Eqn. (10), logically zero-dimensional simplex being 

a point. 

3.2.1 A solution to kr-simplexes 

The optimization problem given in Eqn. (11) is highly nonconvex. Therefore, 

similar to standard sparse representations, an iterative solution to A;-simplexes can 

be given through alternating between sparse coding and dictionary update. From the 

viewpoint of prototype-based clustering, one needs to be able to calculate the distance 

between a given data point and an arbitrary simplex (Golubitsky et al., 2012) so that 

the point can be assigned to the proper prototype, i.e., the assignment step. In sparse 

coding terms, this corresponds to orthogonal projection of y* onto the closest 

simplex, resulting in weighting coefficients representing the positive barycentric 

coordinates of the projection point. Note that sum-to-one constraint enforces 

invariance to translations and rotations. Invariance to rescaling follows from the 

formulation itself. After acquiring sparse representation vectors Xj, Vi, conventional 
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dictionary update methods  
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can be used, which corresponds to the prototype update. 

3.2.2  Complexity analysis 

Each data point y* will be projected onto each simplex (i.e., there are k sim-

plexes), then assigned to the closest one. Projection onto a single simplex is claimed 

to have a time complexity of 0{n) where n is the dimension of data space (Duchi et 

al., 2008). In a sensible model, for each data point there must be at most one simplex, 

resulting in a bound k <m and m is the number of data points. Therefore, complexity 

of the coding phase is 0(m2n). Updating prototypes through Moore-Penrose inverse 

has a time complexity of 0(m2kq), where kq denotes the total number of atoms 

(columns) in A. This atom count can be at most m in a sensible model, arriving at a 

complexity of 0(m3). Since overcompleteness implies n < kq < m, this phase seems as 

the bottleneck. 

3.2.3  Drawbacks of k-simplexes 

Although it is promising when conceptually compared to fc-means or fc-flats, 

there are two major drawbacks of fc-simplexes for the clustering problem. The first

 

Figure 7. For the given two clusters: (left) a general solution to /c-simplexes is pre-

sented, i.e., there is no restriction on the sizes of simplexes, (right) a more 

natural clustering occurs when simplex sizes are restricted. (Best visual-

ized in color.) 
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drawback is that simplexes can appear in many forms with different sizes. For a 

given data distribution, there will be infinitely many best-fit simplexes with varying 

sizes and these simplexes may not be apparent solutions to the clustering problem as 

depicted in Fig. 7. It is clear that an optimization only for minimizing the 

approximation error may not result in natural clusters. As a solution, an additional 

term that will penalize the size of simplexes can be introduced in Eqn. (11), which 

leads to a multi-objective optimization problem. An alternative approach would be 

to limit the size of simplexes, and this approach has been taken in this chapter as it 

does not require a joint optimization. For the rest of this chapter, r will denote the 

maximum allowed edge size of a simplex. The second drawback is that simplexes are 

convex structures. Therefore, a single simplex will not be enough to model a cluster 

if clusters appear in nonlinear forms. It is highly desired to have prototypes that can 

have nonconvex shapes. To be able to overcome this drawback, further 

generalization of /c-simplexes is possible through the concept of /c-polytopes. 

3.3 K-polytopes 

This thesis sticks with the definition that a polytope is an intact object that 

admits an exact simplicial decomposition. For example, a polygon (a two-

dimensional polytope) always admits a triangulation. Then in general terms, a 

polytope is a connected composition of many simplexes. 

Having pinned down the formulation of A;-simplexes, formulating /c-

polytopes is simpler as given in Eqn. (12) 

argminV'||yi - [Ax... AK ... A^x*^ s.t. 

A,{xi} i 

(||xj||0 <? + l A ||xj||i = 1 A 0 < Xj, Vi) A ^ 

(A* e 7Znxp A (q + 1) < p, Vk) A (k ^ K* =>■ xf = 0), 

where the constraint on sub-dictionaries AK in Eqn. (11) is replaced with a new term, 

which means that a prototype is still g-dimensional but has q + 1 < p vertices. 

In contrary to /c-simplexes in which there is indeed (^) = 1 possible projection 

within a block (i.e., projection onto the simplex defined by AK e 7?.nx(9+1)), 
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Eqn. (12) suggests new prototypes being more general and there are ( many q- 

dimensional simplexes to test for within each single block. In simpler terms, many 

different polytopes can be defined over p number of vertices and those different poly-

topes should be distinguishable. Therefore, an additional structure is needed to 

define the shape of a polytope. This translates to keeping a set of valid simplexes 

within the polytope among all possible ( of them, for each Are. In the remaining part 

of this chapter, the set of valid simplexes will be denoted as HK, Vk. 

An important observation at this point is that the set HK refers to a connected 

hypergraph. First of all, KK indexes Are and each entry within the set 'HK refers to a 

valid simplex without possessing any positional information. Vertices are abstracted 

out as nodes of the hypergraph and each valid simplex corresponds to a hyperedge 

that relates (q + 1) nodes. Note here that the most general form of /c-polytopes can be 

attained if a hyperedge is not only allowed to relate (q + 1) nodes but also fewer. 

However, this utmost generalization is beyond the scope of this chapter and only hy-

peredges that relate exactly (q + 1) nodes are considered. Such generalization will be 

the topic of Chapter 4. 

If the hypergraph is not connected, it means there are actually two or more 

polytopes defined over AK, and thus AK is in fact composed of more than one block 

that indeed contradicts the hypothesis of k polytopes to start with. There is also 

another possibility that although a simplex is valid within a polytope, it may not 

receive any projections. Namely, there is no data point that is projected to that 

simplex, hence the simplex is redundant. Additionally, some of these simplexes might 

not be redundant but may receive just a few projections. Therefore, a new constraint 

can be applied to the set HK such that the hyperedge hK £ 'HK should claim at least A 

many data points. However, such constraint must not violate the condition that V.K 

being a connected hypergraph. 

Let us denote a specific positional simplex as AKih that is defined by the hy-

peredge hK, and as the number of data points those are claimed by that simplex. Any 

node of hK simply corresponds to a vertex of AKjh. Let A“ h and Ab
K h refer to two 

arbitrary vertices (or atoms) a and b of the simplex AKj/i. Then the size of the edge 

connecting these nodes will be || A“ h — A* J|2 or simply ||a — b||2. Finally, let 
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us denote the set S as the union of all HK namely S = HK, where S desirably be a 

hypergraph with k many connected components, each referring to the Kth individual 

polytope, K = 1 . . .  k. The whole optimization problem then takes the form of Eqn. 

(13) such that 

argminY'Hy* - [Ax... A* ... Afc]x<||| s.t. 
A,{x»} i 

e(||xi||o < ? + l  A ||xj||i = 1 A 0 < Xj, Vi) A ^ 

(A* e nnxp A (q + l ) < p ,  V/c) A (/c ^ K* => x f  = 0) A 

(A„,„ e 7^«x(<i+i) A A < vi A ||A“j - A‘,J|2 < r )  

where r denotes the maximum allowed edge size of a simplex as mentioned earlier. 

3.3.1 An algorithm for k-polytopes 

Before presenting the proposed algorithm to tackle the problem, it can be 

immediately noticed that initializing the system with k many random polytopes will 

not be an effective strategy, although this scheme is usually applied in /c-means 

clustering (Celebi et al., 2013). Therefore, the proposed approach starts with a single 

random (/-dimensional simplex which gradually evolves into k many meaningful 

polytopes, having evenly sized (/-dimensional simplexes as faces. This is 

Table 2. Clustering success rates over 100 randomly initialized runs. Top value in 

each cell designates the mean, middle value is the maximum accuracy attained 

and the bottom value is the average running time. 
 

A;-means fc-flats GMMs kernel /c-means ensemble fc-means A;-polytopes 
 

88.6% 60.1% 76.9% 91.0% 100.0% 100.0% 
Crescents 88.6% 91.3% 88.8% 99.8% 100.0% 100.0% 
 0.01s 0.06s 0.01s 0.08s 4.56s 6.05s 
 

61.4% 51.3% 59.9% 61.3% 96.2% 99.9% 
Spirals 61.9% 58.1% 65.5% 76.8% 100.0% 100.0% 
 0.01s 0.14s 0.03s 0.12s 11.71s 23.12s 
 

92.0% 44.0% 73.9% 92.9% 96.1% 96.3% 
IRIS 96.0% 93.3% 96.7% 98.0% 98.0% 98.0% 
 0.01s 0.02s 0.02s 0.02s 1.38s 1.43s 
 

71.0% 43.1% 65.2% 70.5% 79.8% 78.2% 
MNIST 77.8% 50.9% 82.5% 80.2% 83.7% 83.8% 
 0.05s 0.23s 0.82s 0.68s 25.83s 32.83s 
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accomplished through processes of subdivision, pruning and merging, depending on 

the parameters r and A. 

While sticking with the conventional iterative process of sparse coding and 

dictionary update, two main problems arise: (0 the initial random simplex is probably 

not structurally correct, and (ii) dictionary update steps may introduce unevenly 

sized simplexes and some of these simplexes may become unnecessary. These two 

problems are addressed through an adaptive structured sparsity scheme as follows. 

Any simplex AKjh defined by the edge hK G 'UK is subdivided appropriately when the 

size of at least one of its edges surpasses T, i.e., the simplex AKjh is divided into two 

simplexes if there exists at least one pair of vertices a and b such that t < ||a — b||2. 

As a result, this subdivision procedure introduces new simplexes A^h> and AKyhn into 

Are, and new valid hyperedges h'K and h" into 'HK. Similarly, if a simplex is not being 

used at all, or rarely used such that vh
K < A, the corresponding hyperedge hK is to be 

removed from %K. In addition, if there exists some vertices uniquely being used by 

the removed hK then these vertices should also be removed from AK. This procedure 

corresponds to the pruning stage. 

Notice that the resulting polytopes will be grids of simplexes through pruning 

and subdividing, hence only a structurally approximate solution to the problem. For 

example, a T-shaped cluster in two-dimensions may not be effectively learned by the 

presented subdivision process. Another problem is that, pruning may introduce ex-

cessive number of clusters in cases of highly convoluted datasets. Through a merging 

process, close enough simplexes from different connected components (or even from 

the same component) can be stitched together depending on the parameter r, 

allowing more general and flexible shapes rather than simplex grids only. In this final 

form, r indeed regulates the desired minimum intercluster margin. This merging 

process will also allow the algorithm to recover the number of inherent clusters even 

in the absence of k. In other words, r can be adaptively determined when k is known; 

k can be adaptively discovered when r is known and fixed. 

The algorithm can be traced in mind as follows. Initially there exists a single 

random simplex. After a few iterations of sparse coding and dictionary update, this 

simplex will extend through the data and eventually one of its edges surpasses r. In 
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this case, the simplex will be subdivided appropriately resulting in new simplexes. 

Some of these newly introduced simplexes will possibly not attain the required A, 

thus will be pruned. Pruning may result in more than necessary number of 

prototypes, where merging depending on r will then take place between close enough 

prototypes. In the end, a low dimensional skeleton-like structure will be learned as 

these steps are iterated. At this point, it is crucial to observe that the pruning 

procedure removes hyperedges from 'HK, which may cause 'HK to become 

disconnected. This actually corresponds to the block sparsity constraint in the 

system, and also equivalently to the emergence of more than one prototype. 

The main objective of the algorithm is to determine k best-fit prototypes with 

the given set of constraints. However, upon convergence there may be C prototypes, 

or equivalently C number of connected components in the hypergraph S. If C ^ k, 

the parameters r and A have to be readjusted so that the system is forced to converge 

with k prototypes. In summary, it is possible to evolve the initial random simplex to 

a proper structure as described above. This scheme corresponds to an adaptive 

structured sparsity approach, where the dictionary A may be growing or shrinking. 

The pseudocode of the overall algorithm and its block-diagram as well as the details 

of subdivision, pruning and merging methods are available in Appendix B. 

3.3.2 Complexity analysis 

At first, let us consider the complexity of a single iteration. The toted number 

of simplexes is the number of hyperedges in S, denoted by \E\. As noted above there 

is a bound as \E\ <m, and this leads to a total time complexity of 0{m2n) for sparse 

coding. To update prototypes, i.e., the matrix A, least-squares optimization has a time 

complexity of 0(m2 where pK is the number of vertices in Kth polytope. The sum c is 

simply equal to the total number of columns in A and n < ^pK < m. Hence, updating 

prototypes has 0(m3) complexity. 

In the subdivision process, available edges of all simplexes must be iterated. 

In a (/-dimensional simplex, there are q(q + l)/2 edges. Therefore, time complexity
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of detecting oversized edges is 0(mq2). A naive subdivision process can introduce at 

most 2q(q+1'>/2 new simplexes depending on r; however it is assured that 2q(~q+1^2 < m 

from the earlier bound on \E\. An exceedance of this bound signals to a necessity of 

updating r. Therefore, total time complexity for subdivision is 0(m2). A similar anal-

ysis for pruning yields 0{m) complexity, since there is no new simplexes introduced 

but only eliminated. Perhaps conceptually the most challenging procedure is 

merging. Two simplexes 

having all their vertices 

distant from each other do 

not mean that they are not in 

proximity. Therefore, the 

distance between each 

pair of simplexes has 

to be calculated. 

Surprisingly, there exists an iterative method to compute the distance between two 

arbitrary convex sets in linear time through Gilbert-Johnson-Keerthi algorithm 

(Lindemann, 2009). Then, the merging process has 0(m2n) time complexity same as 

the projection phase. 

To sum up here, the bottleneck of the proposed algorithm is the prototype 

update phase with 0(m3) time complexity, which is also the bottleneck for 

conventional dictionary learning methods. Note that worst-case time complexity of 

fc-simplexes and /c-polytopes are equal, but /c-polytopes is slower within a constant 

factor because of additional procedures. 

3.4 Experimental Results 

A crucial point is that a hypergraph based data structure is needed to 

maintain S efficiently. Connected components have to be decided after an instance 

of convergence, where each component indicates the local structure responsible for 

its cluster. Due to conceptual difficulty of implementing the proposed system in high 

dimensional cases, in this study, only ID and 2D polytopes are tested for 2D and 3D 

data spaces, respectively. 

(g) 
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In a set of experiments, fc-polytopes is compared to /c-means, fc-flats (fc-

lines), Gaussian Mixture Models (GMMs) (Reynolds, 2015), kernel k-means (Bishop, 

2006) with a Gaussian kernel a in the range 0.1 to 1.0, and ensemble /c-means (Iam-

on and Garrett, 2010) with an ensemble size of 30. Test datasets used are chosen as 

synthetically generated crescents and spirals, and as real world datasets: IRIS 

(Dheeru and Taniskidou, 2017) and MNIST (LeCun et al., 2010). A preprocessing is 

applied

Figure 8. Example convergence states for (top) Crescents and (bottom) MNIST. (a) 

Ground-truth clusters, and clustering results with (b) k-means, (c) A;—flats, 

(d) GMMs, (e) kernel /¿-means, (f) ensemble /¿-means, (g) /¿-polytopes. (Best 

visualized in color.) 

(e) (f)
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to IRIS and MNIST with t-SNE (van der Maaten and Hinton, 2008) in order to 

reduce dimensionality. All tests are carried out on an Intel(R) Core(TM) i5-6600 

CPU @ 3.30GHz Quad-core 8GB RAM machine using Matlab R2017a. Table 2 

summaries resulting average and maximum clustering success rates together with 

average running times for each dataset over 100 randomly initialized runs. Figure 8 

further depicts example convergence states for crescents and MNIST. It is obvious 

from these results that the proposed structure (being bounded and piecewise linear) 

is a powerful tool for such difficult cases in a clustering application. 

Table 2 provides certain striking observations. First of all, /¿-flats is 

apparently not a method for generalized clustering as its prototypes are unbounded. 

GMMs provide better maximum accuracy compared to both /¿-means and /¿-flats; 

however, they  
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are susceptible to random initializations as the mean accuracy suggests. Kernel k- 

means seems as a better candidate for generalized clustering but performs still poorly 

in cases of spirals and MNIST, possibly due to the kernel function chosen. Lastly, 

ensemble /c-means appears to be the most generalized method available in the 

literature. The proposed fc-polytopes is able to surpass ensemble fc-means in all test 

cases except the average accuracy in MNIST. This is possibly due to the fact that, the 

method becomes susceptible to random initializations when the cluster count gets 

higher. 

In a second set of experiments, the ability of /c-polytopes to discover inherent 

number of clusters is analyzed. If the minimum intercluster margin is known, cor-

responding to desired r in the formulation, then the exact number of clusters can be 

recovered. Experimental results of some nontrivial clustering problems are 

presented in Fig. 9 for both ID and 2D prototypes in 2D and 3D data spaces, 

respectively. It is apparent that the proposed method is able to recover the number 

of clusters successfully, even without being supplied with a parameter k but only with 

r. Hence, the proposed structurally adaptive approach results in a more expressive 

representation. 

3.5 Discussion 

In this chapter, novel problem formulations for /c-simplexes and /c-polytopes 

 

Figure 9. if-polytopes aware of inter-cluster margins is capable of recovering exact 

number of clusters. Experimental results in (left) 2D and (right) 3D. (Best 

visualized in color.) 
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are discussed and solutions to these optimization problems are proposed within the 

sparse representations framework. These formulations and solutions indeed result 

in a
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more intuitive and geometric understanding of sparse representations, which may 

open doors to many studies that draw parallels between sparse representations and 

various other machine learning methods. 

It is possible to further generalize the proposed formulation through an 

ensemble approach, which might possibly give even better results. Similarly, a 

generalization through kernels would greatly reduce the required number of vertices 

but further increase the complexity. 

In an advantage, one can speculate that the proposed approach will mostly 

be immune to the curse of dimensionality. Note also that prototypes attained by this 

proposed method can be any nonconvex geometric objects. Hence, linearly 

nonseparable clustering problems are not an issue for the proposed framework. 

A drawback of current formulation of fc-polytopes arises when the clusters 

are not homogeneously g-dimensional, but some parts of clusters are in lower dimen-

sions, or even some parts may have dimensions strictly higher than q in nature. Such 

a problem needs to be addressed by allowing the polytopes to have simplexes that 

can adaptively change their dimensions depending on the nature of data assigned to 

these prototypes. 

Finally, a surprising aspect of the proposed framework emerges when it is 

considered in a supervised setting. In general supervised settings, classification 

methods try to learn decision boundaries between more than one classes. However, 

the proposed method here is capable of learning one class at a time. In other words, 

for each class, a separate model can be learned without the need for opposing classes. 

Therefore, no learning is required from scratch when a new class is introduced, since 

learning a new model for the newly arrived class will suffice. These last two 

discussion items lead to the next chapter where /c-polytopes concept is further 

generalized through the introduction of simplicial learning as a one-class learning 

method. 
CHAPTER 4: EVOLUTIONARY SIMPLICIAL LEARNING 

4.1 Introduction 
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At this point, it is proper to introduce one-class classification, as the 

fundamental form of the general classification problem, to bridge the gap between 

reconstructive signal processing and machine learning. Supervised machine learning 

in the form of classification inherently suggests the existence of more than one label. 

The concept of one-class learning, also known as one-class or unitary classification, 

emerges when there only exists a single label within the dataset, and one needs to 

discriminate it against all possible unseen labels (Moya and Hush, 1996). It is actually 

a special case of binary classification where there is the “in-class” label and also the 

“out-of-class”, but there is not any or enough number of “out-of-class” samples 

within the training dataset. Therefore, in the absence or weakness of the opposing 

class samples, conventional binary classification methods will have difficulties as they 

target the decision boundary in-between. 

One-class learning methods can be categorized by the type of the targeted 

classifier model. There exist decision-boundary approaches which seek enclosing 

hyperspheres, hyperplanes or hypersurfaces in general (Khan and Madden, 2014). 

These methods can adjust the level-of-detail through the usage of parametrized 

kernels to cope with the over- or under-fitting problem. On the other hand, graph-

based methods try to fit a skeleton with-in data in a bottom-up manner. As an 

example, a minimum spanning tree model can be utilized as a one-class classifier 

(Juszczak et al., 2009), in which the classification procedure relies on the distance to 

the tree. A generalization of graph-based approaches is attained through the concept 

of hypergraph, in which a hyperedge can now connect more than two data points or 

vertices. Hypergraph models not only allow custom but also lead the way to 

heterogeneous dimensionality. Such models are investigated in (Wei et al., 2003; 

Silva and Willett, 2008). As detailed in Sec. 4.2, simplicial learning through an 

extension of dictionary learning can be thought as the utmost generalization of the 

graph-based domain, in which vertices of a hypergraph can now move freely in 

space, taking the form of a simplicial. Note that in the present formulation, the 

targeted model is not necessarily a simplicial complex which is a much stricter 

construct that prohibits self-intersections (Barbarossa et al., 2018). The term 

simplicial refers here to an arbitrary union of simplices in the most general sense. 
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Most importantly, the dictionary learning concept can be categorized as an 

inner-skeleton method. However, the skeleton attained is not bounded in space but 

rather an infinite one, where each infinite linear bone is connected to all others at the 

origin. Technically speaking, a bone corresponds to a linear subspace of arbitrary 

dimensions. This conception will be indeed helpful when dictionary learning is 

considered within a multi-class classification framework. In its traditional multi-

class formulations, the sparse representations based classifier (SRC) models a 

separate dictionary for each distinct class through a data fidelity term together with 

an £p-norm regularization constraint on sparse codes ip = 0 or 1 in general). Later, 

the test data is encoded sparsely and classified accordingly favoring the most 

reconstructive or representative dictionary (Wei et al., 2013). In the absence of other 

modifications, this form of SRC is known to be generative-only. 

In a simplistic manner, one can draw parallels between inner-skeleton and 

generative formulations which discard the existence of other classes; on the other 

hand, also between decision-boundary and discriminative approaches which need 

the existence of opposing classes. Not surprisingly, a method can be both generative 

and discriminative at the same time. Discrimination, in this sense, rises from the fact 

that while learning a dictionary (or a model) for a class, the data points from other 

classes are also taken into consideration, i.e., distance to those other points are to be 

maximized. Some examples of discriminative dictionary learning methods can be 

given as (Mairal et al., 2009; Jiang et al., 2013). 

There is a subtle but crucial point that goes unnoticed in SRC applications 

and this forms the backbone of this chapter. Corresponding to this upcoming point, 

XOr problem of neural networks dictates that a single layer perceptron is not 

capable of separating XOr inputs as only a single linear decision boundary is at hand. 

This has paved way to multilayer formulations that can solve linearly non-separable 

cases. As already 
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noted in Sec. 2.5, a similar problem haunts conventional dictionary learning methods 

silently. It is now time to define that problem in a more technical way. Consider the 

case as demonstrated in Fig. 10, in which there are two classes of digit 8. “Pale class” 

includes pale images, while “Bright class” contains exactly the same images but they 

are brightened up. In technical terms, there are two opposing classes lying on the 

same subspace in the eyes of linear dictionary learning methods. No matter how much 

discriminative they are, traditional techniques will be incapable of totally 

distinguishing these two classes. In other words, dictionary learning in its 

conventional form is insensitive to intensity/magnitude and it will never be able to 

solve problems requiring intensity/magnitude distinction.
4.2.1 Definitions 

Conventional dictionary learning basically tries to fit a union of subspaces to 

the data. Such subspaces are indeed infinite-extent and all crossing the origin without 

offsets, designated by the dictionary elements usually referred to as atoms. In 

Chapter 3, k many polytopes are fit to the data. Simplicial learning as an adaptation 

of both dictionary learning and /c-polytopes concept aims instead at fitting more 

general bounded generic piecewise linear objects to the data. 

Table 3 considers certain bounded generic piecewise linear objects. There are 

many not-equivalent formal definitions of the first construct, namely a polytope as 

discussed before. This study strictly sticks with the definition that “a polytope is an 

 

Figure 10. Conventional dictionary learning is incapable of distinguishing inten-

sity/magnitude, or more technically two classes within the same subspace.
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intact object which admits a simplicial decomposition.” Hence, a polytope is made 

up of one or more simplices, whereas it is still in question that such simplices can be 

of different dimensions. 

There are two possible ways to generalize the concept of polytope. In the first 

generalization, connectedness can be discarded leading to the fact that there is not a 

single object but multiple objects being considered at the same time. The second one 

allows the building-blocks namely simplices to have different dimensions, thus 

leading to heterogeneously dimensional objects. A formal name for such union of 

simplices is a simplicial complex, but restricted self-intersections are imposed for a 

rigorous treatment. By definition, a simplicial complex is a set of simplices satisfying 

the following two conditions: (i) every face of a simplex from this set is also in this set 

and (ii) the non-empty intersection of any two simplices is a face of these two 

simplices. Losing a bit of formalism, utmost flexibility can be reached by allowing 

such objects to intersect each other and themselves in arbitrary ways, and such final 

construct is simply named as a simplicial in the remaining part of this thesis, to refer 

to an arbitrary union of simplices in the most general sense. For a more rigorous 

treatment of these definitions and related concepts, readers might refer to the subject 

of algebraic topology.
4.2.2  Related work 

Simplex and simplicial complex based data applications are becoming 

popular in literature as data analysis receives more and more topological 

considerations (Luo et al., 2017; Huang et al., 2015; Belton et al., 2018; Tasaki et al., 

2016; Patania et al., 2017). Moreover, utilizing simplices for data applications is not 

a completely new idea from the perspective of sparse representations (Wang et al., 

2016; Nguyen et al., 2013). Quite similarly, in this chapter an adaptation of sparse 

representations framework is chosen that casts a union of subspaces to a union of 

simplices. A rigorous mathematical formulation is detailed in the following. 
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4.2.3  Mathematical formulation 

There are three necessary modifications to make a successful transition from 

the traditional dictionary learning formulation to simplicial learning. As in k- 

polytopes, an additional sum-to-one constraint is needed on the sparse codes. In 

addition, the second necessary modification is an additional non-negativity on sparse 

codes again as in the case for /c-polytopes. This time, last modification on the road to 

simplicial learning is group sparsity (Yuan and Lin, 2006; Jacob et al., 2009) instead 

of block-sparsity. The possibility of this variation is already mentioned while 

formulating the concept of /c-polyopes as in Sect. 3.3. 

While referring back to Sec. 4.1, when positional information is removed 

from a simplicial, the structure left then corresponds to a hypergraph, in which a 

hyperedge refers to a specific simplex within the simplicial. In relation to group 

sparsity, a hyperedge exactly corresponds to a group of atoms, hence a valid pattern 

of sparse codes. 

 

As a consequence, a set of groups/hyperedges, or more technically a hypergraph data 

structure needs to be kept to define the shape of the simplicial parallel to /c-polytopes 

formulation. This hypergraph structure will be denoted as V. = { h j }  where hj desig-

nates the jth hyperedge referring to jth simplex within the simplicial. In accordance 

with this definition, simplicial learning with a structure imposed by % can be formu-

lated in Eqn. (14) as follows, 

argmin ||y, — Ax,)^ subject to 
A,{xi},{M i (14) 

||xj||o <q] A lTXj = 1 A 0 < Xj A {k £ h* ->■ x£ = 0, VA;) , Vi, 

where h* is the hyperedge indexing the closest simplex for the data point yi5 q* = \h*\ 

Table 3. Distinctions between the terms for generic objects. 
 

May not be 
intact 

Piecewise 
linear 

Heterogeneous 
dimensionality 

Arbitrary 
intersections 

Polytope X / ? ✓  
Simplicial complex ✓  ✓  / X 
Simplicial ✓  ✓  / ✓  
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denotes the dimension of that simplex, and the (/c ^ /i* —>■ x^ = 0, V/c) constraint 

ensures the group sparsity such that only the optimal group (i.e., hyperedge referring 

to the closest simplex) in Xj is to be filled and other entries which are represented as 

x* shall all be zero. Note here that groups can be not only overlapping but also of 

different sizes, hence leading to heterogeneous dimensionality. In this final form, T-i 

needs to be learned together with A but a further careful consideration is needed 

over the compactness of the simplicial in return. 

In summary, as is, the optimization in Eqn. (14) is highly ill-posed since there 

is no restriction on the number of simplices to be used or the dimensions of those 

simplices. One could even choose a very high dimensional simplicial construct and 

zero-out the approximation error easily. Therefore, additional penalty terms need to 

be investigated based on the number and the dimensionality of simplices for a 

compact solution. Such a challenge appears to be highly combinatorial in nature and 

an evolutionary approach can be adopted after a careful consideration of an 

appropriate fitness function, as described and detailed in Sec. 4.3. 

4.3 Evolutionary Approach 

To obtain an optimal or a suitable simplicial in a heuristic manner, certain 

number of simplicials are to compete against each other on instances of the same 

dataset. Basically, an evolutionary approach includes a suitable fitness function to 

guide this search process, and sub-procedures such as mutations and breeding to 

perform the actual search. 

4.3.1 The fitness function 

There are certain critical points to be carefully considered before designating 

the fitness function for the defined problem in this study. First of all, a 

straightforward optimization procedure for the number and the dimensionality of 

simplices will not be enough to attain a compact model desired. For example, 

consider that the data is distributed in the shape of a triangle with certain area. In 

this case, a triangle with the most compact area should be preferred as a targeted 
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model. However, one could fit a triangle to this data with correct angles but excessive 

area. In such a case the dimensionality or the number of simplices indeed do not 

change. In conclusion, one needs also to take the arearea (or volume), or more 

technically the content of the simplices, besides considering the number and the 

dimensionality of simplices. When the simplex is of dimension 2 (namely a triangle), 

the content is called the area, when the simplex is 3 dimensional (namely a 

tetrahedron), the content refers to the volume. Therefore, the term “content” 

generalizes area and volume concepts to higher dimensions. 

The content of an arbitrary simplex can be calculated using Cayley-Menger 

determinant (Li et al., 2015). Let K be a g-dimensional simplex in RN, and B denote 

(q+1) x (q+1) distance matrix of vertices { v i , v 2 , v q + i }  such that = ||uj—Vk\\2. Then 

the content CK of K is given in a relation in Eqn. (15) as follows, 

(15) 

where B is (q + 2) x (q + 2) matrix obtained from B by bordering it with a top row of 

(0,1,..., 1) and a left column of (0,1,..., 1)T. 

Related to the content calculation here, another issue arises because of the 

allowed heterogeneous dimensionality in the optimization formula. The content of a 

line-segment (as an object) and a triangle (as an object) are incomparable in a general 

continuous setting since a triangle contains infinitely-many line-segments itself. To 

resolve this problem, an exponential term is introduced through an approximated 
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cumulative discrete content calculation as given in Eqn. (16) as follows, 

\ H \  

Ea+Q)« os) 
i=i 

where \H\ denotes the number of hyperedges or equivalently the number of 
simplices, 

Cj is the content of the jth simplex and qj is the dimension of that simplex. As a 

content Cj < 1 would complicate the exponentiation used, (1 + Cj) is needed in the 

discrete approximation. 

Having pinned down with the above term which will be a component in the 

fitness function driving the evolutionary process, a fitness function candidate (in a 

minimization form) is given in Eqn. (17) as follows, 

 

(17) 

where sum of squared error (SSE) used as the data fidelity term and approximated 

cumulative discrete content as to regulate the compactness of the representation, a 

denotes the regularization parameter controlling the contribution of the compactness 

prior on the solution. 

While initially experimenting above fitness function, it is observed that the 

parameter a has a very broad optimality range, which changes drastically from 

dataset to dataset. This is due to the fact that there is a high dynamic range imbalance 

between two cumulative terms. Therefore, a variant of the defined fitness function is 

considered by transforming Eqn. (17) into the logarithmic scale in order to compress 

the dynamic range, leading to a more natural maximization setting formulated in 

Eqn. (18) as follows, 

(18) 

where n denotes the number of data points and the parameter ¡3 regulates over- or 

under-fitting. When /3 = 0, the fitness function simply reduces to the data fidelity 

term favoring only for the reconstruction quality. Instead, a high ¡3 value forces the 

 

3 
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simplicial to be compact. Empirical investigations suggest that a (3 value around 0.05
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could be a global setting as it provides excellent results over all datasets considered 

in this study. Note that there might be no simplices at certain times of the evolution 

process. This would erroneously lead the sum of content to be zero, thus logarithm to 

be infinity. The parameter 7 eliminates this possibility by fixing its value to 10. Hence, 

this parameter forces the lower logarithm to evaluate at least to value 1. 

4.3.2 Mutations and breeding 

First of all, it is important to note here that the hypergraph H is kept in the 

form of an incidence matrix of zeros and ones, where the row count corresponds to 

the number of simplices and the column count matches to the number of vertices or 

rather the number of atoms (columns) in the dictionary A. Mutations can be easily 

applied on this binary matrix. In detail, there are four main processes that provide 

the background for evolution: (1) increasing/decreasing the dimension of a simplex, 

(ii) adding/removing a simplex to/from the hypergraph, (iii) subdividing a simplex 

and (iv) adding/removing a vertex to/from the dictionary. All of these mutation 

operations are performed randomly without any optimality consideration. 

As an additional tool to assist the searching process, breeding of two simpli- 

cials is also undertaken in which both dictionary elements and hypergraph structures 

of those two simplicials are split and then merged appropriately in order to create a 

new simplicial representative of two parents up to certain extent. Details of the 

breeding procedure are depicted in Alg. 1. At first, hypergraph structures and the 

corresponding dictionary elements are extracted for these two simplicials Si = ( H i ,  

Ai) and S2 = ( H 2, A2). Then random submatrices Ha £ H i  and H b  €E H2 from each 

hypergraph are attained together with the corresponding columns of these 

dictionaries, contained in matrices A0 e Ax and Ab e A2. While vertices (atoms) are 

directly concatenated in Anew (line 7), hypergraphs are concatenated in a disjoint 

manner in Hmw (line 8). In short, two subsimplicials are extracted and then grouped 

together in a disjoint manner to form a new simplicial Snew. Such tool can be suitably 

employed to exploit the underlying dimensionality of the dataset since these splitting 

and merging processes may lead child simplicials to acquire a properly 

representative data- dimensionality in a very fast manner, much faster than mutation 
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processes to perform



Algorithm 1 Breeding Algorithm 
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l: (Hi, Ai) 4— get_structure(S'i) 

2: (H-2, A2) 4- get_structure(S'2) 

3: Ha <- a random submatrix of Hi 

4: Aa 4— the submatrix of Ai corresponding to Ha 

5: Hb 4— a random submatrix of H2 

6: Ab 4-the submatrix of A2

 corresponding toHb 
[Aa Ab\ 

8: Hnew 9- Snew 4 (H-new, Anew) 

4—
 

alone. Therefore, as a general observation, breeding determines the core dimension-

ality of the simplicial and mutations fine-tune the simplicial to the data. However, 

sufficiently high dimensional simplicials should be employed in the initialization 

stage for breeding to determine the core dimensionality. 

4.3.3 Implementation details 

The algorithm to learn an evolutionary simplicial model on a set of data 

points {yi}iLi st°red in the columns of a data matrix Y is given in Alg. 2. At first, the 

initial simplicial is to be generated from the given data points (line 1). It is observed 

that choosing a single point (i.e., centroid of the dataset) as an initial simplicial is 

sufficient for low-dimensional problems. Through mutations and breeding 

processes, the initial simplicial takes an appropriate form in a fast manner since the 

search space is relatively small. However, a procedure involving the fc-means 

algorithm (Jain, 2010) as a subroutine is employed to designate the initial simplicial 

for high dimensional problems. In such cases, starting from a single point greatly 

slows down the process of evolution since the search space is quite large. Hence, an 

initialization based on fc-means ensures that the starting simplicial is already a 

relatively fit one. A last point worth mentioning related to initialization here is that 

the initial simplicial S should satisfy the condition that the numerator of Eqn. (18) is 

positive, i.e., lly* — Ax*111 < n to lead a meaningful evolution. 

On line 6, the algorithm performs the projection of data points {y*} in Y onto

7: Ar,

H-a O' 
0 Hb 
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Algorithm 2 Evolutionary Simplicial Learning (ESL) Algorithm 
1: pop 4- init_pop(Y) 
2: while not converged do 3:

 pop 4- mutations (pop) 

4: pop 4- breeding (pop) 

5: for all S in pop do 
6: X 4- sparse_coding(Y, S) 
7: A 4- dictionary_update(Y, X) 
8: F 4— fitness(A, H) 

9: pop 4- sort and choose based on F values 

10: Sbest 4- pop(l) 

each simplex of the simplicial S (Duchi et al., 2008; Golubitsky et al., 2012) which 

basically corresponds to the sparse coding optimization. The closest simplex for the 

data point yi, Vi, is determined through the minimum approximation error acquired 

after projecting y* onto each simplex. The positive barycentric coordinates of the 

projection points corresponding to the sparse codes are acquired, and then the 

necessary spots of the sparse representation matrix X is filled accordingly. 

On line 7, dictionary matrix A is updated using a direct least-squares solution. 

To optimize argminA ||Y — AX||f, by forcing its derivative to zero, the analytic solu-

tion is obtained with A = YX+ where X+ represents Moore-Penrose pseudo-inverse of 

X. Note that there is no evolutionary process for learning A, namely the vertices of 

the simplicial S. Instead, vertices are updated once exactly on this line at each 

iteration of the algorithm. 

Finally, the surviving simplicials are determined based on the fitness scores 

they attain (fine 10). Experimental trials suggest that keeping the population size at 

10 is an efficient strategy, while an iteration count of 5 is sufficient instead of a full 

convergence. Notice here that the parent simplicials are to be kept in the population 

pool when their fitness scores are higher than their children’s. 
4.4 Experimental results 

The proposed method is tested in two phases of experiments to evaluate its 

classification capabilities. In the first experimental setup, the performance is 

evaluated in a one-class classification task for outlier detection. Datasets contain 

certain degree of outliers in such outlier detection problems, and methods learn 

models -agnostic of data labels- in an unsupervised manner. In the second 
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classification task, the performance of the proposed method is evaluated in a multi-

class setting. At this stage, seven synthetic multi-class datasets are generated in 

addition to two handwritten digit recognition datasets. The synthetic datasets are 

special in that they contain cases which require intensity/magnitude distinction, 

especially very challenging for conventional dictionary learning methods. 

All experiments are performed on an Intel(R) Core(TM) i7-6700HQ CPU @ 

2.60GHz 16GB RAM machine running on Microsoft Windows 10. Benchmark of 

outlier detection dataset named PyOD (Zhao et al., 2019) is run with Python 3.6 and 

the proposed ESL algorithm is implemented using Matlab 2014a on the same 

machine. All multi-class experiments are carried out on Matlab 2014a. DICTOL as 

the part of LRSDL project (Vu and Monga, 2017) is utilized for the implementations 

of other dictionary learning methods. 

4.4.1 Outlier detection 

In total 17 benchmark datasets are taken from ODDS Library (Rayana, 2016) 

for the one-class learning task. Information regarding these datasets in terms of 

number of samples, sample dimensionality and outlier percentages is summarized in 

Table 4 and interested readers might refer to (Rayana, 2016) for details about each 

individual dataset. Using these benchmark datasets, a random 60% to 40% train-

test set split is repeated for 10 independent simulations and the mean Area Under 

The Curve (AUC) Receiver Operating Characteristics (ROC) results are reported in 

Table 5. 

The proposed Evolutionary Simplicial Learning (ESL) method is evaluated 

against an extensive outlier detection benchmark named as PyOD (Zhao et al., 2019). 

The competing methods include Angle-based Outlier Detector (ABOD) (Kriegel 
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et al., 2008), Clustering-based Local Outlier Factor (CBLOF) (He et al., 2003), Fea-

ture Bagging (FB) (Lazarevic and Kumar, 2005), Histogram-based Outlier Score 

(HBOS) (Goldstein and Dengel, 2012), Isolation Forest (IForest) (Liu et al., 2008), K 

Nearest Neighbors (KNN) (Ramaswamy et al., 2000), Local Outlier Factor (LOF) 

(Bre- unig et al., 2000), Minimum Covariance Determinant (MCD) (Hardin and 

Rocke, 2004), One-class Support Vector Machine (OCSVM) (Scholkopf et al., 2001) 

and Principal Component Analysis (PCA) (Jolliffe, 2002) and one of the most recent 

results obtained in (Weng et al., 2018) on the same benchmark (with an average of 

20 runs for each dataset). 

Last two rows of Table 5 illustrate the mean AUC ROC results over all 

datasets and their standard deviations. ESL not only presents the best average AUC 

ROC performance among all methods in the benchmark but also has the least 

standard deviation. One can conclude that it is the most reliable method among 

considered techniques for this performance measure. Moreover, ESL shows top 

AUC ROC performance in

Table 4. Information regarding the datasets used in outlier 
detection experiments. 

Dataset #Samples #Dimensions Outlier Ratio (%) 

arrhythmia 452 274 14.6018 
cardio 1831 21 9.6122 
glass 214 9 4.2056 
ionosphere 351 33 35.8974 
letter 1600 32 6.2500 
lympho 148 18 4.0541 
mnist 7603 100 9.2069 

musk 3062 166 3.1679 
optdigits 5216 64 2.8758 
pendigits 6870 16 2.2707 
pima 768 

8 34.8958 
satellite 6435 36 31.6395 
satimage-2 5803 36 1.2235 
shuttle 49097 9 7.1511 
vertebral 240 

6 12.5000 

vowels 1456 12 3.4341 
wbc 378 30 5.5556 
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three datasets. However, additional tests show that it does not have a noticeable 

advantage in Precision at n (P@n) performance. 

4.4.2 Multi-class experiments 

Synthetic datasets: For the multi-class classification task, six challenging syn-

thetic datasets are generated by following the procedures in (MathWorks, 2019) and 

these datasets are depicted in Fig. 11. Four of these datasets contain binary classifica-

tion tasks while the remaining two of them (Comers and Outliers) consist of four-

class classification problems. In addition, a synthetically altered dataset (named as 

MNIST8) is included in the experimental setup, in which all samples of the digit 8 

from the original MNIST (LeCun et al., 2010) are designated as the “Bright class” 

while a new “Pale class” is generated from all these original samples by dimming 

with a scale of 0.25 according to the previous discussion related to Fig. 10. 

The proposed ESL algorithm in this setup is compared against Sparse Repre-

sentation based Classification (SRC) (Wright et al., 2008), Label Consistent K-SVD 

(LCKSVD1 and LCKSVD2) (Jiang et al., 2013), Dictionary Learning with 

Structured

 

(e) Crescent and full moon 

Figure 11. Examples of learned simplicials on synthetic 
datasets 

 

(d) Half-kernel 
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Incoherence (DLSI) (Ramirez et al., 2010), Fisher Discrimination Dictionary Learn-

ing (FDDL) (Yang et al., 2011), Dictionary Learning for Commonality and 

Particularity (DLCOPAR) (Kong and Wang, 2012) and Low-rank Shared 

Dictionary Learning (LRSDL) (Vu and Monga, 2016, 2017). Experimental results in 

terms of classification success rates are presented in Table 4.4.2. It is apparent that 

ESL easily outperforms all considered dictionary learning methods over all cases. 

This should not be a surprising result since all utilized synthetic datasets require 

intensity/magnitude distinction to various extents. On the other hand, some 

discriminative methods such as LCKSVD2, FDDL and LRSDL undergo meaningful 

learning (i.e., better than random) over some datasets. This observation leads to an 

important conclusion that discriminative modifications may alleviate insensitivity to 

intensity to a certain degree. 

Fig. 11 depicts examples of learned simplicial models on six synthetic 

datasets. As it can be observed clearly, simplicials are bounded and they are 

composed of sim- plices (i.e., points and line-segments in these cases) with arbitrary 

offsets, providing an advantage over unbounded and without-offset dictionary 

learning models in all these classification tasks. 

Digit classification: In most of the practical pattern recognition applications, 

the pattern or rather the direction of the feature vector utilized plays an important 

role on the success rate. For instance, a “star pattern” is a “star pattern” no matter 

how much bright or pale it is. Therefore, the advantage of simplicial learning over 

dictionary learning is expected to diminish in some real-world applications. This is 

observable in digit classification experiments featuring USPS (Hull, 1994) and 

MNIST datasets as reported in Table 7. In this set of experiments, ESL is compared 

to classification methods including Supervised Dictionary Learning (Mairal et al., 

2009) with generative training (SDL-G) and with discriminative learning (SDL-D), 

Task-driven Dictionary Learning (Mairal et al., 2011): unsupervised (TDDL-G) and 

supervised (TDDL-D), FDDL, KNN, Gaussian SVM, Locality-constrained Linear 

Coding (LLC) (Wang et al., 2010) and Locality-sensitive Dictionary Learning (LDL) 

(Wei et al., 2013). LLC and LDL methods have the sum-to-one constraint on sparse 

codes, therefore they learn spaces with arbitrary offsets but learned models are still 
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not bounded (without the nonnegativity constraint). 

As apparent from Table 7, ESL appears to be a successful generative-only 

method which performs nearly at the capacity of Gaussian SVM (i.e., a well-known 

and widely used discriminative classifier). However, it cannot outperform 

discriminative dictionary learning methods such as FDDL and TDDL-D in these 

datasets. A final note is that ESL can also be modified through discriminative 

elements. Discriminative methods SDL-D and TDDL-D have a 1.5 - 2% advantage 

over their generative counterparts SDL-G and TDDL-G. Hence, a successful 

discriminative version of ESL can then be projected to reach state-of-the-art, an 

estimation open to discussion or further investigation. 

4.5 Computational Complexity 

Lets first dissect the loop starting on line 5 and ending on line 9 in Alg. 2 since 

this part mainly determines the time complexity. On line 6, each data point y* is 

projected onto each simplex within the simplicial S and then assigned to the closest 

one. There are \H\ simplices within a simplicial, namely the number of hyperedges 

in the corresponding hypergraph. An efficient projection onto a single simplex is 

claimed to have a time complexity of 0(n), n is the dimension of data space (Condat, 

2016). In a sensible model, there must be at most one simplex for each data point, 

resulting in a bound \H\ < m and m is the number of data points. Therefore, 

complexity of the sparse coding phase is 0(m2n). On line 7, dictionary update is 

performed by Moore- Penrose pseudo-inverse, having a time complexity of 0(m2v) 

where v denotes the total number of columns (atoms) in the dictionary A. Since 

overcompleteness implies n < v < m, this phase arrives at a complexity of 0{m3). 

Lastly, line 8 includes the content calculation for each simplex. Since it involves 

calculating the determinant of a (q+2) x (q+2) matrix and q is the dimension of the 

simplex, the complexity can be given as 0(J2j Qj) assuming that LU decomposition is 

employed for the determinant. An important remark here is that . q3 is negligible 

compared to m3 and dictionary update is still the most expensive step within the loop. 

However, having very high dimensional simplices will slow down the algorithm. Note 

also that sorting, applying mutations and breeding are not computationally 
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expensive when compared against operations within the loop. 

Lets now discuss the sensitivity of the algorithm to the ratio between actual 

dimension of the ambient space and actual inner size of the data. As noted before, 

mutations alone increase or decrease the dimensions of the model in a relatively slow 

manner. This is the main reason of breeding which may speed up the algorithm by 

creating children that are much less dimensional than their parents. Assuming that 

the starting simplicials have high enough dimensions, the breeding process uncovers 

the core dimensionality and then mutations will uncover local varieties. In short, it 

would take a long amount of time to recover the actual inner size of the data if only 

mutations were being used, but the algorithm can cope with this issue via the 

breeding process in a more effective way. 

As a final note, the complexity of the proposed evolutionary approach is 

highly related to the population size. Therefore, the population size can be adjusted 

accordingly to satisfy the computational requirements versus the performance 

criteria. Moreover, the implemented Madab code in this study is experimental, hence 

even larger population sizes can be manageable with more optimized 

implementations. 

4.6 Discussion 

Dictionary learning through simplicials is more flexible than classical dictio-

nary learning models since simplices are bounded and freely positioned in space. The 

proposed sparsity based evolutionary structure, called ESL is highly applicable if the 

characteristics of the problem at hand requires such successful localized models. In 

this study, a global fitness function is employed and there is no restriction on the local 

fitness of each individual simplex within the simplicial. If the local fitness of each 

simplex is considered and optimized individually, the resulting simplicial model 

might be in a more compact form. For example, the unnecessary simplex of the green 

simplicial in Fig. 11(c) would most probably be eliminated as it does not have any 

local fitness, thus lead to an increased accuracy of classification. Another point worth 

mentioning here is that the employed fitness function in Eqn. (18) is reminiscent of 
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Poisson distribution, in a multidimensional form (Inouye et al., 2017; Belyaev and 

Lumen’skii, 1988). Hence, other probabilistic considerations and also discriminative 

elements can be adapted to strengthen both theoretical and application aspects of the 

proposed framework. 

As exemplified in this paper, simplicial learning can successfully address some 

weak points of conventional dictionary learning for the considered machine learning 

problems; it is a promising approach inherently capable of performing signal 

processing tasks and can become a general machine learning tool with many 

application domains.



Table 5. Mean AUC ROC results, and running times. 
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Dataset ABOD CBLOF FB HBOS IForest KNN LOF 

arrhythmia 0.769 0.784 0.778 0.822 0.801 0.786 0.779 
0.31s 0.34s 0.68s 0.29s 0.49s 0.11s 0.09s 

cardio 0.569 0.928 0.587 0.835 0.921 0.724 0.574 
0.46s 0.16s 0.97s 0.01s 0.42s 0.19s 0.12s 

glass 
0.795 0.850 0.873 0.739 0.757 0.851 0.864 
0.04s 0.05s 0.04s 0.01s 0.31s 0.01s 0.01s 

ionosphere 0.925 0.813 0.873 0.561 0.850 0.927 0.875 
0.07s 0.07s 0.08s 0.01s 0.33s 0.02s 0.01s 

letter 0.878 0.507 0.866 0.593 0.642 0.877 0.859 
0.42s 0.14s 0.88s 0.01s 0.42s 0.16s 0.11s 

lympho 0.911 0.973 0.975 0.996 0.994 0.975 0.977 
0.03s 0.05s 0.04s 0.01s 0.31s 0.01s 0.01s 

mnist 0.782 0.801 0.721 0.574 0.816 0.848 0.716 
8.61s 1.50s 55.79s 0.08s 2.24s 7.79s 7.43s 

musk 0.184 0.988 0.526 1.000 1.000 0.799 0.529 
2.61s 0.52s 14.49s 0.08s 1.52s 2.05s 1.93s 

optdigits 
0.467 0.509 0.443 0.873 0.725 0.371 0.450 
2.96s 0.61s 14.60s 0.04s 1.24s 2.11s 1.94s 

pendigits 0.688 0.949 0.460 0.924 0.944 0.749 0.470 
1.71s 0.37s 4.44s 0.01s 0.72s 0.71s 0.66s 

pima 0.679 0.735 0.624 0.700 0.681 0.708 0.627 
0.15s 0.09s 0.12s 0.01s 0.34s 0.04s 0.01s 

satellite 0.571 0.669 0.557 0.758 0.702 0.684 0.557 
2.11s 0.63s 8.52s 0.03s 1.01s 1.23s 1.14s 

satimage-2 
0.819 
1.91s 

0.992 
0.52s 

0.457 
6.52s 

0.980 
0.02s 

0.995 
0.80s 

0.954 
0.99s 

0.458 
0.87s 

shuttle 0.623 0.627 0.472 0.986 0.997 0.654 0.526 
17.36s 1.38s 70.16s 0.03s 3.07s 10.12s 13.85s 

vertebral 0.426 0.349 0.417 0.326 0.391 0.382 0.408 
0.05s 0.06s 0.04s 0.01s 0.30s 0.01s 0.01s 

vowels 0.961 0.586 0.943 0.673 0.759 0.968 0.941 
0.31s 0.11s 0.34s 0.01s 0.38s 0.09s 0.04s 

wbc 0.905 0.923 0.933 0.952 0.931 0.937 0.935 
0.08s 0.08s 0.09s 0.01s 0.32s 0.02s 0.01s 

MEAN 0.703 0.764 0.677 0.782 0.818 0.776 0.679 
STDEV 0.210 0.195 0.203 0.192 0.164 0.182 0.199 



Table 5. (continued) Mean AUC ROC results, and running times.

76

 

 

 

Dataset MCD OCSVM PCA Weng et al. (2018) ESL 

arrhythmia 
0.779 
3.82s 

0.781 
0.05s 

0.782 
0.14s 

0.801 
0.826 
8.51s 

cardio 0.814 0.935 0.950 0.969 0.884 
1.61s 0.09s 0.01s - 36.19s 

glass 
0.790 0.632 0.675 - 0.876 
0.06s 0.01s 0.01s - 4.70s 

ionosphere 
0.956 0.842 0.796 0.911 0.851 
0.35s 0.01s 0.01s 

 

7.09s 

letter 0.807 0.612 0.528 - 0.776 
5.77s 0.08s 0.01s - 22.63s 

lympho 0.900 0.976 0.985 0.987 0.984 
0.11s 0.01s 0.01s - 2.72s 

mnist 0.867 0.853 0.853 0.929 0.803 
14.14s 4.91s 0.20s - 171.54s 

musk 1.000 1.000 1.000 1.000 0.972 
57.93s 1.27s 0.25s - 77.48s 

optdigits 
0.398 0.500 0.509 - 0.746 
6.94s 1.45s 0.08s - 103.72s 

pendigits 
0.834 0.930 0.935 0.938 0.951 
4.82s 0.99s 0.02s 

 

91.98s 

pima 
0.675 0.622 0.648 - 0.626 
0.09s 0.01s 0.01s - 13.19s 

satellite 0.803 0.662 0.599 0.750 0.705 
9.13s 1.41s 0.04s - 105.03s 

satimage-2 
0.996 0.998 0.982 0.976 0.995 

8.94s 1.14s 0.04s 
 

83.80s 

shuttle 0.990 0.992 0.990 0.994 0.992 
16.11s 50.88s 0.05s - 428.03s 

vertebral 
0.391 0.443 0.403 0.580 0.413 
0.06s 0.01s 0.01s - 4.96s 

vowels 0.808 0.780 0.603 - 0.881 
1.40s 0.04s 0.01s - 21.31s 

wbc 0.921 0.932 0.916 - 0.924 
0.33s 0.01s 0.01s - 6.03s 

MEAN 0.808 0.793 0.774 n/a 0.835 
STDEV 0.179 0.183 0.197 n/a 0.152 
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Table 6. Classification accuracy and computation time for six synthetic datasets, 

and for the proposed binary MNIST8 problem.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28 
CM 
CM 
o 
00 

{A 
CM 
CO 
CO 

X 
50 
oo 

m 
o 
05 
05 

05 

o 
co 

Cf
i 

iJ 
Q 
03 
Pi 
iJ 

TsP M 
S'-. 

kO 
CM • 

1/5 
oo 

o 
CO 

CO 
lb 
CO co 

co 
CO 
CO 

D
at

as
et

 S
R

C
 L

C
K

SV
D

1 
L

C
K

SV
D

2 
D

L
S

I 
F

D
D

L
 D

L
C

O
P

A
R

 

CA 

00 
CO 

CO 
CM 

CA b- co 
CO 

CA 
CM 
00 
ia 

CA 
CM 
05 
T“H 

CO 

CA 
00 05 
00 

CA {A 05 
CO 

CM 
00 

CA 
kO 
CM 

{A 

b- 
kO 
CM 

(
M 
k
O 

00 

05 

CO 

F* 

C/5 
CO 
CM 
CO 

o 
CO 

o 
CO 

c 
0 
1 
I 

£ 

b 
a 
C
A 
•3 
U 

S-H 

a 
C/
3 

U 

CA 

<5 

a 
o 
u 

<3 

o 

28 CA 28 
kO lb o 
 CO 1b 
kO 
Ti< CO 05 

kO 

28 CA 28 
00 b- o 
05 o T“H 
lb 
CO CM T-H 

kO 

28 CA 28 
CO CM O 
kO 00 lb 
kO 
kO kO CO 

kO 

28 CA 28 
00 05 o 
CO lb CO 
CO 
Ti< CO CM 

kO 

28 CA 28 
kO  o 
kO CM CO 
kO d T-H 

lb 

28 CA 28 
05  o 
05 CM kO 
d 
kO d T-H 

28 CA 28 
Ib  o 
 b- CO 
CM 
kO 

CM 05 

</> 
r-l<=> 
°0 l-I 
00 ^ 

i PH oo 
I 

0 
1 

Cfl 28 CA 
CO iO C

 tb CO C
O co 

CO 
CO 
05 

lb 
T-H 

  

CA 
 ¡3 05 
00 00 05 
  C

 CO CO C
M 

CA 28 CA 
05 o  
T-H oo T-H 
CO CM C

M  CO  

CA 28 CA 
T-H o 00 
o o 05 
CO 00 k

O  kO  

CA 28 CA 
lb o C

 05  05 
kO T-H C

O  kO  

CA £8 CA 
05 o C

  CO C
M d kO d 

 CO  

<
D 
I 
<4
H 
13 
ffi 

iS 
o 

CO 

28 
o 
00 
CO 
CO 

£8 CA £8 
o lb o X o  

05 kO lb 
05  05 

£8 CA £8 
o  o 
CO  oo 
kO  lb 
00 CM CM 

£8 CA 
 

o  o 
CM o CM 
 CM 05 
CO  CM 

£8 CA £8 
o CM o 
 lb CO 
 kO 05 
CO  CM 

£8 CA £8 
o CO o 
CO CM oo 
kO CO lb 
kO  CM 

28 
 

£8 
o kO o 
o CM 00 
00 d  

b-   

28 CA £8 
o CO o 
CO CM o 
CM d kO 
00  CM 

£8 CA £8 
o 05 o 
o kO o 
kO CM T-H 
tb  05 

«« 
1 
O 

C/
3 
<5 

£8 CA 

 

CO o kO 
CO  o 
CO kO d 
iO  kO 

£8 CA £8 
lb  kO 
 oo  

kO kO kO 
tb  lb 

£8 CA £8 
CO OO o 
CO o o 
CM 05 d 
kO  kO 

£8 
 

£8 
o CO o 
o CO o 
o d o 
oo  kO 

£8 CA £8 
CO 00 o 
CO CO o 
CO d d 
  kO 

£8 CA o 
CO 05 o 
CO kO d 
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CHAPTER 5: THE PROBLEM OF ORTHOGONALITY 

5.1 Introduction 

In traditional signal processing and machine learning problems, each data 

dimension (attribute) is assumed to be orthogonal to others. In other words, there is 

no distinction between cross-relations of dimensions. While signals carry informa-

tion through a spatio-temporal configuration, assuming such orthogonality of signal 

dimensions is highly ill-posed even for ID cases. This phenomenon is depicted simply 

in Fig. 12. 

Let us numerically analyze the severity of the problem of casting signals as 

vectors. Assume that an n-sized vector is received through the orthogonality consid-

eration and it is known that the original form is an n-sized ID signal. If one tries to 

recover the original spatial configuration without further knowledge (i.e., which 

value was in which cell), all n! possible spatial configurations are equally likely. This 

problem becomes even more serious when the dimensionality of the signal itself 

increases. Consider an n-sized vector is received again but the underlying signal is 

now assumed to be an image. Not only there are permutations involved but also one 

needs to guess the height and width of the image. In general, for an n-sized vector 

Table 7. Classification error rates of various methods on handwritten digit 

datasets, USPS and MNIST. ESL appears as a superior generative method, 

nearly performing at the capacity of discriminative Gaussian SVM on both 

datasets. 
Generative-only 

Dataset SDL-G TDDL-G LLC LDL ESL 

USPS 6.67 4.58 4.48 3.79 4.31 
MNIST 3.56 2.36 - - 1.85 

Discriminative 

Dataset KNN SVM-Gauss SDL-D FDDL TDDL-
D 

USPS 5.2 4.2 3.54 3.69 2.84 
MNIST 5.0 1.4 1.05 - 0.54 
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and a n-dimensional original signal, the number of possible spatial configurations 

that the signal could have been in is given as dK(n)n\ where d K { n )  is the n-th Piltz 

function, which gives the number of ordered factorization of n as a product of K  

terms (Sândor, 1996). 

When the above described issue is undertaken, it is not hard to see that many 

conventional machine learning formulations are highly ill-posed from the 

perspective of real world signals. Let us now consider the case of fc-means to be 

applied on vectorized real world signals, and suppose images for simplicity. As fc-

means originally assumes orthogonality of dimensions, it is easy to apply the usual 

Euclidean distance metric between vectors. However, it is indeed questionable 

whether it will capture the notion of distance between two images or rather the 

average of two images. An example in this light can be given from the domain of 

Computer Graphics. A direct linear  
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vA/ 

Figure 12. (Left) There is orthogonal consideration. Every pairwise relation 

between dimensions is indistinguishable because of orthogonality. (Right) 

While considering spatial configuration of a 3-cell ID signal, the relation 

between cells x and z is obviously different from the other relations, i.e., x 

and z are not neighbors. 

interpolation between two rotation matrices is not natural, thus quaternions are 

utilized leading to a formulation called spherical linear interpolation (Jafari and 

Molaei, 2014). A similar consideration might also be superior in the clustering 

problem of images using fc-means. However, it is not trivial to cast a general image 

as a quaternion-like structure for further processing. 

Let us try to prove that direct vectorized distance calculation is not natural 

for images by giving a more concrete example. Assume that there is a main image of 

the number 9 as exemplified in Fig. 13(a). The question here is which other image is 

more similar to this main image. Is it the number 8 in Fig. 13(b) having relatively 

same spatial position within the frame, or is it the number 9 in Fig. 13(c) with exact 

shape but linearly shifted in the frame? Vectorized distance measure will dictate that 

8 is closer to the main image, which is definitely not natural. Therefore, a shift-

invariant distance metric could be more powerful in this case. 

For given two images Ia and I*,, the standard (vectorized) Euclidean distance 

is given in Eqn. (19). This formula can be enhanced with a shift-invariant adaptation 

as in Eqn. (20) where V a  denotes the image Itt zero-padded on its sides. Alternatively, 

a shift-invariant distance notion can also be given in terms of inverse of cross-

correlation as in Eqn. (21). Nevertheless, even if a suitable distance metric is found to 

designate the closest centroid, it is not trivial to obtain the average of a cluster as the 

new mean  

X
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for the next step. 

dist(Io.It) = Ilia - I&lk = .EEW«) -  
» 3 

dist(Ia, I6) = min + x , j  + y ) ~  
y i  i  

1 
dist(IOJI6) = 

(20) 

(21) 
max(corr(I0,I&))’  

In this study, k -means formulation will be considered within a sparse repre-

sentations framework to provide a self-sufficient shift-invariant version. As noted in 

earlier chapters, the original fc-means problem can be expressed in a sparse 

representations framework as a dictionary learning problem. A shift-invariant 

version of /c-means can then be derived through a much recent convolutional 

dictionary learning formulation. It is not a surprise that a convolutional approach 

leads to a shift-invariant scheme, as convolution is an operator which breaks 

orthogonality assumption by considering neighboring data points group by group, 

forming a relation between spatial regions in the signal. 

The chapter is organized as follows. Section 5.2 gives the mathematical de-

scription of the proposed shift-invariant fc-means concept, followed by a 

generalization through convolutional dictionary learning for classification. Section 

 

Figure 13. Vectorized distance will dictate that 8 is closer to the main image. However, 

it is indeed more natural to say that two images of 9 are more similar to each other. 

(19)
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5.3 details exper
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imental setup and reports experimental results obtained from the proposed concepts. 

Later, Sec. 5.4 discusses many alternatives of convolutional-logic for spatio-temporal 

information preservation, including a spatio-temporal hypercomplex encoding 

scheme. Section 5.5 finally concludes this paper with a brief summary. 

5.2 Convolutional Sparse Representations 

It is possible to mathematically formulate the conventional fc-means problem 

in a sparse representations framework given in Eqn. 22 as follows, 

arg min Hyi “ Ax ¿||2 subject to 
A,{xi} i £2) 

||xj||o = 1 A ||xi||i = 1 A 0 < x*, Vi, 

where the matrix A is an over-complete dictionary and Xj is the sparse representation 

of the data point y», Vi. Each sparse vector contains only one non-zero component 

and this component is forced to be positive and sum-to-one. Dictionary columns as 

atoms (namely afc) designate centroids. 

While Eqn. (22) represents a direct formulation of classical fc-means, it cor-

responds to the problematic orthogonality consideration as mentioned previously. A 

possible shift-invariant alternative of fc-means is given in Eqn. (23) as follows, 

arg min ^ ^ ||y* - a* * xi j f c \ \%  subject to 
{afc},{xi,fc} i  k  £23) 

(fc ^ k x-i k = 0) A ||xisfc* 11o = 1, Vi, k, 

where * denotes the convolution operator and k* is the index of the optimal convolu-

tional atom, or in other words the convolutional centroid that is assigned to the ith 

data point. Notice here that the non-zero entry of xijfc« is not forced to be 1, but can 

now be anything. Therefore, this formulation is not only shift-invariant but also 

invariant to the magnitude of the pattern. However, this should then be 

complemented by an atom normalization process. 

Because of the linearity property, atoms in A can also be expressed in a large 

convolutional dictionary to be denoted by D as depicted in Fig. 14. The local dictio- 
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nary A consists of convolutional atoms, whereas the global dictionary D is filled with 

zeros outside the convolutional area. In this regard, the mathematical optimization 

in Eqn. (23) evolves to Eqn. (24) where j denotes the index of the single non-zero 

element from the top and j modulo (number of clusters) determines the index of the 

assigned convolutional centroid k*. 

argmin^ ||yj — Dxj||| subjectto 
D,{*i} i (24) 

(k* =j%#fc) A ||xj||0 = 1, Vi. 

5.2.1 A solution to shift-invariant k-means 

Since the optimization in Eqn. (24) is highly non-convex, an approximate it-

erative solution is employed alternating between assignment to clusters and centroid 

update akin to Llyod’s algorithm for the original fc-means problem (Jain, 2010). This 

procedure directly corresponds to sparse coding and dictionary update steps, 

respectively, in terms of sparse representations. 

In this light, the data assignment step is solved with Orthogonal Matching 

Pursuit (OMP) (Pati et al., 1993) assuming D is fixed, to satisfy the f0-norm sparsity 

constraint. On the other side, a straight-forward utilization of conventional dictio-

nary update algorithms, such that Method of Optimal Directions (MOD) (Engan et 

al., 1999) or KSVD (Aharon et al., 2006), is not very obvious because the inherent 

subdictionary A composed of convolutional centroids is only to be updated in D. To 

solve this problem, each individual block of the overall sparse representation is 

extracted as an individual subproblem, on which MOD (i.e., least-squares) update is 

 

Figure 14. The local dictionary A consists of convolutional atoms, whereas the 

global dictionary D is filled with zeros outside the convolutional area. 
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applied. As the last step, the final updated subdictionary A is attained by averaging 

all of the resulting individual subdictionaries. To the best of the available knowledge, 

this naive solution to the centroid update problem is not extensively covered in 

literature, thus it can be coined as Method of Optimal Subdirections on Average 

(MOSA). 

Experimental results indicate that this adaptation of shift-invariant fc-means 

provides better results when compared to its original version for datasets in which 

considerable shifts exist. 

5.2.2 Convolutional dictionary learning as a generalization 

Encouraged by the superiority of the shift-invariant fc-means formulation 

obtained through a convolutional sparse representation as an unsupervised task, the 

question is then to generalize this convolutional approach to other machine learning 

tasks such as classification. The claim is that an unsupervised feature extraction layer 

that is performed through convolutional dictionary learning as a generalization, can 

provide superiority over orthogonal-only consideration in also supervised tasks. This 

claim has already been validated in literature many times (Zeiler et al., 2010; Pu et 

al., 2016; Garcia-Cardona and Wohlberg, 2018) but an extensive comparison with 

the classical orthogonality consideration is usually missing. 

In this regard, a shift from the strict £0-norm constraint to a more lenient 

Minorai is considered. There are two main reasons behind this decision. First of all, 

it is unclear how to set the sparsity level in an ¿0-norm formulation since denser 

choices drastically affect the computational complexity in greedy approaches and 

sparser solutions can lead to severe information loss. Importantly, most practical 

studies are based on -norm in literature (Garcia-Cardona and Wohlberg, 2018). 

With the above consideration, a final optimization for convolutional 

dictionary learning is given in Eqn. (25) by introducing the ¿4-norm regularization 

into the formula via a Lagrange multiplier A. Iterative solutions which alternates 

between convolutional sparse coding and dictionary update exist in literature 

(Garcia-Cardona and
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Wohlberg, 2018).

 

In fact, the aim of this chapter is not to devise new approaches to above opti-

mization but to utilize it as an approach to the orthogonality problem. This unsuper-

vised convolutional decomposition of a signal can be regarded as a feature extraction 

method that tackles the problem of orthogonality, where the extracted features for 

the ith data point y* are formed by concatenating the corresponding sparse codes, i.e., 

zi = [{x^x},{x i j2},. . .] .  Note that concatenation here still assumes orthogonality; 

however, there now exists a convolutional-logic before the orthogonality 

consideration which alleviates the main drawbacks of it from the start. The 

effectiveness of such a layer is to be experimentally tested against various other 

feature extraction methods in an extensive manner. 

5.3 Experimental Results 

In the following, two sets of experiments are performed corresponding to the 

discussions raised in Sec. 5.2.1 and Sec. 5.2.2. All experiments are carried on an 

Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz 16GB RAM machine running on 

Microsoft Windows 10 using Matlab 2019a. 

5.3.1 Shift-invariant k-means 

In this set of experiments, a dataset is formed by extracting first 1000 training 

images of each class from the MNIST handwritten digit database (LeCun et al., 

2010), making a total of 10000 images. Four modified versions of this dataset are then 

obtained to test the shift-invariance property. First of all, empty images of sizes 32 x 

32,36 x 36, 44 x 44 and 56 x 56 pixels are initialized and original digits are inserted 

into these widened images with certain uniformly random shifts in* and y directions. 

Mean shifts in axes are chosen as 2, 4, 8 and 14 pixels, respectively, suiting the size of 

images. The clustering accuracy rates of fc-means (KM), Kernel KM (Dhillon et al., 

2004),  

. 1 
argmin - 

{afc},{xi,fc} * 

+ A£K*III-  
i,k i k 
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Ensemble KM (Iam-on and Garrett, 2010) and shift-invariant KM (KMsi) on these 

cases are illustrated in Fig. 15. 

Not surprisingly, the performance of KMsi stays relatively stable in cases of 

varying shifts, whereas all other methods start to perform poorly when shifts are 

introduced. It is obvious that a mean shift of 4 pixels is enough to disrupt the 

functionality of classical methods for these datasets. Considering original images of 

sizes 28 x 28 pixels, this roughly corresponds to a mean shift of 14% of the whole 

image size. Note also that classical methods perform nearly poor as a random guess 

method (RAND) in cases of extreme shifts, e.g., 14 pixels or correspondingly 50%. 

KM has 12.47%, Kernel KM has 17.48%, Ensemble KM has 13.15% and KMsi has 

43.53% clustering accuracy in the case of 14 pixels shift applied on MNIST. This 

proves that neither kemelization nor ensembles can provide an efficient solution to 

the shift-invariance problem. 

One may argue that a simple preprocessing step, which extracts a precise 

subimage of the digit in each image, would be enough to sustain shift-invariance for 

clustering these images; however, such a naive approach cannot be a general solution 

for natural images. On the other hand, the logic in KMsi provides an automatic 

solution, which is both theoretically and practically sound, without any need for pre-

processing. The simplicity and effectiveness of this clustering approach can further 

 

Figure 15. Clustering accuracy (%) of fc-means (KM) based methods as a function of 

mean shift applied on MNIST. The proposed shift-invariant KM (KMsi) is robust to 

shifts. 
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pave way to more general techniques with the same logic applied on other machine 

learning tasks in some settings. In fact, a generalization of KMsi via convolutional 

dictionary learning can be utilized as a powerful unsupervised feature extraction 

method for classification that alleviates the drawbacks of the classical orthogonality 

consideration. 

5.3.2 Convolutional dictionary learning 

In this set of experiments, convolutional dictionary learning as an 

unsupervised feature extraction method is compared against various other well-

known feature extraction schemes. An existing library called SPORCO (Wohlberg, 

2017) is utilized for convolutional dictionary learning. In the following reported 

experiments, linear support vector machine (SVM) classifiers are employed after the 

feature extraction phase. The motivation behind the linear SVM usage is that, a 

successful feature extraction must transform the sample space into a linearly 

separable one as much as possible. 

There are three employed versions of dictionary learning methods. The 

global- only dictionary learning (DL) operates over dictionary atoms of size 28 x 28 

pixels, namely atoms cover sample images globally. The patch-based dictionary 

learning (PDL) trains over dictionary atoms of size 11x11 pixels, where local image 

patches are extracted in a sliding window manner. This type of approach can be 

regarded as a local- only one. Both DL and PDL methods are realized through 

regular dictionary learning iterative steps, i.e., sparse coding and dictionary update. 

In the proposed method, namely convolutional dictionary learning (CDL), atoms are 

of size 11x11 pixels but now Eqn. 25 is in action instead. While considering the 

structure of the dictionary in a 2D form of Fig. 14, CDL can be classified as a both 

local and global approach. Effects of regular versus convolutional approaches are 

apparent in the learned atoms at the end of the training process as exemplified in 

Fig. 16. Notice that convolutional approach results in filters having Gabor-like 

appearance. 

Other well-known methods that take spatial information in images into 

account are Histogram of Oriented Gradients (HOG) (Dalai and Triggs, 2005), Local 
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Binary Patterns (LBP) (Ojala et al., 1996) and Gabor Feature Extraction (GFE) 

(Haghighat et al., 2015). For HOG, a cell size of 8 x 8 is chosen with 9 orientation 

histogram bins 

 

Figure 16. Patch-based versus convolutional dictionaries learned on MNIST. For a 

clear visualization, atoms are of size 8x8. 

and signed orientation is not used. For LBP, number of neighbors is 8 and radius of 

circular pattern to select neighbors is determined as 2. Rotation information is also 

encoded. The cell size is 5 and no normalization is performed. In GFE, a Gabor 

filter- bank of 15 filters is employed of size 11x11 with 3 different scales and 5 

orientations. 

Another important categorization of methods is given through whether they 

perform dimensionality reduction or expansion. The last two methods to be men-

tioned, namely Autoencoders (AE) and Principal Component Analysis (PCA) both 

perform dimensionality reduction. Notice that HOG and LBP also accomplish effec-

tive dimensionality reduction while other methods instead go through an expansion 

process. A pooling procedure is closely tied to expansion in case of spatial methods, 

and is usually performed to reduce the computational cost with the advantage of 

certain rotation/position invariance. In methods with dimensionality expansion (DL, 

PDL, CDL, GFE), DL and PDL do not perform an additional pooling since they do 

not truly preserve spatial configuration. Although PDL takes local spatial 

information into account, there is no trivial way to perform a meaningful pooling on 
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top. On the other hand, CDL contains a max pooling layer and GFE has an average 

pooling layer, of cell sizes 2 x 2 in both cases. 

Table 8 summarizes all feature extraction methods in the benchmark. Note 

that  
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Figure 17. Classification accuracy (%) as a 

function of varying training sizes applied on (top) MNIST and (bottom) 

USPS. 

“Spatial” attribute appearing in this table is an antonym for the word 

“orthogonality” in the context of this study. For example, both PDL and CDL can be 

described as spatial methods since they process images by considering pixels within 

certain local neighborhoods. However, each pixel is indistinguishable from the others 

in DL because of the vectorization of the whole frame, resulting in an orthogonality 

consideration. 

After having described all methods in detail, Fig. 17 depicts classification per-

formance as a function of varying training sizes applied on MNIST and USPS (Hull, 

1994) databases. As a global-only dictionary learning method, the inferior perfor-

mance of DL in case of small training sizes is obvious. A similar behavior is also 

slightly observable in CDL as a both global and local dictionary learning approach. 

Although PDL does not perform poorly in small training sizes, it does not provide 

noticeable advantage over DL in the long run, while CDL outperforms both DL and 

PDL performing at the capacity of HOG when most of the dataset is used. HOG and 

GFE together compete for the top performance, whereas CDL performs a little 

Table 8. Feature extraction methods in the benchmark. 
 

DL PDL CDL HOG LBP GFE AE PCA 

Learning ✓  / / X X X / / 
Spatial X ✓  ✓  ✓  ✓  / X X 
# Dimensions 5880 5880 2940 144 250 2940 100 100 
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poorer but it  
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is better than LBP. Most importantly, it is apparent that PDL cannot be an 

alternative to convolutional-logic at least for the 2D case. 

Table 9 lists the final classification accuracy results with linear SVM applied 

on the whole MNIST and USPS databases. GFE is the top performing method as an 

unsupervised simulation of first layers of a convolutional neural network (CNN). 

Additionally, CDL and HOG compete for the second place. 

The convolutional dictionary learning concept is further applied in a ID 

setting. The MIT-BIH arrhythmia dataset (Moody and Mark, 2001), in which the 

signals correspond to electrocardiogram (ECG) shapes of heartbeats for cases 

unaffected (normal) and affected by different arrhythmias, is used. These signals are 

preprocessed and segmented, each segment represents a heartbeat, one of the five 

different classes (Kachuee et al., 2018). 

Preliminary experimentation suggests that the results could be highly depen-

dent on the chosen patch/kernel size as CDL performs poorly for small patch/kernel 

sizes. These results are summarized in Fig. 18. In this figure, all methods are devised 

Table 9. Classification accuracy (%) of feature extraction methods with 

linear SVM applied on the whole MNIST and USPS datasets. 

Dataset DL PDL CDL HOG LBP GFE AE PCA 

MNIST 97.04% 97.07% 98.51% 97.99% 96.21% 98.80% 94.34% 94.15% 
USPS 93.67% 93.52% 95.31% 95.71% 95.11% 96.01% 92.02% 92.72% 

 

Figure 18. Classification accuracy (%) as a function of different patch/kernel sizes 

applied on (preprocessed) MIT-BIH using linear SYM classifiers. 
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to be resource-wise equivalent, i.e., they have equal dimensionality of features. DL, 

PDL and CDL algorithms have the same definitions as in 2D while they are translated 

into ID equivalent versions. Finally, CNN here denotes a ID convolutional neural 

network as a substructure of a regular 2D version. For a fair comparison, the 

architecture of CNN is composed of a convolutional layer, a batch normalization 

layer, a ReLU layer, a max pooling layer, a fully connected layer, a softmax and a 

classification layer. In other words, the convolutional-logic is applied once (without 

getting deep) before the classification stage. 

The main observation here is that all spatially-aware methods (PDL, CDL, 

CNN) outperform the orthogonality consideration of DL, as long as the patch/kernel 

size is of enough size. It is apparent that a relatively small patch sizes cause CDL to 

perform very poorly. Such behavior is not observable for CNN which performs well 

for all kernel sizes chosen. The most surprising result is that PDL outperforms CNN 

nearly for all cases. However, note that CNN here does not have a deep architecture. 

The other surprising point is that CDL is the worst among all spatially-aware 

methods. It is possible that the employed SPORCO library may not be optimized for 

ID settings. 

To verify the generality of above results, another ID problem from a different 

domain is chosen for the classification of electric devices according to their electric 

usage profile through raw data. The dataset is obtained from (Chen et al., 2015) and 

it contains 8926 train and 7711 test samples of size 1 x 96, with 7 possible classification 

labels. In parallel to Fig. 18, quite similar results are obtained in Fig. 19. With enough 

patch/kernel size, PDL performance is similar to that of CNN. All methods 

outperform the baseline of DL. 

Inspired by all above experiments measuring the effect of patch/kernel size, 

the final simulation results on the patch/kernel effect (using the whole MNIST 

database) are depicted in Fig. 20. It is clearly observable that CDL nearly matches 

the performance of a shallow CNN, while PDL performs poorly in this 2D case. As a 

conclusion, one can expect PDL as an alternative to CNN in ID and CDL in 2D, as 

long 
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as patch/kernel size is sensible. Another note is that GFE followed by a linear SVM 

classifier is a viable unsupervised way of simulating a shallow CNN. 

5.4 Discussion 

5.4.1 Variations on neural networks 

In fact, it is not a coincidence that Convolutional Neural Networks (CNNs) 

can surpass the capacity of Support Vector Machines (SVMs) especially for signal 

applications, as they tackle the problem of orthogonality with the convolution 

operator, whereas SVM formulation fully assumes dimensions to be orthogonal as in 

standard n- dimensional Euclidean space, much like the problematic original fc-

means formulation. 

More specifically, convolution with a kernel in input side of the layer corre-

sponds to creating a hyperedge between input side nodes in question whether it be a 

ID (Kiranyaz et al., 2015) or 2D or even 4D CNN (Choy et al., 2019). In other words, 

neighboring cells now occur in a relation, preserving the original spatial 

configuration. Then, as an alternative to convolutional approach, neighboring cells 

in the input or the output side of the layer can also be put in relation with real edges 

in-between, as another way of preserving the original spatial configuration that the 

input cells have. 

 

Figure 19. Classification accuracy (%) as a function of different patch/kernel sizes 

applied on the raw Electric Devices dataset using linear SVM classifiers. 
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The idea of inserting edges in-between output nodes of a layer is problematic, 

as for performing any meaningful propagation a direction is needed for each edge. 

Inherently, all edges direct to the right in a conventional neural network architecture, 

but possibility of edges in-between in the same layer then forces to think of a neural 

network as a more general directed graph. With this new architecture, namely neural 

networks as general directed graphs, both forward and backward propagation must 

be reconsidered. 

In fact, this line of logic leads to an alternative structure known as recurrent 

neural networks. Simulating the hearing process, connections between the nodes now 

form a directed graph along a temporal sequence. As an advantage, RNNs can 

process variable length sequences of input. It is possible to designate two broad 

classes of RNNs, where one is finite impulse and the other is infinite impulse. Finite 

impulse recurrent network is a directed acyclic graph that can be replaced by a 

conventional neural network, whereas infinite impulse recurrent network is a 

directed cyclic graph that cannot be replaced. Without the edges in-between as in an 

original fully connected multilayer perceptron two nodes in any hidden layer can be 

swapped in theory, not disrupting the topology of the network, or in other words not 

resulting with a noticeable change. These ideas are depicted in Fig. 21. Note that, it 

is possible to build upon basic recurrent neural network structure through 

bidirectional logic (Schuster and Paliwal, 

 

0 2 4 6 8 10 12 14 16 
Patch/Kernel size 

Figure 20. Classification accuracy (%) as a function of different patch/kernel sizes 

applied on MNIST using linear SYM classifiers. 
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Figure 21. On the left graph there are edges within the hidden layer. On the right 

there is the classical fully connected neural network. Switching two nodes 

within the hidden layer makes no difference for classical neural network. 

1997), and long-short term memory concept (Sak et al., 2014). 

However, empirical evaluation suggests that temporal convolution, or in other 

words, ID convolutional logic surpasses the capacity of recurrent architectures in se-

quence modeling (Bai et al., 2018). It is still an open question whether regarding 

temporal dimension as a just another spatial dimension is the way to go or whether a 

hybrid approach is better. This is rather a deep issue related to properties of space 

and time. Instead, regarding neural networks of any structure as directed and 

possibly cyclic graphs, or in other words as neural graphs, might pave way to better 

understand the brain. Note that, this concept is rather different than graph neural 

networks, which use graphs as inputs (Scarselli et al., 2008). 

Another generalization for neural networks is possible by considering 

infinite width neural networks (Arora et al., 2019). Recent results suggest that deep 

NNs that are allowed to become infinitely wide converge to models called Gaussian 

processes (Lee et al., 2017). However, such studies do not consider the case when 

there are in-between connections within the layers. 

There is another futuristic approach that bypasses the problems of infinite 

width. To come up with such a structure, one needs to apply concepts of sparsity to 

neural networks in a creative manner. In this sense, the concept of partial 

propagation 

Figure 22. Concept of partial propagation. Partial propagation can be performed 

even when the hidden layer is composed of infinitely many nodes. 

is important. By partial propagation it is meant that the best output nodes are chosen 

in calculation that will minimize the final error, instead of blindly forward 

propagating the input on all output nodes. 

Considering partial propagation in the domain of neural networks paves way 
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to interesting formulations. As exemplified in Fig. 22, having infinitely many nodes 

in the intermediate layer is not a problem when partial propagation is at hand. A 

conventional full propagation would be not possible in such a case. This can further 

lead to having an infinite but continuous layer (input or output), which is practically 

applicable with integration, as depicted in Fig. 23. 

It is now important to give some mathematical formulation for cases depicted 

in Fig. 23 as single layered fully connected formulations. 

In discrete to continuous case, the output layer can be regarded as a function 

of t. Assuming that there are 2 inputs the output can be given as x(i) = yiwi (t) + y2w2 

(t) where yi designate the input values and Wi(t) designates weights corresponding to 

ith input as a function of t. Continuous to discrete case is interesting because the input 

can now be a function itself, thus can pave way to the concept of junctional machine 

learning. Let us denote input as a function of s, namely y(s). Then iih output is ex-

pressed as f y(s)wi(s)ds, where wi is the weights function associated with ith output 

this time. Last case is the most interesting one, as effectively it maps a function to 

Figure 23. A generalization of neural network layer cases. From left to right, 

discrete-discrete (classical), discrete-continuous, continuous-discrete, 

and continuous-continuous cases are depicted. 

another function. Let y(s) again denote the input. This time the weights can be for-

mulated as a function of two variables namely s and L As a result output becomes 

x(t) = J y(s)w(s, t)ds. Forward and back propagation can be performed easily by 

mathematical tools capable of symbolic expression processing such as Matlab’s Sym-

bolic Toolbox. Prehminary experiments suggest that this line of generalization might 

provide superior capabilities at the expense of computational complexity. 

Notice that, a continuous layer counts towards a layer in which there exist in-

between edges with-in infinitely many nodes. However, this alone may not be enough 

to preserve the spatial configuration of the input layer. Therefore, additionally a 

sparsely overlapping block-wise connected continuous layered network is chosen as 
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the final architecture as an alternative to a CNN as depicted in Fig. 24. Higher dimen-

sional analogous can also be devised. Experimentation with proposed structures were 

very limited due to conceptual and computational burden. Therefore, as a last resort 

to preserving spatial information in a simpler manner, multilinear approach mostly 

from the perspective of sparse representations is mentioned in the upcoming section 

as a promising analytical solution to the problem. 

Figure 24. A sparsely overlapping block-wise connected continuous layered 

network as an alternative to a ID convolutional neural network in 

preserving the spatial information of a ID signal. 

5.4.2 Multilinear approach 

There are two main directions for approaching multidimensional signals in a 

multilinear fashion. In conventional linear algebra based representations, data 

points are always vectorized and thus treated as vectors, so such representation 

ignores the local spatial information of a multidimensional form. To overcome this, 

as the first solution, tensor representations treat data points as tensors in their 

original form, preserving the correlation in multiple dimensions (Roemer et al., 

2014). As the most simplistic example of the other solution, one can use a complex-

valued vector and encode additional information in the imaginary part. As an 

extended example, one can represent a color image as a matrix of quaternions (Xu et 

al., 2015). Utmost generalization of this second solution is reached through general 

frameworks based on what is called geometric algebra (Wang et al., 2019). These two 

multilinear approaches are to be examined thoroughly from the perspective of sparse 

representations.

The idea that images are not vectors, thus vectorization breaks the spatial 

coherency of images is investigated by Hazan et al. (2005). In fact, while linear 

algebra methods are organized under the hood of matrix factorization, this line of 

thought is centralized around tensor factorization instead as a generalization. Hazan 

et al. (2005) report that by treating training images as a 3D cube and performing a 

nonnegative tensor factorization (NTF) on it, they achieve higher efficiency, 
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discrimination and representation power than nonnegative matrix factorization 

(NMF). Specifically, they consider the following least-squares problem in Eqn. (26) 

1 
argmin -||G — um <g) vm 0 wm|||. subject to u m , v m ,w m > 0 ,  (26) 

{um,vm,wm} 2 m=1 

where G is the 3D data cube mentioned to be factored into a a sum of k rank-

1 tensors and um <g> vm 0 wm corresponds to three fold outer-product. Variations on 

such nonnegative tensor factorization formulation are also performed successfully 

on the problem of music genre classification based on tensor-based representation of 

audio signals (Benetos and Kotropoulos, 2008; Panagakis et al., 2009). 

At this point, it is important to note that there are two main branches of 

tensor- based approaches corresponding to type of tensor decomposition they seek. 

As the first branch, there are studies (including the ones mentioned up to now) based 

on canonical polyadic decomposition (CPD), sometimes also referred to as CANDE- 

COMP/PARAFAC (Kolda and Bader, 2009). As a generalization of methods men-

tioned, the equation takes the form of Eqn. (27) 

A = ¿ Xi4l) ® 42) ® - aid) > (27> 
i=1 

where A is d-dimensional tensor to be represented as a linear combination of 

r rank-1 tensors, or namely vectors. The most relevant example from literature is K-

CPD (Duan et al., 2012), an algorithm of overcomplete dictionary learning for tensor 

sparse coding based on a multilinear version of orthogonal matching pursuit and 

CANDECOMP/PARAFAC decomposition. The framework is introduced in 

Eqn.(28). 
y = ^ Xi Ai = ^ (8> ... <g>aj^ s.t. ||x||o < k, x = [x\,  ... ,sr], (28) 

i=1 ¿=1 

where y is a single tensor element, x being the sparse vector of a single tensor 

element. Note that, the dictionary becomes d + 1 dimensional tensor if all atoms are 

thought together. Let An = {A} be the whole dictionary, and similarly yn = {y,-} all of 
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the training data, then the equation to be optimized is given as in Eqn.(29) 

argmin ||yn — An Xd+i XT||^, subject to ||xj||0 < k Vj, (29) 
■An,x 

This equation can be iteratively solved by alternating between sparse coding 

and dictionary update as Duan et al. (2012) propose. K-CPD surpasses conventional 

methods in a series of image denoising experiments. Most recently, this framework 

is also successfully utilized in tensor-based sparse representations of multi-phase 

medical images for classification (Wang et al., 2020). 

The second and most prolific branch of tensor-based sparse representations 

is centered around the Tucker decomposition model instead, which is a more general 

model than CPD (Caiafa and Cichocki, 2013). However, before going into details of 

Tucker model, it is important to make the distinction between tensor sparse coding, 

and tensor dictionary update procedures much like in standard setting. 

Literature for tensor sparse coding has three main claims. One branch claims 

that tensor sparse coding gives equivalent results to ID vectorized version, but time 

complexity and memory usage can be reduced significantly (Fang et al., 2012). Sec-

ond branch specifically applies tensor sparse coding on positive definite matrices 

with increased performance (Sivalingam et al., 2010). Last branch applies structured 

sparsity on top of sparse coding, a multidimensional form of block-sparsity to be 

exact, and achieves significant gains (Caiafa and Cichocki, 2013). 

In the branch that claims equivalence, Fang et al. (2012) has proposed 2D-

OMP, where each atom in the dictionary is a matrix. It is reported that higher 

dimensional generalization is also possible by utilizing separable sampling. Similarly, 

Roemer et al. (2014) report that a simple way to redefine sparse coding in terms of 

tensors is not
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found, and they choose to use conventional BP, or OMP methods for sparse coding. 

On the other hand, Sivalingam et al. (2010) report a novel tensor sparse coding 

approach for positive definite matrices, where vectorization will destroy the inherent 

structure of the data. In this case, the sparse decomposition is formulated as a convex 

optimization problem, belonging to a category of determinant maximization 

problems to be solved efficiently by interior point algorithms. By using region 

covariance descriptors as introduced by Tuzel et al. (2006), it is possible to convert 

images into positive definite form. Although capable of surpassing state-of-the-art at 

the time, the study does not address dictionary learning on top of sparse coding. 

Introducing block-sparse coding in tensor form and also offering the most 

comprehensive coverage of Tucker decomposition model through Kronecker 

structured dictionaries, Caiafa and Cichocki (2013) form the second and most 

prolific branch of tensor-based sparse representations. 

Caiafa and Cichocki (2012) lay the foundations of Tucker decomposition 

model by defining Tensor-OMP algorithm that computes a block-sparse 

representation of a tensor with respect to a Kronecker basis. First of all, it is 

important to define Kronecker product of two matrices A (I by M) and B (J by N) as 

in Eqn. (30). 

(30) 

The introduction of the model is given by the equation for the 2D case as in 

Eqn. (31) 

Y = DIXD2, 

where Dx and D2 are two dimensional matrices associated with mode- 

l(columns) and mode-2(vectors). Matrix X is the sparse coefficient matrix. Note that 

Eqn. (31) can be rewritten in vectorized form as follows in Eqn. (32). 

y = ?;ec(DiXD2) = (D2 <g> Di)x,  

 

^ ai:iB ai^B ■ • • aj^B j 

(31)

(32)
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where 0 stands for Kronecker product. This equation states that, vectorized 

version of signal Y can be written as a standard linear combination of elements of a 

dictionary, which specifically has a Kronecker structure D = D2 0 Di. 

Generalizing this methodology to any dimensions is possible through Tucker 

decomposition model of Eqn. (33) and its equivalent vectorized form in Eqn. (34). In 

this case, x* stands for i-mode tensor matrix product. 

y = X x 1 Di X2 D2... xjv Djv (33) 

y = (Djv 0Djv-i <8>...  <8>Di)x (34) 

In Caiafa and Cichocki (2013), authors report that a block-sparse structure 

imposed on X in its original form through sub-tensors provide significant results. 

They extend their earlier work by defining a Kronecker-OMP algorithm, that 

utilizes the Kronecker structure of the dictionary. They also propose N-BOMP (N-

way block OMP), with block-sparsity imposed. It is important to note that, Tucker 

model together with block-sparsity restriction may work significantly well together 

as the higher dimensional block structure is meaningfully applied on the original 

sparse tensor X in the form of sub-tensors. 

There aremanystudies in literature specifically based on thisTucker model 

of sparse representations with or without block-sparsity andadditionally including 

dictionary learning. As an example, a two dimensional synthesis sparse model is 

sketched (Qi et al., 2013). Based on Tucker model, it is also possible to formulate 

existing popular least-squares based dictionary learning algorithms in tensor-based 

form, through T-MOD and K-HOSVD algorithms (Roemer et al., 2014). However, 

as Peng et al. (2014) demonstrate for multispectral image denoising, Tucker model 

has superior performance when applied together with group-block sparsity 

regularizer, corresponding exactly to the concept of block-sparsity in Caiafa and 

Cichocki (2013). In this way, a nonlocal sparse representation is possible for an 

originally patch based approach. 



104 

 

 

It is important to note that, certain parallels can be drawn between our 

earlier subject convolutional dictionary learning and tensor-based sparse 

representations. As an example, Huang and Anandkumar (2015) propose a novel 

framework for learning convolutional models through tensor decomposition and 

show that cumulant tensors have a CP decomposition, whose components correspond 

to convolutional filters and their circulant shifts. 

However, tensor-based approaches (both CP and Tucker models) do not still 

provide a solution to ID case. Without loss of generality, let us assume that our signal 

is in the form of a column vector s. Since the signal is 1 dimensional there will be a 

single matrix of that single dimension in Tucker model. Therefore, Tucker model 

attained is the starting part in Eqn.(35). In this case, it is possible to show that x x i 

D = Dx. From the other domain, namely CP model perspective, we have Yn=i where 

x* is the single sparse coefficient associated with ith atom. In both cases, one arrives 

at standard formulation, namely Tucker and CP models are equivalent in one 

dimensional case. 

r 

s = x x i D = Dx = ^ (35) 
i=1 

This brings up an important question onto the table. Although tensor-based 

approaches provide advantage when the signals are multidimensional, current 

formulations will not provide an edge for ID signals as this equivalence suggests. The 

remedy may come from seeing a ID signal, not as a ID vector, but more. For example, 

a ID complex vector can be formed by coding the cell positions in the imaginary part 

to overcome orthogonality problem in standard ID vector as depicted in Fig. 25. This 

paves way to performing sparse representations of complex valued data, or even 

quaternion valued data to accommodate more information in case of higher 

dimensional data. Utmost generalization is achieved through geometric algebra as a 

generalization of hypercomplex numbers. 

5.4.2.2 Complex, hypercomplex, and Geometric algebra based approaches 

For an approach to tackle problem of orthogonality properly, it should be 
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viable for ID signals to start with as mentioned before. After all, all of the information 

to sustain organic life is based on ID signals with only 4 distinct values, namely the 

DNA, marking the importance of ID signals as key components.  
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Figure 25. An encoding scheme to preserve spatio-temporal 

information for (top) ID mono audio and (bottom) 2D grayscale image 

cases. 

We have sketched an original way to encode spatial/temporal information 

into input through complex values. In an extended application, it is possible to 

formulate a quaternion-valued sparse representation of color images that surpasses 

the conventional logic (Xu et al., 2015). Note that, quaternion algebra is the first 

hypercomplex number system to be devised that is similar to real and complex 

number systems (Moxey et al., 2003). Xu et al. (2015) state that compared to tensor-

based model, quaternion-based model can achieve a more structured representation. 

Comparisons between QSVD and T-SVD (Tensor SVD) (Kilmer and Martin, 2011) 

suggest their equivalence, but superiority of QSVD arises when it is combined with 

the sparse representation model. 

Xu et al. (2015) state that there are 4 possible models to represent color 

images. These is the monochromatic model, in which each channel is represented 

separately. There is the concatenation model, where a single vector is formed by 

concatenating three channels (Mairal et al., 2008b). There is also the tensor-based 

model, where the color image is thought of as a 3D cube of values. Finally, there is 

the quaternion- based model where each channel is assigned to each imaginary value 

(i.e. r,g,b to i,j,k respectively). Most importantly, they analytically unify all these 

models in their formulation. 

However, there is one more possible model that is subtler. As, once can encode 

a mono audio as a vector of complex values where complex values indicate the timed

[a+1i. b+2i, c+3i. d*4i, e+5i] 
a complex vector  

[a+1i+1j, b+1i+2j, c+1i-+3j 

d+2i+1j. e+2i+2j.f+2i+3j, g+3i+1j. 

h+3i+2j. m+3i+3jl 

 

a quaternion vector 
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position, in a similar way one can encode a grayscale image as a quaternion-valued 

vector, where imaginary parts are used to indicate the pixel position. Then, again 

thinking color image as a 3D cube, there is a possible quaternion model in which 

imaginary units encode the position within the cube and the scalar denotes the value 

within that cell. Same quaternion encoding can be applied to any 3D scalar data. 

There is one more issue with regard to machine learning. Xu et al. (2015) for-

mulate a sparse representation framework that has quaternion-valued sparse codes 

in return. In another words, it is a quaternion to quaternion layer. Therefore, for 

further machine learning, a hypercomplex to real feature extraction layer is needed, 

as currently mainstream classification algorithms need real-valued data. Another 

option is to consult classification algorithms that can directly handle hypercomplex 

valued data. This line of logic paves way to consider complex/hypercomplex valued 

neural networks as viable tools (Hirose, 2012; Isokawa et al., 2003). As a future work, 

comparison of spatial/temporal encoded hypercomplex neural networks with 

conventional convolutional or recurrent neural networks may pave way to deeper 

understanding of deep learning. As a motivation, the fact that a single complex-

valued neuron can solve the XOR problem be given (Nitta, 2003). Also, the fact that 

quaternions can be used to implement associative memory in neural networks is 

promising (Chen et al., 2017). 

Another fine of generalization can deal with the case when the dataset is more 

than 3 dimensional, namely a volumetric animation dataset as an example. In such a 

case, a quaternion is not enough to designate the cell position and value. As an ex-

tension, octonion algebra can accommodate up to 7 imaginary channels (Popa, 2016; 

Lazendic et al., 2018); however, loses associativity property. Note that, Lazendic et 

al. (2018) report that all the algebras of dimension larger than 8 lose important 

properties, since they contain algebras of smaller dimension as subalgebras. This 

might be an issue related to physics of space and time, which is out of scope of this 

chapter. The important fact is that the study dealing with generalization of 

hypercomplex numbers is called Geometric algebra and is gaining attention lately 

(Wang et al., 2019).
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This chapter aims to draw attention to orthogonal viewpoint that is taken by 

many machine learning methods such as fc-means or SVMs. Such viewpoint is highly 

ill-posed for machine learning of real world signals, which contain spatial configura-

tion. Convolution operator can be used as a remedy for this problem, as it partially 

preserves the spatial information inherent in signals. However, one may need to find 

alternatives to convolutional approaches to further increase the understanding on 

this subject. Sparsity, namely spatially sparse connections in neural networks might 

be an alternative as described in Fig. 24. Most importantly, analytic approaches such 

as multilinear or geometric algebra formulations must be thoroughly investigated as 

alternatives, starting with ID setting to be precise. 
CHAPTER 6: CONCLUSION AND PERSPECTIVES 

In this study, dictionary learning for sparse and redundant representations 

is modified and cast as simplicial learning that can distinguish linearly non-separable 

cases easily. However, this alone still does not provide a solution to the problem of 

orthogonality introduced in Chapter 5. Going back to our source, namely the 

clustering problem, one now should notice that shift invariant fc-means formulation 

can include rotation invariance as a more general formulation (Barthélémy et al., 

2012). Interestingly, Bar and Sapiro (2010) note that a log-polar mapping converts 

rotations and scalings to shifts in x and y axes respectively; therefore, invariance 

under general transformations is possible. In the bigger picture, convolutional logic 

or other frameworks that sustain invariance is related to two-stream hypothesis (i.e. 

where pathway and what pathway), a model of the neural processing of vision as well 

as hearing (Eysenck and Keane, 2005). In other words, a spatiotemporal information 

preserving perspective on the clustering problem brings us closer to inner workings 

of the brain. Also related to convolution, n-dimensional generalization of Gabor 

filters can be a related future work. 

At the time of creation of Chapter 2, as a dominating approach in machine 

learning, the necessity of a deep structure was considered. In neural network 

research, depth comes into center attention immediately as single layer conventional 
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neural networks are limited in expressiveness. However, in our formulation, we are 

able to learn linearly nonseparable cases with a single layer. Therefore, a discussion 

on depth is postponed until Chapter 5, when neural networks come into play. Success 

of convolutional and recurrent neural networks suggest that structured depth is 

more expressive than multilayer perceptrons. Therefore, deep structured layers 

might be more important for spatiotemporal information preservation rather than 

being an issue of nonlin- earity. In fact, as noted before a complex valued neuron can 

handle nonlinearity all by itself (Nitta, 2003). 

This study shows that it is possible to model generic piecewise linear 

constructs as a single matrix multiplication. In this regard, polytopes and more 

generally simpli- 

 

cial objects come into attention. Such objects are traditionally concepts of topology 

and manifold learning (Lin and Zha, 2008), thus our study helps to build a bridge 

between. In our study, a hypergraph is kept to maintain the structure of a polytope 

in Chapter 3, therefore graph theory comes into play also. A future work related to 

hypergraphs may include an efficient algorithm for hypergraph connectivity test to 

designate the clusters in arbitrary dimensions. As noted before, both Chapter 3 and 

Chapter 4 can also be extended through kemelization and ensembling. 

As the solution proposed in Chapter 4 is evolutionary, it is important to men-

tion No free lunch theorem that states the fact that two optimization algorithms are 

equivalent when their performance is averaged across all possible solutions (Wolpert 

and Macready, 1997; Ho and Pepyne, 2002). From this perspective, the performance 

of Evolutionary Simplicial Learning is promising as it attains the best mean score in 

 

Figure 26. Noise removal as an application of simplicial learning. 
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the benchmark. In other words, mean score is more important in the eyes of no free 

lunch theorem. It is also important to mention neural gas and self-organizing map 

formulations as similar approaches to simplicial learning (Fritzke, 1995). The 

general machine learning framework introduced in this study can also be adjusted 

for semisupervised (Zhu and Goldberg, 2009) or self-supervised settings (Tung et al., 

2017). In fact, our framework can also be applied on other signal processing tasks 

without much alteration. A noise removal application is given as an example in Fig. 

26 

Regarding Chapter 5, the spatiotemporal hypercomplex encoding scheme 

must be further investigated. It is also possible to merge this encoding scheme with 

the earlier formulations of Chapter 3 and Chapter 4, namely with additional sum-to-

one and nonnegativity constraints together with structured sparsity. A final general 

note is the distinction between analysis versus synthesis sparse models. Throughout 

this thesis, synthesis model is used namely the form Y = AX where X is sparse. 

However, there is also the analysis model having the form AY = X where X is sparse, 

namely dictionary multiplied by input Y now gives the sparse codes (Shekhar et al., 

2014; Gu et al., 2017). Such model is closer to neural network formulation and 

further investigation of analysis model might pave way to a unified perspective on 

sparse models that also includes neural networks.
REFERENCES 

Aharon, M. and Elad, M. (2008). Sparse and redundant modeling of image content using 

an image-signature-dictionary. SIAM J. Imaging Sci., l(3):228-247. 

Aharon, M., Elad, M., and Bruckstein, A. (2006). K-svd: An algorithm for designing 

overcomplete dictionaries for sparse representation. IEEE Transactions on signal pro-

cessing, 54(11):4311-4322. 

Akbari, A., Trocan, M., and Granado, B. (2016). Image compression using adaptive 

sparse representations over trained dictionaries. In 2016 IEEE 18th International 

Workshop on Multimedia Signal Processing (MMSP), pp. 1-6. IEEE. 

Arora, S., Du, S. S., Li, Z., Salakhutdinov, R., Wang, R., and Yu, D. (2019). Harnessing 

the power of infinitely wide deep nets on small-data tasks. arXiv preprint arXiv: 



111 

 

 

1910.01663. 

Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical evaluation of generic convolu-

tional and recurrent networks for sequence modeling. arXiv preprint arXiv: 

1803.01271. 

Banerjee, A., Dhillon, I. S., Ghosh, J., and Sra, S. (2005). Clustering on the unit hyper-

sphere using von mises-fisher distributions. J. Machine Learn. Res., 6:1345—1382. 

Bar, L. and Sapiro, G. (2010). Hierarchical dictionary learning for invariant classifica-

tion. In 2010 IEEE International Conference on Acoustics, Speech and Signal 

Processing, pp. 3578-3581. IEEE. 

Baraniuk, R. (2007). Compressive sensing. Lecture Notes IEEE Signal Process. Mag., 

24(4): 118-121. 

Baraniuk, R. G., Cevher, V., Duarte, M. F., and Hegde, C. (2010). Model-based com-

pressive sensing. IEEE Trans. Inf. Theory, 56(4):1982-2001. 

Barazandeh, B., Bastani, K., Rafieisakhaei, M., Kim, S., Kong, Z., and Nussbaum, M. 

A. (2017). Robust sparse representation-based classification using online sensor data 

for monitoring manual material handling tasks. IEEE Trans. Automation Sci. Eng., 

pp. 1-12. 

Barbarossa, S., Sardellitti, S., and Ceci, E. (2018). Learning from signals defined over 

simplicial complexes. In IEEE Data Sci. W., pp. 51-55. 

Barnes, C. A., McNaughton, B. L., Mizumori, S. J., Leonard, B. W., and Lin, L. H. 

(1990). Comparison of spatial and temporal characteristics of neuronal activity in se-

quential stages of hippocampal processing. Prog. Brain Res., 83:287-300. 

Barthélémy, Q., Larue, A., Mayoue, A., Mercier, D., and Mars, J. I. (2012). Shift & 2d 

rotation invariant sparse coding for multivariate signals. IEEE Transactions on Signal 

Processing, 60(4):1597-1611. 

Baudat, G. and Anouar, F. (2000). Generalized discriminant analysis using a kernel ap-

proach. Neural Comput., 12(10):2385-2404. 

Belton, R. L., Fasy, B. T., Mertz, R., Micka, S., Millman, D. L., Salinas, D., Schen- fisch, 

A., Schupbach, J., and Williams, L. (2018). Learning simplicial complexes from 



112 

 

 

persistence diagrams. In Conf. Comput. Geometry, p. 18. 

Belyaev, Y. K. and Lumen’skii, Y. P. (1988). Multidimensional poisson walks. Journal of 

Soviet Mathematics, 40(2): 162-165. 

Benetos, E. and Kotropoulos, C. (2008). A tensor-based approach for automatic music 

genre classification. In 2008 16th European Signal Processing Conference, pp. 1—4. 

TREE. 

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review and 

new perspectives. IEEE Transactions on Pattern Analysis & Machine Intelligence, 

(8): 1798-1828. 

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. 1st Edition. New York: 

Springer-Verlag. 

Blumensath, T. and Davies, M. (2006). Sparse and shift-invariant representations of music. 

IEEE Trans. Speech Audio Process., 14(l):50-57. 

Blumensath, T. and Davies, M. E. (2008). Gradient pursuits. IEEE Trans. Signal Pro-

cess., 56(6):2370-2382. 

Borgefors, G. (1986). Distance transformations in digital images. Comp. Vis. Graph. Im-

age Process., 34(3):344—371. 

Bradley, P. S. and Mangasarian, O. L. (2000). K-plane clustering. J. Global Optim., 

16(1):23—32. 

Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. (2000). Lof: identifying 

density-based local outliers. In ACM sigmod record, volume 29, pp. 93-104. ACM. 

Bryt, O. and Elad, M. (2008). Compression of facial images using the K-SVD algorithm. J. 

Visual Commun. Image Represent., 19(4):270-283. 

Caiafa, C. F. and Cichocki, A. (2012). Block sparse representations of tensors using 

kronecker bases. In 2012 IEEE International Conference on Acoustics, Speech and Sig-

nal Processing (ICASSP), pp. 2709-2712. IEEE. 

Caiafa, C. F. and Cichocki, A. (2013). Computing sparse representations of multidimen-

sional signals using kronecker bases. Neural computation, 25(l):186-220. 

Canas, G., Poggio, T., and Rosasco, L. (2012). Learning manifolds with k-means and k-



113 

 

 

flats. In Adv. Neural Info. Process. Syst., pp. 2465-2473. 

Candes, E. J., Eldar, Y. C., Needell, D., and Randall, P. (2011). Compressed sensing with 

coherent and redundant dictionaries. App. Comput. Harmonic Anal., 31(l):59-73. 

Candes, E. J., Romberg, J., and Tao, T. (2006). Robust uncertainty principles: Exact signal 

reconstruction from highly incomplete frequency information. THEE Trans. Inf. 

Theory, 52(2):489-509. 

Carson, C., Belongie, S., Greenspan, H., and Malik, J. (2002). Blobworld: Image seg-

mentation using expectation-maximization and its application to image querying. IEEE 

Trans. Pattern Anal. Mach. Intell., 24(8): 1026-1038. 

Celebi, M. E., Kingravi, H. A., and Vela, P. A. (2013). A comparative study of efficient 

initialization methods for the k-means clustering algorithm. Expert Syst. Appl., 

40(1):200-210. 

Cevher, V., Indyk, P., Hegde, C., and Baraniuk, R. G. (2009). Recovery of clustered 

sparse signals from compressive measurements. Technical report, Rice Univ. 

Cevikalp, H., Triggs, B., Yavuz, H. S., Kucuk, Y., Kucuk, M., and Barkana, A. (2010). 

Large margin classifiers based on affine hulls. Neurocomput., 73(16):3160—3168. 

Chen, J. and Huo, X. (2006). Theoretical results on sparse representations of multiple- 

measurement vectors. IEEE Trans. Signal Process., 54(12):4634—4643. 

Chen, S. S., Donoho, D. L., and Saunders, M. A. (1998). Atomic decomposition by basis 

pursuit. SIAM J. Scientific Comput., 20(1):33-61. 

Chen, X., Song, Q., and Li, Z. (2017). Design and analysis of quaternion-valued neural 

networks for associative memories. IEEE Transactions on Systems, Man, and Cyber-

netics: Systems, 48(12):2305-2314. 

Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., and Batista, G. (2015). 

The ucr time series classification archive. 

Cheng, Y. (1995). Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. 

Mach. Intell., 17(8):790-799. 

Cheung, Y. M. (2003). k*-means: A new generalized k-means clustering algorithm. Pattern 

Recog. Lett., 24(15):2883-2893. 



114 

 

 

Choy, C., Gwak, J., and Savarese, S. (2019). 4d spatio-temporal convnets: Minkowski 

convolutional neural networks. In Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, pp. 3075-3084. 

Condat, L. (2016). Fast projection onto the simplex and the 11 ball. Mathematical Pro-

gramming, 158(l-2):575-585. 

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Mach. Learning, 20(3):273- 

297. 

Cotter, S. F., Rao, B. D., Engan, K., and Kreutz-Delgado, K. (2005). Sparse solutions to 

linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Pro-

cess., 53(7):2477-2488. 

Dalai, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. 

In 2005 IEEE computer society conference on computer vision and pattern recognition 

(CVPR’05), volume 1, pp. 886-893. IEEE. 

Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. (2007). Image demising by sparse 

3-d transform-domain collaborative filtering. IEEE Trans. Image Process., 

16(8):2080-2095. 

Davenport, M. A., Duarte, M. F., Eldar, Y. C., and Kutyniok, G. (2012). Introduction to 

compressed sensing. Compressed Sensing: Theory and Applications, Cambridge 
Univ. Press. 

Davis, G., Mallat, S., and Avellaneda, M. (1997). Adaptive greedy approximations. Con-

structive Approx., 13(l):57-98. 

Demiriz, A., Bennett, K. P., and Embrechts, M. J. (1999). Semi-supervised clustering 

using genetic algorithms. Artificial Neural Netw. Eng., pp. 809-814. 

Dheeru, D. and Taniskidou, E. K. (2017). UCI Machine Learning Repository, http: 

//archive.ics.uci .edu/ml.  

Dhillon, I. S., Guan, Y., and Kulis, B. (2004). Kernel k-means: spectral clustering and 

normalized cuts. In ACM Int. Conf. Knowl. Discovery Data Mining, pp. 551-556. 

Dong, W., Li, X., Zhang, L., and Shi, G. (2011). Sparsity-based image denoising via 

dictionary learning and structural clustering. In Proc. IEEE Comp. Vis. Pattern 



115 

 

 

Recog., pp. 457-464. 

Donoho, D. L. (2006). For most large underdetermined systems of linear equations the 

minimal ll-norm solution is also the sparsest solution. Comm. Pure Applied Math., 

59(6):797-829. 

Du, K. L. (2010). Clustering: A neural network approach. Neural Netw., 23(1):89-107. 

Duan, G., Wang, H., Liu, Z., Deng, J., and Chen, Y.-W. (2012). K-cpd: Learning of 

overcomplete dictionaries for tensor sparse coding. In Proceedings of the 21st 

International Conference on Pattern Recognition (ICPR2012), pp. 493—496. IEEE. 

Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chandra, T. (2008). Efficient projections 

onto the 11-ball for learning in high dimensions. In Int. Conf. Mach. Learn., pp. 272- 

279. 

Elad, M. (2010). Sparse and Redundant Representations: From Theory to Applications in 

Signal and Image Processing. 1st Edition. New York: Springer-Verlag. 

Elad, M. and Aharon, M. (2006). Image denoising via sparse and redundant representa-

tions over learned dictionaries. IEEE Trans. Image Process., 15(12):3736-3745. 

Elad, M., Figueiredo, M. A. T., and Ma, Y. (2010). On the role of sparse and redundant 

representations in image processing. Proc. IEEE, 98(6):972-982. 

Eldar, Y. C. and Bolcskei, H. (2009). Block-sparsity: Coherence and efficient recovery. 

In 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, 

pp. 2885-2888. IEEE. 

Eldar, Y. C., Kuppinger, P., and Bolcskei, H. (2010). Block-sparse signals: Uncertainty 

relations and efficient recovery. IEEE Trans. Signal Process., 58(6):3042—3054. 

Eldar, Y. C. and Mishali, M. (2009). Robust recovery of signals from a structured union of 

subspaces. IEEE Trans. Inf. Theory, 55(11):5302—5316. 

Elhamifar, E. and Vidal, R. (2009). Sparse subspace clustering. In Proc. IEEE Comp. 

Vis. Pattern Recog., pp. 2790-2797. 

Elhamifar, E. and Vidal, R. (2013). Sparse subspace clustering: Algorithm, theory, and 

applications. IEEE Trans. Pattern Anal. Mach. Intell., 35(11):2765-2781. 

Engan, K., Aase, S. O., and Husoy, J. H. (1999). Method of optimal directions for frame 



116 

 

 

design. In Proc. IEEE Acous. Speech Signal Process., volume 5, pp. 2443-2446. 

Engan, K., Skretting, K., and Husoy, J. H. (2007). Family of iterative LS-based dictionary 

learning algorithms, ILS-DLA, for sparse signal representation. Digit. Signal Process., 

17(l):32-49. 

Ester, M., Kriegel, H. P., Sander, J., and Xu, X. (1996). A density-based algorithm for 

discovering clusters in large spatial databases with noise. In Proc. Knowledge Disc. 

Data Mining, volume 96, pp. 226-231. 

Everitt, B. S. and Skrondal, A. (2002). The Cambridge dictionary of statistics. 2nd Edi-

tion. New York: Cambridge University Press. 

Eysenck, M. W. and Keane, M. T. (2005). Cognitive psychology: A student’s handbook. 

5th Edition. Psychology Press. 

Fadili, M. J., Starck, J. L., and Murtagh, F. (2007). Inpainting and zooming using sparse 

representations. Computer J., 52(1):64—79. 

Fang, Y., Wu, J., and Huang, B. (2012). 2d sparse signal recovery via 2d orthogonal 

matching pursuit. Science China Information Sciences, 55(4):889-897. 

Felzenszwalb, P. F. and Huttenlocher, D. P. (2004). Efficient graph-based image segmen-

tation. Int. J. Comp. Vis., 59(2):167-181. 

Fisher, R. (1953). Dispersion on a sphere. In Proc. R. Soc. Lond. A, volume 217, pp. 295-

305. 

Fred, A. L. N. and Jain, A. K. (2002). Data clustering using evidence accumulation. In 

Object Recog. Supported User Interact. Service Robots, pp. 276-280. 

Friedman, J., Hastie, T., and Tibshirani, R. (2010). A note on the group lasso and a sparse 

group lasso. arXiv preprint arXiv: 1001.0736. 

Fritzke, B. (1995). A growing neural gas network learns topologies. In Advances in 

neural information processing systems, pp. 625-632. 

Garcia-Cardona, C. and Wohlberg, B. (2018). Convolutional dictionary learning: A com-

parative review and new algorithms. IEEE Transactions on Computational Imaging, 

4(3):366-381. 



117 

 

 

Girosi, F. (1998). An equivalence between sparse approximation and support vector ma-

chines. Neural Comput., 10(6): 1455-1480. 

Goldstein, M. and Dengel, A. (2012). Histogram-based outlier score (hbos): A fast unsu-

pervised anomaly detection algorithm. KI-2012: Poster and Demo Track, pp. 59-63. 

Golubitsky, O., Mazalov, V., and Watt, S. M. (2012). An algorithm to compute the dis-

tance from a point to a simplex. ACM Commun. Comput. Algebra, 46:57-57. 

Gopal, S. and Yang, Y. (2014). Von mises-fisher clustering models. In Proc. Int. Conf. 

Machine Learn., pp. 154—162. 

Gordon, A. D. (1987). A review of hierarchical classification. J. R. Stat. Soc. Series A, pp. 

119-137. 

Gowda, K. C. and Diday, E. (1991). Symbolic clustering using a new dissimilarity measure. 

Pattern Recog., 24(6):567-578. 

Gowda, K. C. and Diday, E. (1992). Symbolic clustering using a new similarity measure. 

IEEE Trans, on Syst. Man Cybernetics, 22(2):368-378. 

Gribonval, R., Jenatton, R., and Bach, F. (2015). Sparse and spurious: Dictionary learn-

ing with noise and outliers. TEEE Trans. Inf. Theory, 61(11):6298—6319. 

Gribonval, R., Jenatton, R., Bach, F., Kleinsteuber, M., and Seibert, M. (2015). Sample 

complexity of dictionary learning and other matrix factorizations. IEEE Trans. Inf. 

Theory, 61(6):3469-3486. 

Gu, S., Meng, D., Zuo, W., and Zhang, L. (2017). Joint convolutional analysis and 

synthesis sparse representation for single image layer separation. In Proceedings of 

the IEEE International Conference on Computer Vision, pp. 1708-1716. 

Haghighat, M., Zonouz, S., and Abdel-Mottaleb, M. (2015). Cloudid: Trustworthy cloud-

based and cross-enterprise biometric identification. Expert Systems with Appli-

cations, 42(21):7905-7916. 

Hardin, J. and Rocke, D. M. (2004). Outlier detection in the multiple cluster setting using 

the minimum covariance determinant estimator. Computational Statistics & Data 

Analysis, 44(4):625-638. 

Haugeland, J. (1989). Artificial intelligence: The very idea. Cambridge: MIT Press. 



118 

 

 

Hawkins, D. M. (2004). The problem of overfitting. J. Chem. Inf. Comput. Sci., 44(1): 1- 

12. 

Hazan, T., Polak, S., and Shashua, A. (2005). Sparse image coding using a 3d non-

negative tensor factorization. In Tenth IEEE International Conference on Computer 

Vision, volume 1, pp. 50-57. IEEE. 

He, Z., Xu, X., and Deng, S. (2003). Discovering cluster-based local outliers. Pattern 

Recognition Letters, 24(9-10): 1641-1650. 

Hershey, J. R., Chen, Z., Roux, J. L., and Watanabe, S. (2016). Deep clustering: 

Discriminative embeddings for segmentation and separation. In Proc. IEEE Acous. 

Speech Signal Process., pp. 31-35. 

Hinton, G. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with 

neural networks. Science, 313(5786):504—507. 

Hirose, A. (2012). Complex-valued neural networks, volume 400. 2nd Edition. Berlin 

Heidelberg: Springer-Verlag. 

Ho, Y.-C. and Pepyne, D. L. (2002). Simple explanation of the no-free-lunch theorem and 

its implications. Journal of optimization theory and applications, 115(3):549-570. 

Hore, P., Hall, L. O., and Goldgof, D. B. (2009). A scalable framework for cluster ensem-

bles. Pattern Recog., 42(5):676-688. 

Huang, D. A., Kang, L. W., Wang, Y. C. F., and Lin, C. W. (2014). Self-learning based 

image decomposition with applications to single image demising. IEEE Trans. Multi- 

media, 16(l):83-93. 

Huang, F. and Anandkumar, A. (2015). Convolutional dictionary learning through ten-

sor factorization. In Feature Extraction: Modem Questions and Challenges, pp. 116— 

129. 

Huang, J., Nie, F., and Huang, H. (2015). A new simplex sparse learning model to 

measure data similarity for clustering. In Int. Joint Conf. Artif. Intell., pp. 3569-3575. 

Huang, J. and Zhang, T. (2010). The benefit of group sparsity. The Annals of Statistics, 

38(4): 1978-2004. 

Huang, J., Zhang, T., and Metaxas, D. (2011). Learning with structured sparsity. J. Mach. 



119 

 

 

Learning Res., 12:3371-3412. 

Hull, J. J. (1994). A database for handwritten text recognition research. IEEE Trans. Patt. 

Anal. Mach. Intell., 16(5):550-554. 

Iam-on, N. and Garrett, S. (2010). Linkclue: A matlab package for link-based cluster en-

sembles. J. Stat. Software, 36(9): 1-36. 

Inouye, D. I., Yang, E., Allen, G. I., and Ravikumar, P. (2017). A review of multivariate 

distributions for count data derived from the poisson distribution. Wiley Interdisci-

plinary Reviews: Comput. Stat., 9(3):el398. 

Isokawa, T., Kusakabe, T., Matsui, N., and Peper, F. (2003). Quaternion neural net-

work and its application. In International conference on knowledge-based and intelli-

gent information and engineering systems, pp. 318-324. Springer. 

Jacob, L., Obozinski, G., and Vert, J.-P. (2009). Group lasso with overlap and graph 

lasso. In Int. Conf. Mach. Learn., pp. 433—440. 

Jafari, M. and Molaei, H. (2014). Spherical linear interpolation and bezier curves. General 

Scientific Researches, 2(1): 13-17. 

Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern recognition letters, 

31(8):651-666. 

Jenatton, R., Mairal, J., Obozinski, G., and Bach, F. (2011). Proximal methods for hier-

archical sparse coding. J. Mach. Learning Res., 12:2297-2334. 

Jiang, Z., Lin, Z., and Davis, L. S. (2013). Label consistent K-SVD: Learning a dis-

criminative dictionary for recognition. IEEE Trans, on Patt. Anal. Mach. Intell., 

35(11):2651-2664. 

Jolliffe, I. (2002). Principal component analysis. 2nd Edition. New York: Springer- 

Verlag. 

Jost, P., Vandergheynst, P., Lesage, S., and Gribonval, R. (2006). MoTIF: An efficient 

algorithm for learning translation invariant dictionaries. In Proc. IEEE Acous. 

Speech Signal Process., volume 5, pp. 857-860. 

Juszczak, P., Tax, D. M. J., Pe-kalska, E., and Duin, R. P. W. (2009). Minimum spanning 

tree based one-class classifier. Neurocomput., 72(7-9): 1859-1869. 



120 

 

 

Kachuee, M., Fazeli, S., and Sarrafzadeh, M. (2018). Ecg heartbeat classification: A 

deep transferable representation. In 2018 IEEE International Conference on Health-

care Informatics (ICHI), pp. 443—444. IEEE. 

Khan, S. S. and Madden, M. G. (2014). One-class classification: Taxonomy of study and 

review of techniques. The Know. Eng. Review, 29(3):345-374. 

Kilmer, M. E. and Martin, C. D. (2011). Factorization strategies for third-order tensors. 

Linear Algebra and its Applications, 435(3):641-658. 

Kiranyaz, S., Ince, T., and Gabbouj, M. (2015). Real-time patient-specific ecg classifica-

tion by 1-d convolutional neural networks. IEEE Transactions on Biomedical Engi-

neering, 63(3):664-675. 

Kiselev, V. Y., Andrews, T. S., and Hemberg, M. (2019). Challenges in unsupervised 

clustering of single-cell ma-seq data. Nature Reviews Genetics, 20(5):273-282. 

Kolda, T. G. and Bader, B. W. (2009). Tensor decompositions and applications. SIAM 

review, 51(3):455-500. 

Kong, S. and Wang, D. (2012). A dictionary learning approach for classification: sep-

arating the particularity and the commonality. In European conference on computer 

vision, pp. 186-199. Springer. 

Kriegel, H. P., Kroger, P., Sander, J., and Zimek, A. (2011). Density-based clustering. 

Data Mining and Knowledge Discovery, 1(3):231-240. 

Kriegel, H.-P., Schubert, M., and Zimek, A. (2008). Angle-based outlier detection in 

high-dimensional data. In Proceedings of the 14th ACM SIGKDD international confer-

ence on Knowledge discovery and data mining, pp. 444—452. ACM. 

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with 

deep convolutional neural networks. In Adv. Neural Info. Process. Sys., pp. 1097- 

1105. 

Lazarevic, A. and Kumar, Y. (2005). Feature bagging for outlier detection. In Proceed-

ings of the eleventh ACM SIGKDD international conference on Knowledge discovery in 

data mining, pp. 157-166. ACM. 

Lazendic, S., De Bie, H., and Pizurica, A. (2018). Octonion sparse representation for 



121 

 

 

color and multispectral image processing. In 2018 26th European Signal Processing 

Conference (EUSIPCO), pp. 608-612. IEEE. 

Lazendic, S., Pizurica, A., and De Bie, H. (2018). Hypercomplex algebras for dictionary 

learning. In 7th Conference on Applied Geometric Algebras in Computer Science and 

Engineering-AGACSE 2018, pp. 57-64. Unicamp/IMECC. 

LeCun, Y., Cortes, C., and Burges, C. J. C. (2010). MNIST Handwritten Digit Database. 

Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington, J., and Sohl-Dickstein, J. 

(2017). Deep neural networks as gaussianprocesses. arXiv preprint arXiv: 

1711.00165. 

Lesage, S., Gribonval, R., Bimbot, F., and Benaroya, L. (2005). Learning unions of 

orthonormal bases with thresholded singular value decomposition. In Proc. IEEE 

Acous. Speech Signal Process., volume 5, pp. 293-296. 

Li, H.-C., Song, M., and Chang, C.-I. (2015). Simplex volume analysis for finding 

endmembers in hyperspectral imagery. In Satellite Data Comp. Commun. Process. 

XI, volume 9501, p. 950107. 

Liao, H. Y. and Sapiro, G. (2008). Sparse representations for limited data 

tomography. In Proc. IEEE Int. Symp. Biomed. Imag., pp. 1375—1378. 

Lin, T. and Zha, H. (2008). Riemannian manifold learning. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 30(5):796-809. 

Lindemann, P. (2009). The Gilbert-Johnson-Keerthi distance algorithm. Alg. Media In-

formatics. 

Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation forest. In 2008 Eighth IEEE 

International Conference on Data Mining, pp. 413—422. IEEE. 

Lloyd, S. (1982). Least squares quantization in PCM. IEEE Trans. Inf. Theory, 28(2): 

129— 137. 

Lu, H., Plataniotis, K. N., and Venetsanopoulos, A. N. (2011). A survey of multilinear 

subspace learning for tensor data. Pattern Recognition, 44(7):1540-1551. 

Luo, C., Ma, C., Wang, C., and Wang, Y. (2017). Learning discriminative activated 

simplices for action recognition. In AAAI Conf. Artif. Intell., pp. 4211-4217. 



122 

 

 

Maesschalck, R. D., Rimbaud, D. J., and Massart, D. L. (2000). The mahalanobis dis-

tance. Chemometrics Intelligent Lab. Syst., 50(1):1-18. 

Mairal, J., Bach, F., and Ponce, J. (2011). Task-driven dictionary learning. IEEE trans-

actions on pattern analysis and machine intelligence, 34(4):791-804. 

Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2010). Online learning for matrix factor-

ization and sparse coding. J. Mach. Learning Res., 11(1): 19-60. 

Mairal, J., Bach, F., Ponce, J., Sapiro, G., and Zisserman, A. (2008a). Discriminative 

learned dictionaries for local image analysis. In Proc. IEEE Comp. Vis. Pattern 

Recog., pp. 1-8. 

Mairal, J., Elad, M., and Sapiro, G. (2008b). Sparse representation for color image 

restoration. IEEE Trans. Image Process., 17(l):53-69. 

Mairal, J., Ponce, J., Sapiro, G., Zisserman, A., and Bach, F. R. (2009). Supervised 

dictionary learning. In Adv. Neural Inf. Process. Syst., pp. 1033-1040. 

Mairal, J., Sapiro, G., and Elad, M. (2008c). Learning multiscale sparse representations 

for image and video restoration. SIAM Multiscale Model. Simul., 7(1):214—241. 

Mallat, S. and Zhang, Z. (1993). Matching pursuit with time-frequency dictionaries. IEEE 

Trans. Signal Process., 41(12):3397-3415. 

Mardia, K. V. (2014). Statistics of directional data. Academic Press. 

Mardia, K. V. and Jupp, P. E. (2009). Directional statistics, volume 494. Wiley. 

MathWorks (2019). 6 functions for generating artificial datasets - File Exchange - MAT- 

LAB Central. [Online]. Available at https://www.mathworks.com/ matlabcen- 

tral/fileexchange/41459 (Accessed 3 July 2019). 

Mayiami, M. R. and Seyfe, B. (2012). Nonparametric sparse representation. arXiv 

preprint arXiv: 1201.2843. 

Meier, L., Geer, S. V. D., and Buhlmann, P. (2008). The group lasso for logistic 

regression. J. R. Stat. Soc. Series B, 70(1):53—71. 

Michelucci, D. and Foufou, S. (2003). Using cayley menger determinants. In Proceed-

ings of the Workshop on Geometric Constraint Solving. Citeseer. 

Monaci, G., Jost, P., and Vandergheynst, P. (2004). Image compression with learnt tree-



123 

 

 

structured dictionaries. In Proc. IEEE W. Mult. Signal Process., pp. 35-38. 

Moody, G. B. and Mark, R. G. (2001). The impact of the mit-bih arrhythmia database. 

IEEE Engineering in Medicine and Biology Magazine, 20(3):45-50. 

Moxey, C. E., Sangwine, S. J., and Ell, T. A. (2003). Hypercomplex correlation techniques 

for vector images. IEEE Transactions on Signal Processing, 51(7):1941-1953. 

Moya, M. M. and Hush, D. R. (1996). Network constraints and multi-objective optimization 

for one-class classification. Neural Networks, 9(3):463—474. 

Nakashizuka, M., Nishiura, H., and Iiguni, Y. (2009). Sparse image representations 

with shift-invariant tree-structured dictionaries. In Proc. IEEE Int. Conf. Image Pro-

cess., pp. 2145-2148. 

Nejati, M., Samavi, S., Derksen, H., and Najarian, K. (2016). Denoising by low-rank and 

sparse representations. Journal of Visual Communication and Image 

Representation,

Nesterov, Y. and Nemirovskii, A. (1994). Interior-point polynomial algorithms in 

convex programming. SIAM. 

Nguyen, D. K., Than, K., and Ho, T. B. (2013). Simplicial nonnegative matrix factor-

ization. In Int. Conf. Comput. Commun. Tech.-Res. Innov. Vis. Fut., pp. 47—52. 

Nitta, T. (2003). Solving the xor problem and the detection of symmetry using a single 

complex-valued neuron. Neural Networks, 16(8): 1101—1105. 

Novak, P., Neumann, P., and Macas, J. (2010). Graph-based clustering and 

characterization of repetitive sequences in next-generation sequencing data. BMC 

Bioinformatics, 11(1):378. 

Ojala, T., Pietikainen, M., and Harwood, D. (1996). A comparative study of texture 

measures with classification based on featured distributions. Pattern recognition, 

29(1):51— 59. 

Panagakis, Y., Kotropoulos, C., and Arce, G. R. (2009). Music genre classification 

using locality preserving non-negative tensor factorization and sparse 

representations. In ISMIR, pp. 249-254. 

Parsons, L., Haque, E., and Liu, H. (2004). Subspace clustering for high dimensional 



124 

 

 

data: a review. ACM Sigkdd Explorations, 6(1):90-105. 

Patania, A., Vaccarino, F., and Petri, G. (2017). Topological analysis of data. EPJ 

Data Sci., 6(1):7. 

Pati, Y. C., Rezaiifar, R., and Krishnaprasad, P. S. (1993). Orthogonal matching 

pursuit: Recursive function approximation with applications to wavelet 

decomposition. In Proc. Asimolar Conf. Sig. Sys. Compt., pp. 40—44. 

Pearson, K. (1901). Liii. on lines and planes of closest fit to systems of points in space. 

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of 

Science, 2(ll):559-572. 

Pelleg, D. and Moore, A. W. (2000). X-means: Extending k-means with efficient esti-

mation of the number of clusters. In Int. Conf. Mach. Learn., pp. 727-734.

Peng, Y., Meng, D., Xu, Z., Gao, C., Yang, Y., and Zhang, B. (2014). Decomposable 

nonlocal tensor dictionary learning for multispectral image denoising. In 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 

pp. 2949— 2956. 

Peotta, L., Granai, L., and Vandergheynst, P. (2006). Image compression using an edge 

adapted redundant dictionary and wavelets. Signal Process., 86(3):444—456. 

Peyre, G. (2009). Sparse modeling of textures. J. Math. Imag. Vis., 34(1): 17-31. 

Popa, C.-A. (2016). Octonion-valued neural networks. In International Conference on 

Artificial Neural Networks, pp. 435—443. Springer. 

Protter, M. and Elad, M. (2009). Image sequence denoising via sparse and redundant 

representations. IEEE Trans. Image Process., 18(l):27-35. 

Pu, Y., Yuan, W., Stevens, A., Li, C., and Carin, L. (2016). A deep generative decon- 

volutional image model. In Artificial Intelligence and Statistics, pp. 741-750. 

Qi, N., Shi, Y., Sun, X., Wang, J., and Yin, B. (2013). Two dimensional synthesis 

sparse model. In 2013 IEEE International Conference on Multimedia and Expo 

(ICME), pp. 1-6. IEEE. 



125 

 

 

Quinlan, J. R. (1986). Induction of decision trees. Mach. Learning, 1(1):81—106. 

Ramaswamy, S., Rastogi, R., and Shim, K. (2000). Efficient algorithms for mining 

outliers from large data sets. In ACM Sigmod Record, volume 29, pp. 427-438. 

ACM. 

Ramirez, I., Sprechmann, P., and Sapiro, G. (2010). Classification and clustering via 

dictionary learning with structured incoherence and shared features. In Proc. 

IEEE Comp. Vis. Pattern Recog., pp. 3501-3508. 

Rayana, S. (2016). ODDS library. [Online]. Available at 

http://odds.cs.stonybrook.edu (Accessed 3 July 2019). 

Reynolds, D. (2015). Gaussian mixture models. Encyclopedia Biometrics, pp. 827-832. 

Roemer, F., Del Galdo, G., and Haardt, M. (2014). Tensor-based algorithms for 

learning multidimensional separable dictionaries. In 2014 IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3963-3967. 

IEEE. 

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and 

organization in the brain. Psychological review, 65(6):386. 

Rosenblatt, F. (1961). Principles of neurodynamics, perceptrons and the theory of 

brain mechanisms. Technical report, Cornell Aeronautical Lab Inc Buffalo NY. 

Rubinstein, R., Bruckstein, A. M., and Elad, M. (2010a). Dictionaries for sparse repre-

sentation modeling. Proc. IEEE, 98(6): 1045-1057. 

Rubinstein, R., Zibulevsky, M., and Elad, M. (2010b). Double sparsity: Learning 

sparse dictionaries for sparse signal approximation. IEEE Trans. Signal Process., 

58(3): 1553-1564. 

Sak, H., Senior, A., and Beaufays, F. (2014). Long short-term memory recurrent 

neural network architectures for large scale acoustic modeling. In Fifteenth 

Annual Conference of the International Speech Communication Association. 

Sallee, P. and Olshausen, B. A. (2003). Learning sparse multiscale image representa-

tions. In Adv. Neural Inf. Process. Syst., volume 15, pp. 1327-1334. 

Sandor, J. (1996). On the arithmetical functions d ~ k ( n )  and d"*~k (n). Portugaliae 



126 

 

 

Math- ematica, 53:107-116. 

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2008). 

The graph neural network model. IEEE Transactions on Neural Networks, 

20(l):61-80. 

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Netw., 

61:85-117. 

Scholkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., and Williamson, R. C. 

(2001). Estimating the support of a high-dimensional distribution. Neural 

computation, 13(7):1443-1471. 

Scholkopf, B., Smola, A., and Muller, K. R. (1998). Nonlinear component analysis as a 

kernel eigenvalue problem. Neural Comput., 10(5):1299-1319. 

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE 

transactions on Signal Processing, 45(11):2673-2681. 

Schwikowski, B., Uetz, P., and Fields, S. (2000). A network of protein-protein 

interactions in yeast. Nature Biotech., 18(12):1257. 

Sezer, O. G., Harmanci, O., and Guleryuz, O. G. (2008). Sparse orthonormal trans-

forms for image compression. In Proc. IEEE Int. Conf. Image Process., pp. 149-

152. 

Shao, L., Yan, R., Li, X., and Liu, Y. (2014). From heuristic optimization to dictionary 

learning: A review and comprehensive comparison of image demising algorithms. 

IEEE Trans. Cybernetics, 44(7): 1001-1013. 

Shekhar, S., Patel, V. M., and Chellappa, R. (2014). Analysis sparse coding models 

for image-based classification. In 2014 IEEE international conference on image 

processing (ICIP), pp. 5207-5211. IEEE. 

Sibson, R. (1973). SLINK: An optimally efficient algorithm for the single-link cluster 

method. The Comp. J., 16(1):30—34. 

Silva, J. and Willett, R. (2008). Hypergraph-based anomaly detection of high-

dimensional co-occurremes. IEEE Trans. Patt. Anal. Mach. Intell., (3):563-569. 

Sivalingam, R., Boley, D., Morellas, V., and Papanikolopoulos, N. (2010). Tensor 



127 

 

 

sparse coding for region covariances. In European conference on computer vision, 

pp. 722-735. Springer. 

Skretting, K. and Engan, K. (2010). Recursive least squares dictionary learning 

algorithm. IEEE Trans. Signal Process., 58(4):2121-2130. 

Song, J., Xie, X., Shi, G., and Dong, W. (2019). Multi-layer discriminative dictionary 

learning with locality constraint for image classification. Pattern Recognition, 

91:135— 146. 

Sprechmann, P. and Sapiro, G. (2010). Dictionary learning and sparse coding for 

unsupervised clustering. In 2010 IEEE international conference on acoustics, 

speech and signal processing, pp. 2042-2045. IEEE. 

Steinwart, I. and Christmann, A. (2008). Support Vector Machines. 1st Edition. New 

York: Springer-Verlag. 

Stojanovic, V. and Nedic, N. (2016). Identification of time-varying OE models in pres-

ence of non-Gaussian noise: Application to pneumatic servo drives. Int. J. Robust 

and Nonlinear Control, 26(18):3974—3995. 

Stojanovic, V., Nedic, N., Prsic, D., and Dubonjic, L. (2016). Optimal experiment 

design for identification of ARK models with constrained output in non-Gaussian 

noise. Elsevier App. Mathematical Modell., 40(13):6676-6689. 

Szlam, A. and Sapiro, G. (2009). Discriminative k-metrics. In Int. Conf Mach. Learn., 

pp.1009-1016. 

Tasaki, H., Lenz, R., and Chao, J. (2016). Simplex-based dimension estimation of 

topological manifolds. In Int. Conf. Patt. Recog., pp. 3609-3614. 

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. 

Series B, pp. 267-288. 

Tillmann, A. M. (2015). On the computational intractability of exact and approximate 

dictionary learning. IEEE Signal Process. Lett., 22(1):45—49. 

Tseng, P. (2000). Nearest q-fiat to m points. J. Optimization Theory App., 105(1):249- 

252. 

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. (2005). Large margin 



128 

 

 

methods for structured and interdependent output variables. J. Mach. Learning Res., 

6(Sep): 1453-1484. 

Tung, H.-Y., Tung, H.-W., Yumer, E., and Fragkiadaki, K. (2017). Self-supervised 

learning of motion capture. In Advances in Neural Information Processing Systems, 

pp. 5236-5246. 

Tuzel, O., Porikli, F., and Meer, P. (2006). Region covariance: A fast descriptor for 

detection and classification. In European conference on computer vision, pp. 589-

600. Springer. 

van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-SNE. J. Mach. 

Learn. Res., 9:2579-2605. 

Vu, T. H. and Monga, V. (2016). Learning a low-rank shared dictionary for object 

classification. In 2016 IEEE International Conference on Image Processing (ICIP), 

pp. 4428—4432. IEEE. 

Vu, T. H. and Monga, V. (2017). Fast low-rank shared dictionary learning for image 

classification. IEEE Transactions on Image Processing, 26(11):5160-5175. 

Wang, C., Flynn, J., Wang, Y., and Yuille, A. (2016). Recognizing actions in 3D using 

action-snippets and activated simplices. In AAAI Conf. Artif. Intell., pp. 3604—

3610. 

Wang, J., Li, J., Han, X.-H., Lin, L., Hu, H., Xu, Y., Chen, Q., Iwamoto, Y., and 

Chen, Y.-W. (2020). Tensor-based sparse representations of multi-phase medical 

images for classification of focal liver lesions. Pattern Recognition Letters, 

130:207-215. 

Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., and Gong, Y. (2010). Locality-

constrained linear coding for image classification. In IEEE Comp. Vis. Pattern 

Recog., pp. 3360- 3367. 

Wang, R., Wang, K., Cao, W., and Wang, X. (2019). Geometric algebra in signal and 

image processing: A survey. IEEE Access, 7:156315-156325. 

Wei, C.-P., Chao, Y.-W., Yeh, Y.-R., and Wang, Y.-C. F. (2013). Locality-sensitive 

dictionary learning for sparse representation based classification. Pattern Recog., 



129 

 

 

46(5): 1277-1287. 

Wei, L., Qian, W., Zhou, A., Jin, W., and Jeffrey, X. Y. (2003). Hot: Hypergraph-

based outlier test for categorical data. In Pacific-Asia Conf. Know. Discov. Data 

Mining, pp. 399-410. 

Weng, Y., Zhang, N., and Xia, C. (2018). Multi-agent-based unsupervised detection of 

energy consumption anomalies on smart campus. IEEE Access, 7:2169—2178. 

Wohlberg, B. (2017). Sporco: A python package for standard and convolutional 

sparse representations. In Proceedings of the 15th Python in Science Conference, 

Austin, TX, USA, pp. 1-8. 

Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for optimization. 

IEEE transactions on evolutionary computation, l(l):67-82. 

Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., and Ma, Y. (2008). Robust face 

recognition via sparse representation. IEEE transactions on pattern analysis and 

machine intelligence, 31(2):210-227. 

Xu, L., Neufeld, J., Larson, B., and Schuurmans, D. (2004). Maximum margin clus-

tering. In Proc. Adv. Neural Inf. Process. Sys., pp. 1537-1544. 

Xu, Y., Yu, L., Xu, H., Zhang, H., and Nguyen, T. (2015). Vector sparse representation 

of color image using quaternion matrix analysis. IEEE Transactions on image 

processing, 24(4):1315-1329. 

Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., and Lin, S. (2007). Graph embedding 

and extensions: A general framework for dimensionality reduction. IEEE Trans. 

Pattern Anal. Mach. Intell., 29(1):40-51. 

Yang, M., Zhang, L., Feng, X., and Zhang, D. (2011). Fisher discrimination 

dictionary learning for sparse representation. In 2011 International Conference on 

Computer Vision, pp. 543-550. IEEE. 

Yu, K., Zhang, T., and Gong, Y. (2009). Nonlinear learning using local coordinate 

coding. In Adv. Neural Info. Process. Syst., pp. 2223-2231. 

Yu, L., Sun, H., Barbot, J. P., and Zheng, G. (2012). Bayesian compressive sensing for 

cluster structured sparse signals. Elsevier Signal Process., 92(l):259-269. 



130 

 

 

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped 

variables. J. Royal Stat. Soc. B, 68(l):49-67. 

Zeiler, M. D., Krishnan, D., Taylor, G. W., and Fergus, R. (2010). Deconvolutional 

networks. In 2010 IEEE Computer Society Conference on computer vision and 

pattern recognition, pp. 2528-2535. IEEE. 

Zepeda, J. (2010). Novel sparse representation methods; application to compression and 

indexation of images. PhD thesis, INRIA, France. 

Zepeda, J., Guillemot, C., and Kijak, E. (2011). Image compression using sparse rep-

resentations and the iteration-tuned and aligned dictionary. IEEE J. Selected Topics 

Signal Process., 5(5): 1061-1073. 

Zhang, K., Tsang, I. W., and Kwok, J. T. (2009). Maximum margin clustering made 

practical. IEEE Trans. Neural Netw., 20(4):583-596. 

Zhang, Z., Xu, Y., Yang, J., Li, X., and Zhang, D. (2015). A survey of sparse 

representation: algorithms and applications. IEEE Access, 3:490-530. 

Zhao, Y., Nasrullah, Z., and Li, Z. (2019). Pyod: A python toolbox for scalable outlier 

detection. Journal of Machine Learning Research, 20:1-7. 

Zhong, S. (2005). Efficient online spherical k-means clustering. In Proc. IEEE Neural 

Netw., volume 5, pp. 3180-3185. 

Zhu, K. and Vogel-Heuser, B. (2014). Sparse representation and its applications in 

micro- milling condition monitoring: noise separation and tool condition monitoring. 

Int. J. 
Adv. Manuf. Technol., 70(1): 185-199. 

Zhu, X. and Goldberg, A. B. (2009). Introduction to semi-supervised learning. Synthesis 

lectures on artificial intelligence and machine learning, 3(1): 1-130. 

Zhuang, L. and Bioucas-Dias, J. M. (2018). Fast hyperspectral image demising and in-

painting based on low-rank and sparse representations. IEEE Journal of Selected 

Topics in Applied Earth Observations and Remote Sensing, 11(3):730-742.



131 

 

 

APPENDIX A: RESIDUAL CODES 

A.1 Introduction 

A usual deficiency in sparse coding step is that, algorithms listed above 

assume proper dictionaries at each iteration. This is indeed very problematic, 

especially at initial stages of the learning process. In many situations, initial 

dictionary will not be a good representative of the optimal one. Therefore, “optimal” 

coding done with such a dictionary, as targeted by both £0 and i\ norm coding 

schemes, will most likely result in sparse codes, which also are not good 

representatives of optimal state. As a result, the next dictionary will adopt this 

undesired property to a certain extent and convey it to successive learning steps. In 

this appendix, we propose a generic modification to sparse coding or the coefficient 

learning step, with an error correcting process by coding an intermediate error and 

adjusting sparse codes accordingly in a less intensive learning attempt, hence leading 

to a faster convergence when compared to the conventional approaches. 

This appendix is organized as follows. Section A.2 describes the details of the 

proposed dictionary learning algorithm. Section A.3 demonstrates the experimental 

setup and the obtained results. Finally, Section A.4 concludes this appendix. 

A.2 Introducing Error Codes 

We propose a formulation that incorporates an intermediate error into the 

learning process. In the first stage, a regular sparse coding and dictionary update 

procedure is performed but with a sparsity level m < k by solving Eqn. 36. 

M 
argmin||yj — Dai||2 subjectto ||aj||o < m  (36) 
D,{ai} i=1 

Let us now denote {a*} and D* as the resulting sparse codes and the dictionary, respec-

tively. The second stage involves sparse coding the approximation error e* = yj-D*a|, 
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Figure 27. Results of dictionary learning performed on the 

Barbara image. Dictionary size 64 x 256, k = 8 for both learning and testing. 

Each column represents a different initial dictionary. First and middle 

columns are randomly initialized. Last column is of DCT initialization. 

Figures depict PSNR (dB) performance values versus iteration number. 

Vi, as 
M 

argmin ||ej — D*bj||2 s.t. | |bj| |o<fc — m. (37) 
S' 

After acquiring {b*} in Eqn. 37, current-state sparse codes can further be updated as 

a* + b*. This step basically corresponds to some sort of feedback logic, where 

the first approximation is tested and then its deviation is sparse coded to be incorpo 

rated into actual codes. Note here that the original sparsity constraint still holds since 

lla? + K||o < k. In the last stage, a final dictionary update is performed as in Eqn. 38 

and an iteration is completed, 
M 

argmin^ ||yi - D(a* + b*)||^. (38) 
D ~7 

A.3 Experimental results 

Two variants of the proposed scheme have been tested experimentally, namely 

EcMOD in Algorithm 3 and EcMOD+ in Algorithm 4. EcMOD includes the method-

ology that is defined in Sect. A.2, and EcMOD-i- includes a regular least-squares dic-

tionary update (MOD) at the end of each iteration. OMP is used for sparse coding. 

Two experimental setups have been performed, corresponding to low and high 
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dimensional cases respectively. In the first setup, 8x8 distinct patches were extracted 

from the Barbara image of size 512 x 512, resulting in 4096 image patches. Dictionary 

size was accordingly chosen as 64 x 256. Sparsity constraint k and additional sparsity 

parameter m were chosen as 8 and 4 respectively, so m being equal to k/2. Results 

corresponding to this setup are presented in Figure 27, Figure 28 and Table 10. 

In error coded schemes, as a consequence of not directly coding with sparsity 

k, final codes a* + b| may not necessarily be optimal for k. However, as there are two 

coding steps with lesser sparsity constraints and a summation, codes have a higher 

chance of being optimal for most of the sparsity levels less than k. As a result, con-

verged dictionary is a better representative of such sparsity levels, as observable in 

the results in Table 10. Error coded schemes consistently perform better in sparser 

cases. 

Not targeting a sparsity level k directly leads to a possibility of converged dic-

tionary to be suboptimal for that given k. However, this drawback can be worked 

around by chaining a conventional step that targets an exact sparsity level k. 

Referred to as EcMOD+ algorithm, experiments with this further modified method 

show that, such architecture possesses optimality for k sparsity and also better 

performance for the cases where sparsity level is less than k. This phenomenon is 

apparent in Figure 27, where learning and testing k chosen both as 8. Performance of 

Algorithm 3 EcMOD algorithm pseudocode. 

1 function EcMOD(D, Y, m, k) 

2 while not converged do 

3 A ■<— OMP(D, Y, m) 
4 D <r- YA+ 

5 E Y — DA 
6 B <— OMP(D, E, k — to) 
7 D -s-Y(A + B)+ 

 return D 
 

Algorithm 4 EcMOD-i- algorithm pseudocode. 
 

function EcMOD+(D, Y, m, k) 
2 while not converged do 

 

D <r- EcMOD(D, Y, m, k) 
4 X OMP(D, Y, k) 

 D t Y X +  return D  
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EcMOD is not consistent as it performs much like MOD in second random 

initialization case, whereas

 

EcMOD+ consistently performs well. 

In a more extensive manner, Figure 28 compares the performance of MOD 

and EcMOD+ in the case of ten different randomly initialized dictionaries. DCT 

convergence is supplied as a baseline. This figure represents superiority of the error 

coding scheme over conventional coding in the case of random initializations. 

“Optimal” coding with an improper random dictionary within initial stages hamper 

the final convergence state as observable in the case of MOD. Although not 

targeting optimal codes, error coded scheme EcMOD-i- converges to DCT result in 

all random initialization cases. This is possible because, in each step from the 

beginning, dictionary passes through a less intensive validation, in the expense of 

acquiring optimal codes. There is no total superiority in DCT initialization case as 

seen in Table 10. However, superiority can be achieved with more complex error 

coding schemes. 

Finally, regarding overall sparsity levels within error codes and its evolution 

 

Figure 28. Results for ten cases of uniformly random initial dictionaries. Lower and 

upper lines of each method correspond to minimum and maximum PNSR (dB) values 

attained among all ten cases. Middle lines represent average values. 
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during learning process, the proposed method presents interesting trends. In conven-

tional sparse coding (targeting the sparsity k), as approximation threshold is kept 

very 

 

strict in general, sparse codes end up with using all k supports. Therefore, in methods 

such as MOD and K-SYD, codes consistently have k supports even starting from the 

initial iteration. In the proposed method, during error coding, selection of previously 

selected supports is frequent. This is especially observable during initial iterations. 

Near maximum support counts are gradually reached as the system converges, but 

not necessarily reaching exact maximum. 

In the second set of experiments, EcMOD+ scheme has been tested with all 

possible 255025 image patches extracted with a full coverage of sliding window algo-

rithm with a window size of 8 x 8. Combinations of sparsity of 4, 8,16, and 32 against 

small and large dictionaries were tested. DCT was used as initial dictionary in all 

cases. Note that, in DCT initialization cases, there is only an advantage of faster 

convergence rates but not of better converged states, at least for this error coding 

scheme. Superior converged states with more complex schemes have been achieved, 

but they are omitted here because of the space limitation. 

Table 10. Average approximation PSNR (dB) 

performance values of learnt dictionaries as in Figure 27 

and Figure 28. k represents the sparsity used for testing.
 k = 2 k = 5 k = 10 k = 20 

Rand. 1.     

MOD 26.33 32.08 36.82 40.43 

EcMOD 26.91 33.90 37.87 41.72 
EcMOD+ 26.89 33.90 38.10 41.86 

Rand. 2.     

MOD 26.61 32.20 36.89 40.68 
EcMOD 27.92 33.36 36.88 40.25 
EcMOD+ 26.73 33.87 38.08 41.83 

DCT Init.     

MOD 26.22 33.02 38.40 42.82 

EcMOD 26.95 34.05 38.06 41.98 
EcMOD+ 26.94 33.96 38.19 42.07 
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Experimental results with the second setup are summarized in Figure 29 and 

Figure 30. In Figure 29, performance ratios were calculated relative to the MOD
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Figure 29. Performance gain factor for different sparsity levels, in the case of a 

relatively small and a large dictionary. 

algorithm in terms of mean-squared error to estimate a performance gain factor for 

each sparsity level, approximately at fifth equivalent iteration, for an approximate 

convergence rate analysis. Gains for large dictionary in the case of learning with 

lenient sparsity levels are more striking, but stricter sparsity constraints cause 

substandard performance. Overall, the performance in this case is promising as it 

signals to scaling with input size. Smaller sized dictionary safely performs above 

standard. Figure 30 depicts the convergence plot for dictionary size 64 x 256 and fc 

as 8 for both learning and testing. Significant gain in convergence rate is observable 

with the error coded scheme in this high dimensional setup. Note that, mean-squared 

error is given as measure since sliding window patches were used. Finally, Figure 31 

compares atoms that he within similar frequency domains, learnt with MOD and 

EcMOD+. Note here the well-defined structure of EcMOD+. 

A.4 Conclusion 

MOD, by itself is a greedy algorithm that targets optimality one task at a time. 

Tasks are considered as isolated from each other, even within the same iteration. 

This
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results in MOD being a rather short-sighted method which fails at tasks that require 

a broader perspective of the system. 

In this paper, we presented a method in which sparse coding and dictionary 

update steps are intertwined through intermediate error codes. Note that there 

could be other ways to accomplish this. Another way could be to add sparse codes 

of two successive iterations and perform a dictionary update based on this 

accumulated code, without even introducing error codes. As an analogy, MOD can 

be considered as a single-step numerical method, whereas the example given would 

be a multi-step one. Our method can be considered as a multi-step approach that 

utilizes a half-step. 

To summarize, our framework is generic enough to be included in many 

forms of learning-based approaches. In essence, our scheme includes an initial 

attempt of learning with less computational and spatial requirement than originally 

allocated. This corresponds to a single iteration of MOD performed with m < k. In 

this way, a feedback can be acquired that reflects the congruence of the model and 

the data at hand, so that current state can properly be adjusted before the final 

model update, which consumes the remaining resources. 

This approach will be most beneficial for systems that are restricted to 

 

Figure 30. The convergence performance for dictionary size 64 x 256 and A; as 8 for 

both learning and testing. 
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random

 

Figure 31. A frequency subdomain of learnt dictionaries formed with same processing 

time. MOD on the left, EcMOD+ on the right. 

initializations (as apparent in Figure 1, Figure 2 and Table 1). A random initial model 

is most likely to be an improper representative of a specific system. Therefore, an 

update based on this model, no matter how intensive it is, will result in an undesired 

state. In fact, an optimal update based on this improper model could be more impairing 

than a subopthnal one in this regard. 

As a concluding remark, readers should bear in mind that this work is based on 

a pragmatic perspective. Although satisfactory improvement has been observed, a 

more rigorous theoretical approach can lead to certain variations built on top of this 

framework that will be far more fruitful.  
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APPENDIX B: K-POLYTOPES ALGORITHM DETAILS 

Algorithms in k-polytopes. The pseudocode details of the overall algorithm as well as 

subdivision, pruning and merging methods are illustrated in Alg. 4, Alg. 5, Alg. 6 and 

Alg. 7, respectively. 

Algorithm 5 An algorithm for /c-polytopes 

1: function fc-POLYTOPES(Y, q, k) 
2: A, S , X , r  <- initialize based on Y and q 
3: while not converged do 
4: X project Y onto A restricted to S 
5: A 4- YX+ (dictionary update) 
6: A, S 4- pruning based on A 
7: A, S 4- subdivision depending on r 
8: A, <S 4- merging depending on r 
9: C 4- get the number of connected components in S 

10: if C ± k then 
11: A ,T 4- update parameters 
12: Go to 3: 
13: return A, X, S 

Algorithm 6 An algorithm for the subdivision process 
function subdivide(A, S, t )  for all h in <S do 

K 4- designate h = hK for all pairs of nodes a and b in hK do if r < ||a — b||2 then 
a+b 

c ^ 2 Are 4 Are U c 
h'K 4- new hyperedge over a 

/i" 4- new hyperedge over b 

nK 4r- (HK \ K) U {h'K U K) return A, S  

1 
2 

3 
4 
5 
6 

7 
1 

9 

10 
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Block-diagram of k-polytopes. The block-diagram of the proposed algorithm to solve fc-

polytopes problem is illustrated in Fig. 32.

Algorithm 7 An algorithm for the pruning process 

1 function prune(A, S, X, A) 
2 for all h in S do 

3 k 4- designate h = hK,£'HK 
4 v% <—# of data points projected onto A\ 
5 if < A then 

6 T-LK 4— I-LK \ hK 
7 Ak 4- remove vertices of AK solely used by hK return A, S 

 

Algorithm 8 An algorithm for the merging process 

1 function merge(A, S, t) 
2 for each pair h' and h" in S do 
3 k' 4- designate h! = hK> g Hk' 
4 k" 4- designate h" = hK>> € HK" 

5 AK',h> <- get simplex designated by hK> 
6 AKn h» 4- get simplex designated by hKn 
7 if A^ji' and AKu h„ close enough wrt r then 
8 incident 4- “Are and hK>> incident?” 

9 if (¡incident & k' == k") (/«'! = k") then 
1
0 

make hK> and hK» incident 

1
1 

AK>:h' 4— stitch AK>:h> and AKn hn return A, S 



 

 

 

Figure 32. The block-diagram of the proposed algorithm to solve fc-polytopes problem. 
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