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a b s t r a c t

Croston’s method is generally viewed as being superior to exponential smoothing when
the demand is intermittent, but it has the drawbacks of bias and an inability to deal
with obsolescence, where the demand for an item ceases altogether. Several variants
have been reported, some of which are unbiased on certain types of demand, but only
one recent variant addresses the problem of obsolescence. We describe a new hybrid of
Croston’smethod and Bayesian inference calledHyperbolic-Exponential Smoothing, which
is unbiased onnon-intermittent and stochastic intermittent demand, decays hyperbolically
when obsolescence occurs, and performs well in experiments.
© 2014 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
ier
1. Introduction

Inventory management is of great economic impor-
tance to industry, but forecasting the demand for spare
parts is difficult because it is intermittent: the demand is
zero in many time periods. This type of demand occurs in
several industries, for example in aerospace and military
inventories, from which spare parts such as wings or jet
engines are only required infrequently. Various methods
have been proposed for forecasting, some simple and oth-
ers statistically sophisticated, but relatively little work has
been done on intermittent demand. Most of the work in
this area is influenced by that of Croston (1972), who was
the first to separate the forecasting of the demand size and
the inter-demand interval.

Another difficult feature of some inventories is obsoles-
cence, where an item is considered obsolete if it has seen

∗ Corresponding author.
E-mail address: s.prestwich@cs.ucc.ie (S.D. Prestwich).

http://dx.doi.org/10.1016/j.ijforecast.2014.01.006
0169-2070/© 2014 International Institute of Forecasters. Published by Elsev
no demand for a long time.Whenmany thousands of items
are being handled automatically, this may go unnoticed by
Croston-style methods. One of the authors of this paper
(Prestwich) has worked with an inventory company who
used Croston’s method, but were forced to resort to ad hoc
rules such as: if an item has seen no demand for 2 years then
forecast 0. This issue has been relatively neglected in the lit-
erature, though a method was designed recently for tack-
ling it (Teunter, Syntetos, & Babai, 2011).

In this paper, we describe a new Croston-style forecast-
ing method with a low bias and high forecasting accuracy
on both intermittent and non-intermittent demand, which
can also handle obsolescence. It is competitive with ex-
isting methods, and is more robust under changes to its
smoothing factors. Its novelty is that its forecasts decay
hyperbolically during periods of no demand (a property
derived from Bayesian inference), whereas other methods
decay exponentially or not at all. Section 2 provides a back-
ground on existing methods, Section 3 describes the new
method, Section 4 evaluates it empirically, and Section 5
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concludes the paper. For an extended version of this paper,
see Prestwich, Tarim, Rossi, and Hnich (2013).

2. Background

Wenowbriefly survey some relevant forecastingmeth-
ods. Single exponential smoothing (SES) generates estimates
ŷt of the demand by weighting previous observations y ex-
ponentially via the formula

ŷt = αyt + (1 − α)ŷt−1,

where α ∈ (0, 1) is a smoothing parameter. The smaller
the value of α, the less weight is attached to the most
recent observations. An up-to-date survey of exponential
smoothing algorithms is given by Gardner (2006). They
perform remarkably well, often beating more complex ap-
proaches (Fildes, Nikolopoulos, Crone, & Syntetos, 2008),
but SES is known to perform poorly (under somemeasures
of accuracy) on intermittent demand.

A well-known method for handling intermittency is
Croston’s method (Croston, 1972), which applies SES to the
demand sizes y and intervals τ independently. Given the
smoothed demand ŷt and smoothed interval τ̂t at time t ,
the forecast is

ft =
ŷt
τ̂t

.

Both ŷt and τ̂t are updated at each time t for which yt ≠ 0.
According to Gardner (2006), it is hard to conclude from
the various studies that Croston’s method is successful,
because the results depend on the data used and on the
way in which forecast errors are measured. However, it is
generally regarded as one of the best methods for inter-
mittent series (Ghobbar & Friend, 2003), and versions of
the method are used in leading statistical forecasting soft-
ware packages such as SAP and Forecast Pro (Teunter et al.,
2011).

To remove at least some of the known bias of Croston’s
method on stochastic intermittent demand (in which de-
mands occur randomly), a correction factor is introduced
by Syntetos and Boylan (2005):

ft =


1 −

β

2


ŷt
τ̂t

,

where β is the smoothing factor used for inter-demand in-
tervals, which may be different to the α smoothing fac-
tor used for demands.1 This works well for intermittent
demand but is biased for non-intermittent demand, as its
forecasts are those of SES multiplied by (1 − β/2). This
problem is avoided by Syntetos (2001), who uses a forecast

ft =


1 −

β

2


ŷt

τ̂t −
β

2

.

This removes the bias on non-intermittent demand, but in-
creases the forecast variance (Teunter & Sani, 2007).

Anothermodified Crostonmethod is given by Levén and
Segerstedt (2004), who claim that it also removes the bias

1 Syntetos and Boylan (2005) denoted this factor byα because it is used
to smooth both ŷ and τ̂ .
in the original method, but in a simpler way: they apply
SES to the ratio of the demand size and interval length each
time a nonzero demand occurs. That is, they update the
forecast using

ft = α


yt
τt


+ (1 − α)ft−1.

However, this also turns out to be biased (Boylan &
Syntetos, 2007).

A more recent development is the method of Te-
unter et al. (2011), which updates the demand probability
instead of the demand interval. Instead of a smoothed in-
terval τ̂ , it uses exponential smoothing to estimate a prob-
ability p̂t , where pt is 1 when demand occurs at time t and
0 otherwise. Different smoothing factors α and β are used
for ŷt and p̂t respectively. p̂t is updated every period, while
ŷt is only updatedwhen the demand occurs. The forecast is

ft = p̂t ŷt .

This method is unbiased. It also solves the problem of
obsolescence, because, like SES but unlike other Croston
variants, an item’s forecasts decay when it becomes obso-
lescent.

Following convention, we shall use CR to denote the
original method of Croston, SBA to denote the variant of
Syntetos and Boylan, SY to denote that of Syntetos, and TSB
to denote that of Teunter, Syntetos and Babai.

3. Hyperbolic-exponential smoothing

We take a Croston-style approach, separating demands
into the demand size yt and the inter-demand interval τt .
As in most Croston methods, when a non-zero demand
occurs, the estimated demand size ŷt and inter-demand
period τ̂t are both exponentially smoothed, using factors
α and β respectively. The novelty of our method is what
happens when there is no demand.

Suppose that at time t , we have a smoothed demand
size ŷt and an inter-demand period τ̂t , up to and includ-
ing the last non-zero demand, and that we have observed
τt consecutive periods without demand since the last non-
zero demand.What should be our estimate of the probabil-
ity that a demand will occur in the next period? A similar
question was addressed by Laplace (1814): given that the
sun has risen N times in the past, what is the probability
that it will rise again tomorrow? His solution was to add
one to the count of each event (the sun rising or not rising)
to avoid zero probabilities, and estimate the probability by
counting the adjusted frequencies. So if we have observed
N sunrises and 0 non-sunrises, in the absence of any other
knowledge we would estimate the probability of a non-
sunrise tomorrow as 1/(N + 2). This is known as the rule
of succession. However, he noted that, given any additional
knowledge about sunrises, we should adjust this probabil-
ity. These ideas are generalised by themodern pseudocount
(or pseudo-observation) method, which can be viewed as
Bayesian inference with a Beta prior distribution. We base
our discussion on a recent book by Poole and Mackworth
(2010, Ch. 7), which describes the techniqueweneed in the
context of Bayesian classifiers, but similar material can be
found in many publications.
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For the two possibilities yt = 0 and yt ≠ 0, we add non-
negative pseudocounts c0 and c1 respectively to the actual
counts n0 and n1 of observations.2 In addition to addressing
the problem of zero observations, pseudocounts also allow
us to express the relative importance of prior knowledge
and new data when computing the posterior distribution.
By Bayes’ rule, the posterior probability of a nonzero de-
mand occurring is estimated by

p(yt ≠ 0) =
n1 + c1

n0 + c0 + n1 + c1
.

(This is actually a conditional probability that depends on
the recent observations and prior probabilities, but we fol-
low Poole & Mackworth, 2010, and write p(yt ≠ 0) for
simplicity.) In our problem, we have seen no demand for
τt periods, so n1 = 0 and n0 = τt :

p(yt ≠ 0) =
c1

τt + c0 + c1
.

We can eliminate one of the pseudocounts by noting that
the prior probability of a demand found by exponential
smoothing is 1/τ̂t , and that the pseudocounts must reflect
this:

c1
c0 + c1

=
1
τ̂t

,

and hence c0 = c1(τ̂t −1), so we can eliminate it. Like TSB,
in order to obtain a forecast, we multiply this probability
by the smoothed demand size:

ft =
ŷt

τ̂t + τt/c1
.

We can also eliminate c1 by choosing a value that gives an
unbiased forecaster for stochastic intermittent demand, as
follows. Consider the demand sequence as a sequence of
substrings, each starting with a nonzero demand: for ex-
ample, the sequence (5, 0, 0, 1, 0, 0, 0, 3, 0) has substrings
(5, 0, 0), (1, 0, 0, 0) and (3, 0). Within a substring, ŷt and τ̂t
remain constant, so our forecaster has an expected forecast

E


ŷt
τ̂t + τt/c1


= E


ŷt
τ̂t


1

1 + τt/τ̂tc1


≈ E


ŷt
τ̂t


1 −

τt

τ̂tc1


=

ŷt
τ̂t


1 −

1
c1


.

The derivation used the linearity of expectations, the
constancy of ŷt and τ̂t , the fact that E[τt ] = τ̂t , and the
approximation (1+δ)−1

≈ 1−δ for small δ. Choosing c1 =

2/β , and therefore c0 = 2(τ̂ − 1)/β , we obtain a forecast

ft =
ŷt

τ̂t + βτt/2
,

with expected value

E[ft ] =


1 −

β

2


ŷt
τ̂t

.

2 These pseudocounts are often denotedα, β from the Beta distribution
hyperparameters, but we are already using these symbols for smoothing
factors.
Thus, our expected forecast over a substring is identical
to the fixed SBA forecast over that substring. So, our fore-
caster has the same expected forecast as SBA on any sub-
string, given the same values of ŷt and τ̂t . Moreover, it
updates ŷt and τ̂t in exactly the same way as SBA at the
start of each substring, and therefore it has the same ex-
pected forecast as SBA over the entire demand sequence.
Thus, according to Syntetos and Boylan (2005), it is unbi-
ased for stochastic intermittent demand.

One drawback of this forecaster is that, like SBA, it is
biased for non-intermittent demand. This can be overcome
by a slight adjustment:

ft =
ŷt

τ̂t + β(τt − 1)/2
.

By a similar derivation, we obtain:

E


ŷt

τ̂t +
β

2 (τt − 1)


=


1 −

β

2


ŷt

τ̂t −
β

2

.

Now our expected forecast over a substring is identical to
the fixed SY forecast over that substring. SY is unbiased
on standard stochastic intermittent demand and also on
non-intermittent demand (Syntetos, 2001), so (using the
same arguments as above) our forecaster must be too. This
is the forecaster we shall use, and we call it Hyperbolic-
Exponential Smoothing (HES) because of its combination
of exponential smoothing with hyperbolic decay.

One might ask: why not also apply the same Bayesian
reasoning when demand does occur? We can do this by
incrementing the count n1 each time a demand occurs,
and incrementing n0 when no demand occurs (the pseu-
docount values c0, c1 can be set to 0). The drawback of this
method is that it does not adapt quickly to changes in de-
mand intermittency: it uses the entire demand history to
estimate the probability of a demand as n1/(n0 + n1). Our
proposed method discounts the early demand history in
standard exponential smoothing fashion.

An illustration of the different behaviours of SY, TSB
and HES is shown in Fig. 1. The demand is stochastic
intermittent with probability 0.25, all nonzero demands
(shown as impulses) are 1, and the forecasters use α =

β = 0.1. The HES forecasts are similar to those of SY but
decay between demands. TSB has amuch greater variation,
though this difference could be reduced by using smaller
smoothing parameters. When an item becomes obsolete,
SY remains constant, TSB decays exponentially and HES
decays hyperbolically.

4. Experiments

We now test HES empirically to evaluate its bias and
forecasting accuracy. All results are given by Prestwich
et al. (2013).

4.1. Accuracy measures

In any comparison of forecasting methods, we must
choose accuracy measures. de Gooijer and Hyndman
(2005) list 17 measures, noting that a ‘‘bewildering array
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Fig. 1. Behaviour of SY, TSB and HES.
of accuracy measures have been used to evaluate the per-
formance of forecasting methods’’, that no single method
is generally preferred, and that some are not well-defined
on data with intermittent demand. We shall use measures
that have been recommended recently for intermittent de-
mand. For measuring the bias, we use the MASE (Mean
Absolute Scaled Error), recommended by Hyndman and
Koehler (2006) and defined as mean(|qt |), where qt is a
scaled error defined by

qt =
et

1
n−1

n
i=2

|yi − yi−1|

,

et is the error yt − ŷt , and t = 1 . . . n are the time periods
of the samples used for forecasting, which we take to be
the 104 samples used to initialise the smoothed estimates.
We take these means over multiple runs. MASE effectively
evaluates a forecasting method against the naïve (or
random walk) forecaster, which simply forecasts that the
next demand will be identical to the current demand.

As a measure of deviation, we use the MAD/Mean Ratio
(MMR), which has been argued to be superior to several
other methods used in forecasting competitions (Kolassa
& Schütz, 2007), and is defined by
n

t=1
|et |

n
t=1

yt
.

Again, the summations are taken over multiple runs. As
another measure of deviation, we also use the Relative
Root Mean Squared Error, defined as RMSE/RMSEb, where
RMSE is measured on the method being evaluated and
RMSEb on a baseline measure, both taken over multiple
runs.When the baseline is a randomwalk, this is Theil’s U2
statistic (Thiel, 1966), and this is the baseline we use. The
motivation behind using these two particular measures of
deviation is that MMR is based on absolute errors while U2
is based on root mean squared errors; the latter penalises
outliers more than the former, so differences between
them could be revealing.
4.2. Experimental details

We base our experiments on those of Teunter et al.
(2011), in which demands occur with some probability in
each period, and hence, the inter-demand intervals are dis-
tributed geometrically, and we use a logarithmic distribu-
tion for demand sizes. Geometrically distributed intervals
are a discrete version of Poisson intervals, and the combi-
nation of Poisson intervals and logarithmic demand sizes
yields a negative binomial distribution, for which there is
theoretical and empirical evidence; see for example the re-
cent discussion by Syntetos, Babai, Lengu, andAltay (2011).

Teunter et al. compare several forecasters on demands
that are nonzero with probability p0, where p0 is either 0.2
or 0.5, and the sizes of which are distributed logarithmi-
cally. The logarithmic distribution is characterised by a pa-
rameter ℓ ∈ (0, 1), and is discretewith Pr[X = k] = −ℓk/k
log(1 − ℓ) for k ≥ 1. They use two values: ℓ = 0.001 to
simulate low demand and ℓ = 0.9 to simulate lumpy de-
mand. They use α values of 0.1, 0.2 and 0.3, and β values of
0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3. We add SY and HES
to these experiments but drop SES, as they found it to have
large errors. They takemean results over 10 runs, eachwith
120 time periods, whereas we use 100 runs. They initialise
each forecaster with ‘‘correct’’ values whereas we initialise
with arbitrary values ŷ0 = τ̂0 = 1 then run them for 104

periods using the demand probability p0. A final difference
is that we use MASE, MMR and U2 instead of the mean er-
ror and mean squared error.

4.3. Results

The results are given by Prestwich et al. (2013) and
summarised here. Because CR, SBA and SY use only one
smoothing factor α, we do not perform experiments on
these methods with β ≠ α. Comparing the MASE best-
cases: TSB and SY are least biased, followed by HES, then
CR and SBA. Comparing the MMR best-cases: SBA is best,
followed by TSB and HES, then CR and SY. Comparing the
U2 best-cases: HES is always at least as good as TSB, SBA is
best in some cases, and CR and SY are theworst. Comparing
the MASE worst-cases: the ranking is SY, TSB, HES, CR, SBA
(best first). Comparing the MMR worst-cases: neither TSB
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nor HES dominates the other, though HES seems slightly
better. SBA gives the best results, CR and SY generally the
worst. Comparing theU2worst-cases: HES beats TSB and is
more robust under different smoothing factors. SBA again
gives the best results, while CR and SY have variable per-
formances.

These results agree with the known fact that SY has a
lower bias but higher variance than SBA. In terms of bias (as
measured by MASE), HES lies between SY and SBA, while
TSB is similar to SY; in terms of variance (as measured
by MMR), HES and TSB lie between SY and SBA and are
similar; in terms of variance (as measured by U2) HES and
TSB lie between SY and SBA, but HES is more robust under
parameter change. This shows that, although we modified
HES to be more like SY than SBA, in order to gain its
advantage of being unbiased on non-intermittent demand,
HES has not inherited the high variance of SY. In this sense
it is a good compromise between SBA and SY, with a low
bias and low variance.

We performed further experiments as follows. Firstly,
under two forms of nonstationary demand with obsoles-
cence, TSB beats HES, which in turn beats the other vari-
ants. Secondly, we compared HES and TSB using stationary
demand with geometrically distributed demand sizes. The
relative performances of TSB andHESwere similar to those
with logarithmically distributed demand sizes. Thirdly, we
compared TSB and HES on stationary demand using two
relative measures: the percentage of times better (rec-
ommended by Kolassa & Schütz, 2007) and the Relative
Geometric Root Mean Squared Error (recommended by
Armstrong & Collopy, 1992, and also called the Geomet-
ric Mean Relative Absolute Error). Tuning TSB and HES us-
ing U2 as recommended by Ghobbar and Friend (2003),
there was little difference in relative performance, while
TSB beat HES when we tuned using MMR.

Finally, Teunter et al. (2011) note that although TSB is
unbiasedwhen the bias is computed over all points in time,
it is nevertheless biased if we only compare forecasts with
the expected demand at issue points only (that is, when
demand occurs). SES is similarly biased, but Crostonmeth-
ods such as SBA or SY are not. This is due to the decay in
forecast size between demands, and HES will clearly suf-
fer from a similar bias. This bias is relevant because of the
way in which forecasts are used in real inventory control
systems: they are often made only when demands occur.
We repeated the stationary demand experimentswith log-
arithmically and geometrically distributed demand sizes,
and measured the biases of TSB and HES based on issue
points only. Both had larger biases than SY (as expected)
but neither dominated the other.

4.4. Summary of results

For stationary demand, HES and TSB are both good
compromises between the low bias of SY and the low
variance of SBA, to some extent achieving the best of both
worlds. No single method dominated all others over all
experiments, and which is best depends on the demand
pattern and the accuracy measure. However, comparing
TSB and HES over all experiments with stationary demand,
we observe a clear pattern: TSBwins (best-case andworst-
case) using MASE, HES wins (best-case and worst-case)
using U2, TSB wins (best-case only) using MMR, and HES
wins (worst-case only) using MMR. Thus, neither HES nor
TSB is best under all measures, and they have similar
biases when measured at issue points only. However, the
greater robustness of HES (shown by its better worst-case
performance) means that we can recommend smoothing
factors that behave reasonablywell, on both stationary and
non-stationary demand: α = β = 0.1. In all cases, the
results are not verymuchworse than thosewith optimally-
tuned factors.

However, TSB wins in the obsolescence experiments,
followed by HES. As has been found by other researchers,
and as is intuitively clear, large smoothing factors are best
at handling changes in demand pattern, and here TSB’s
faster reaction times serve it well. Nevertheless, HES is still
much better than the other Croston methods when faced
with obsolescence.

5. Conclusion

We have presented a new forecasting method called
Hyperbolic-Exponential Smoothing (HES), which com-
bines exponential smoothing with an application of
Bayesian inference when no demand occurs. It is only the
second method to be proposed for handling intermittent
demand with possible obsolescence, and it is qualitatively
different to the other existing method (TSB), providing
practitioners with an alternative.

We have shown theoretically that HES is approximately
unbiased on stochastic intermittent and non-intermittent
demand, and compared it empiricallywith four other Cros-
ton variants, including TSB. For stationary demand, we
found that HES was best under one measure (U2), TSB was
best under another measure (MASE), and neither was best
under a third measure (MAD/Mean Ratio). Overall, HES
was more robust than TSB under smoothing parameter
changes, while TSB handled obsolescence better than HES.
These results show that HES is a competitive forecaster. Its
robustness allows us to recommenddefault smoothing fac-
tor values of 0.1, making it highly suitable for use in auto-
mated systems.

Regarding the practical use of HES, we note that it is
no harder to implement, and no more computationally
expensive, than other Croston variants; this can be seen by
comparing the formulae for forecasts in HES (see Section 3)
with those of other methods (see Section 2).

In future work, we hope to explore the issue of robust-
ness under smoothing factor changes further, using other
demand patterns and accuracy measures. In particular, we
would like to obtain real data, and to devise other artificial
data with obsolescence. For example, TSB handles obsoles-
cence better than HES, but howwould the two compare on
demand that appears to be obsolescent temporarily? More
experiments along these lines are needed.
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