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a b s t r a c t

In this work we propose an efficient dynamic programming approach for computing replenishment

cycle policy parameters under non-stationary stochastic demand and service level constraints. The

replenishment cycle policy is a popular inventory control policy typically employed for dampening

planning instability. The approach proposed in this work achieves a significant computational efficiency

and it can solve any relevant size instance in trivial time. Our method exploits the well known concept

of state space relaxation. A filtering procedure and an augmenting procedure for the state space graph

are proposed. Starting from a relaxed state space graph our method tries to remove provably

suboptimal arcs and states (filtering) and then it tries to efficiently build up (augmenting) a reduced

state space graph representing the original problem. Our experimental results show that the filtering

procedure and the augmenting procedure often generate a small filtered state space graph, which can

be easily processed using dynamic programming in order to produce a solution for the original problem.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Inventory theory provides methods for managing and controlling
inventories under different constraints and environments. An inter-
esting class of production/inventory control problems is the one that
considers the single-location, single-product case under non-station-
ary stochastic demand and service level constraints. Such a problem
has been widely studied because of its key role in practice.

Different inventory control policies can be adopted for the
above mentioned problem. For a discussion of inventory control
policies, see Silver et al. (1998). One of the possible policies that can
be adopted is the replenishment cycle policy, (R,S). A detailed
discussion on the characteristics of (R,S) can be found in de Kok
(1991). In this policy an order is placed every R periods to raise the
inventory level to the order-up-to-level S. This provides an effective
means of dampening planning instability (deviations in planned
orders, also known as nervousness (de Kok and Inderfurth, 1997;
Heisig, 2002) and coping with demand uncertainty. As pointed out
by Silver et al. (1998, pp. 236–237), (R,S) is particularly appealing
when items are ordered from the same supplier or require resource
sharing. In these cases all items in a coordinated group can be given
ll rights reserved.
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the same replenishment period. Periodic review also allows a
reasonable prediction of the level of the workload on the staff
involved, and is particularly suitable for advanced planning
environments and risk management (Tang, 2006).

Under the non-stationary demand assumption the replenish-
ment cycle policy takes the form (Rn,Sn) where Rn denotes the
length of the nth replenishment cycle and Sn the respective order-
up-to-level. In this policy, the actual order quantity for replen-
ishment cycle n is determined after the demand in previous
periods has been observed. The order quantity is computed as the
amount of stock required to raise the closing inventory level of
replenishment cycle n�1 up to level Sn. In order to provide a
solution for our problem under the (Rn,Sn) policy we must
populate both the sets fRnjn¼ 1, . . . ,Mg and fSnjn¼ f1, . . . ,Mg,
where M denotes the number of replenishment cycles scheduled
over a finite planning horizon of N periods.

The problem of populating these sets has been solved to
optimality only recently, due to the complexity involved in the
modeling of uncertainty and of the policy-of-response. As Silver
points out, computing replenishment cycle policy parameters
under non-stationary stochastic demand is a computationally
hard task (Silver, 1978). Early works in this area adopted heuristic
strategies such as those proposed by Silver (1978), Askin (1981),
and Bookbinder and Tan (1988). Under some mild assumptions,
the first complete solution method for this problem was
introduced by Tarim and Kingsman (2004), who proposed a
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deterministic equivalent mixed integer programming (MIP)
formulation for computing (Rn,Sn) policy parameters. Tempelmeier
(2007) extended Tarim and Kingsman’s MIP formulation in order
to consider different service level measures, such as the ‘‘fill rate’’.
Nevertheless, empirical results showed that Tarim and Kings-
man’s model is unable to solve large instances. Tarim and Smith
(2008) therefore introduced a more compact and efficient
constraint programming formulation of the same problem that
showed a significant computational improvement over the MIP
formulation. The constraint programming formulation has been
further enhanced by means of dedicated cost-based filtering
algorithms developed by Tarim et al. (2009). A stochastic
constraint programming (Tarim et al., 2006) approach for
computing optimal (Rn,Sn) policy parameters is proposed in Rossi
et al. (2008). In this work the authors drop the mild assumptions
originally introduced by Tarim and Kingsman and compute
optimal (Rn,Sn) policy parameters. Of course, there is a price to
pay for dropping Tarim and Kingsman’s assumptions, in fact this
latter approach is less efficient than the one in Tarim and Smith
(2008). Finally, Pujawan and Silver (2008) recently proposed a
novel and effective heuristic approach.

In this paper, we build on Tarim and Kingsman’s modeling
assumptions and we develop a state-of-the-art algorithm for
computing optimal (Rn,Sn) policy parameters. Two existing
techniques—dynamic programming and state space relaxatio-
n—are combined in order to obtain an effective approach for
computing (Rn, Sn) policy parameters. Dynamic programming (DP)
is an optimization procedure that solves optimization problems
by decomposing them into a nested family of subproblems. DP is
based on the principle of optimality (Bellman, 1957; Dreyfus and
Law, 1989) and it has been applied to solve a wide variety of
combinatorial optimization problems, as well as optimal control
problems. State space relaxation (SSR) considers the DP formula-
tion of a combinatorial optimization problem, and modifies this
formulation to obtain a different—and possibly more com-
pact—DP formulation whose optimal solution is a lower bound
for the original problem. Christofides et al. (1981) proposed that
SSR has been successfully applied to constrained variants of
routing problems (see, e.g. Mingozzi et al., 1997; Focacci and
Milano, 2001). Roughly speaking, SSR maps the original state
space graph to a new state space graph having a smaller number
of vertices, and whose shortest path represents a lower bound for
the cost of the shortest path in the original state space graph.

In this work, we enhance these known approaches with a novel
strategy: we introduce a filtering procedure for the state space
graph and an augmenting procedure that is able to build a reduced
state space graph for the original problem starting from a filtered
state space graph for the relaxed problem. The concept of state
space augmentation (Boland et al., 2006) is known in the
operations research literature. A dual approach to state space
augmentation also exists and is known as decremental SSR (Righini
and Salani, 2008). Nevertheless, the idea of filtering a relaxed state
space graph is, to the best of our knowledge, a novel contribution.
Our experimental results prove the effectiveness of such an
approach for computing optimal (Rn, Sn) policy parameters.

The paper is structured as follows. In Section 2 we introduce the
problem definition and the modeling assumptions adopted in this
work. In Section 3 we describe a DP reformulation for Tarim and
Kingsman’s model. An SSR for this reformulation is presented in
Section 4. A procedure for filtering the relaxed state space graph is
presented in Section 5. An augmenting procedure for the relaxed
state space graph is described in Section 6. An example that
demonstrates the algorithm proposed is given in Section 7. Our
computational experience and a comparison with the state-of-the-
art approaches for computing replenishment cycle policy para-
meters are discussed in Section 8. In Section 9 we draw conclusions.
2. Problem definition and modeling assumptions

The single-location, single-product production/inventory con-
trol problem under non-stationary stochastic demand and service
level constraints is formulated in this paper by using the following
inputs and assumptions.

We consider a planning horizon of N periods and a demand dt for
each period tAf1, . . . ,Ng, which is a non-negative random variable
with known probability density function and expected value ~dt . We
assume that the demand occurs instantaneously at the beginning of
each time period. The demand is non-stationary, that is it can vary
from period to period, demands in different periods are assumed to
be independent. Demands occurring when the system is out of stock
are assumed to be back-ordered and satisfied as soon as the next
replenishment order arrives. The sell-back of excess stock is not
allowed, if the actual stock exceeds the order-up-to-level for a given
review, this excess stock is carried forward and it is not returned to
the supply source. However, as in Bookbinder and Tan (1988), Tarim
and Kingsman (2004), Tarim and Smith (2008), and Tempelmeier
(2007) such occurrences are regarded as rare events and accordingly
the cost of carrying this excess stock and its effect on the service
levels of subsequent periods are ignored.

A fixed delivery cost a is incurred for each order. A linear
holding cost h is incurred for each unit of product carried in stock
from one period to the next. Our aim is to find a replenishment
plan that minimizes the expected total cost, which is composed of
ordering costs and holding costs, over the N-period planning
horizon, satisfying the service level constraints. As a service level
constraint we require that, with a probability of at least a given
value a, at the end of each period the net inventory will be non-
negative. As pointed out in Tempelmeier (2007), since period
demands are random, the net inventory may become negative.
However, the number of stock-outs is restricted by the service level
constraints enforced. While computing holding costs, we will
assume, as in Bookbinder and Tan (1988), Tarim and Kingsman
(2004), Tarim and Smith (2008), and Tempelmeier (2007), that the
service level is set large enough to ensure that the net inventory
will be a good approximation of the inventory on hand.
3. A DP formulation for the deterministic equivalent problem

We hereby introduce a deterministic equivalent DP formula-
tion for computing optimal (Rn,Sn) policy parameters.

Definition. A replenishment cycle, T(i,j), is the time span between
two consecutive orders/productions occurring in periods i and
j+1, jZ i.

Definition. The cycle buffer stock, b(i,j), denotes the minimum
expected buffer stock level required to satisfy the required non-
stock-out probability during T(i,j).

We define b(i,j), i¼1,y,N, j¼ i,y,N, as

bði,jÞ ¼ G�1
diþdiþ 1þ���þdj

ðaÞ�
Xj

k ¼ i

~dk, ð1Þ

where Gdiþdiþ 1þ���þdj
is the cumulative probability distribution

function of di+di +1+?+dj. It is assumed that G is strictly
increasing, hence G�1 is uniquely defined. It should be noted
that it is possible to consider different service level measures—for
instance the ‘‘fill rate’’—simply by introducing a different
definition for the cycle buffer stock (see also Tempelmeier, 2007).

Since N is the number of periods in our planning horizon, this
will also be the number of steps in the system. A state sk at step k

represents a possible expected closing-inventory-level, ~Ik, at the
end of period k. The decision xk to be taken at step k is to place an



R. Rossi et al. / Int. J. Production Economics 133 (2011) 377–384 379
order in such a period or not; if an order is placed, xk also indicates
how many subsequent periods this order should cover.

Let Xk(sk�1) denote the set of possible feasible decisions xk at
period k, when the expected closing inventory level at period k�1
is sk�1. This set may comprise: the decision of not placing an order
(xk¼0), the decision of covering one period with the order placed
(xk¼k), the decision of covering two periods with the order placed
(xk¼k+1),y, and the decision of covering N�k+1 periods with the
order placed (xk¼N). In other words, if xk¼0, no order is placed in
period k; if krxkrN, xk schedules a replenishment cycle T(k,xk).
However, one should note that the decision xk¼0 is only allowed if

bðv,kÞrsk�1�
~dk,

where v¼maxftj1rtrk,xt 40g. Intuitively, we can decide not to
place an order at the beginning of period k if and only if we have
sufficient stocks to guarantee the required service level at least for
this period.

Given a pair /sk,xkS the cost function pk(sk,xk) is clearly given
by the sum of the fixed ordering cost a, which is charged if xk

states that an order should be placed, and of the inventory holding
cost at the end of the period, which is equal to the expected
closing-inventory-level sk, multiplied by the per-unit holding cost
h. A per-unit purchase/production cost may also be considered,
this will be briefly discussed in Section 6.

The state transition function, sk¼tk(sk�1,xk), is as follows:

sk ¼
sk�1�

~dk if xk ¼ 0,

maxðsk�1�
~dk, bðk,xkÞþ

Pxk

i ¼ kþ1
~diÞ if krxkrN:

8<
: ð2Þ

Sk, the set of feasible expected closing-inventory-levels at the end
of period k, is obtained recursively from the state transition
functions t1,t2,y,tk, by assuming s0¼0 and, therefore, that an
order should be always placed at period 1 in order to cover one or
more following periods. In other words, X1(s0) does not include
the option of not placing an order.

The objective function is

z¼min
XN

k ¼ 1

pkðsk,xkÞ

( )
: ð3Þ

To determine the value of z, DP solves a set of problems
i¼1,y,N, each corresponding to a system composed by i steps
and characterized by the state si at the end of step i. The recursive
formulation of the cost function at step i is

fiðsiÞ ¼ min
xi AXiðsi�1Þ

ffi�1ðsi�1Þþpiðsi,xiÞg, ð4Þ

where si¼ti(si�1,xi). In addition, we have the following boundary
condition:

f1ðs1Þ ¼ min
x1 AX1ðs0Þ

fp1ðs1,x1Þg, ð5Þ

where s1¼t1(s0,x1).
Clearly, a mere recursive approach would immediately generate

a very large state space graph that would certainly be unmanage-
able. For this reason, in the following sections we will propose an
effective strategy for limiting the size of the state space graph.
Fig. 1. Shortest path problem graph.
4. A state space relaxation for the deterministic equivalent
problem

Intuitively, the first way of keeping the state space graph
compact consists in employing a relaxation that clusters states
together. More specifically, in order to do so we will employ a
relaxation proposed by Tarim (1996).

The core observation in Tarim’s relaxation lies in the fact that,
if we relax the constraint which enforces non-negative order
quantities—i.e. we give the opportunity to sell back items in
excess to the supplier at the beginning of a given replenishment
cycle—then the model proposed can be reduced to a shortest path
problem on a state space graph having a number of nodes and
arcs polynomial in the number N of periods.

In this relaxation, since the inventory conservation constraint
is relaxed between replenishment cycles, each replenishment
cycle can be treated independently and its expected total cost can
be computed a priori. In fact, given a replenishment cycle T(i,j), we
recall that b(i,j), as defined above, denotes the minimum expected
buffer stock level required to satisfy a given service level
constraint during the replenishment cycle T(i,j). It directly follows
that ~I j ¼ bði,jÞ. Furthermore for each period tAfi, . . . ,j�1g the
expected closing-inventory-level is ~It ¼ bði,jÞþ

Pj
k ¼ tþ1

~dk. Since
all the ~It for tAfi, . . . ,jg are known it is easy to compute the
expected total cost for T(i,j), which is by definition the sum of the
ordering cost and of the holding cost components, aþh

Pj
t ¼ i

~It .
We now have a set S of N(N+1)/2 possible different replen-

ishment cycles and their respective costs. Our new problem is to
find an optimal set S� � S of consecutive disjoint replenishment
cycles that covers our planning horizon at the minimum cost.

We shall now show that the optimal solution to this relaxation
is given by the shortest path in a state space graph from a given
initial node to a final node (boundary condition) where each arc
represents a replenishment cycle cost. If N is the number of
periods in the planning horizon of the original problem, we
introduce N+1 nodes. Since we assume that an order is always
placed at period 1, we take node 1, which represents the
beginning of the planning horizon, as the initial node. Node N+1
represents the end of the planning horizon.

Definition. The cycle cost, c(i,j), denotes the expected cost of the
optimal policy for T(i,j). It can be expressed as

cði,jÞ ¼ aþhðj�iþ1Þbði,jÞþh
Xj

t ¼ i

ðt�iÞ ~dt : ð6Þ

The cycle cost is the sum of two components. A fixed ordering cost
a, that is charged at the beginning of the cycle when an order is
placed, and a variable holding cost ht charged at the end of each
time period within the replenishment cycle and proportional to
the amount of stock held in inventory.

For each possible replenishment cycle T(i,j�1) such that
i,jAf1, . . . ,Nþ1g and io j, we introduce an arc (i,j) with associated
cost c(i,j�1) (Fig. 1). Since we are dealing with a one-way temporal
feasibility problem (Wagner and Whitin, 1958), when iZ j, we
introduce no arc. As shown in Tarim (1996), the cost of the shortest
path from node 1 to node N+1 in the given graph is a valid lower
bound for the original problem, as it is a solution of the relaxed
problem. A shortest path can be efficiently found by applying
Dijkstra’s algorithm that runs in O(n2) time, where n is the number
of nodes in the graph. Details on efficient implementations of
Dijkstra’s algorithm can be found in Sedgewick (1988).
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It is easy to map the optimal solution for the relaxed problem, that
is the set of arcs participating to the shortest path, to an assignment
for the original problem by noting that each arc (i,j) represents a
replenishment cycle T(i,j�1). The set of arcs in the optimal path,
therefore, uniquely identifies a set of disjoint replenishment cycles,
that is a replenishment plan. Furthermore for each period
tAfi, . . . ,j�1g in cycle T(i,j�1) we already showed that all the
expected closing-inventory-levels ~It , tAfi, . . . ,j�1g, are known. This
produces a complete assignment for decision variables in our model.
The feasibility of an assignment with respect to the original problem
can be checked by verifying that it satisfies every relaxed constraint,
that is no negative expected order quantity is scheduled.
5. A filtering procedure for the relaxed state space graph

In the previous section we presented a known relaxation for
the deterministic equivalent formulation of the (Rn,Sn) policy. In
this relaxation we solve a shortest path problem over a given
graph in order to find a lower bound for the cost of the optimal
solution for the original problem.

We now aim to reduce a priori as much as possible the number
of arcs in the graph we defined in the previous section. To do so
we exploit a reduction procedure based on an upper bound for
replenishment cycle lengths that was originally presented by
Tarim and Smith (2008).

Definition. Cycle opening inventory level, R(i,j), denotes the
minimum opening inventory level in period i to meet demand
until period j+1 and Rði,jÞ ¼ bði,jÞþ

Pj
t ¼ i

~dt .
Algorithm 1. Augmenting procedure

input : a relaxed and
output : an augmente

1 begin
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introduce arc ð

buffer stock b�
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buffer stock

$

let t�14 i be

b�4 � � �ZRði,t
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buffer stock b�
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19 end
Let us assume now that period i is a replenishment period. It is
not generally possible, prior to obtaining the optimal solution to
an instance of the problem, to determine the length of the
optimum replenishment cycle for a particular replenishment
period; however, an upper bound on the length can be
determined using Proposition 1.

Proposition 1 (Tarim and Smith, 2008). If 8kAfi, . . . ,j�1g,
ðcði,kÞþcðkþ1,jÞ4cði,jÞÞ3ðbði,kÞ4Rðkþ1,jÞÞ and (kAfi, . . . ,jg
ðcði,kÞþcðkþ1,jþ1Þrcði,jþ1ÞÞ4ðbði,kÞrRðkþ1,jþ1ÞÞ then for per-

iod i the optimum length replenishment cycle is T(i,p)n where

irpr j, and j indicates an upper bound.

Since we have an upper bound j for the length of an optimum
replenishment cycle starting at period i, we can remove from our
graph every arc (i,t), where t4 jþ1.
6. An augmenting procedure for the relaxed state space graph

Once the shortest path problem on the graph constructed as
shown above is solved, we can easily verify if every relaxed constraint
is satisfied by the solution found, that is, if no expected negative
replenishment quantity is scheduled in the optimal replenishment
plan. In this case, the solution found is feasible and optimal for the
original problem. If, on the other hand, the solution is not feasible for
the original model and it schedules expected negative replenishment
quantities, we can augment the graph with additional nodes and arcs
in such a way that the shortest path on the augmented graph is
guaranteed to provide a feasible and optimal solution for the original
problem. In what follows we shall show how to augment the graph
and efficiently compute an optimal solution for the original problem.
filtered state space graphRSG(S,T)
d state space graph ASGðS0,T 0Þ

. ,N in S0 do
T 0 do

r stock associate to ðp,iÞ

T 0 do

hen

ode i0 in S0;

p,i0Þ in T 0 with associated

;

iÞ from T 0;

minimum index for which

Rði,tÞr � � �rRði,NÞ;

i0,tÞ T 0 with buffer stock

,kÞ, k¼ tþ1, . . . ,Nþ1 in T 0 do

ði0,kÞ in T 0 with associated

bði,k�1Þ;

the maximum index for which

�2Þ;

i0,t�1Þ in T 0 with associated

�
Pt�1

k ¼ i
~dk



Fig. 4. Connection matrix with expected buffer stock levels.

Fig. 5. Connection matrix with expected cycle costs.
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For convenience, instead of associating a cost c(i,j�1) to each
arc (i,j) in the graph, we will now associate the respective cycle
buffer stock, b(i,j�1), as defined above. From the definitions
given, it is easy to see that, once this expected buffer stock level is
fixed, also the cost c(i,j�1) is uniquely defined.

Let RSG(S,T) be a relaxed state space graph built according to
the discussion in Section 4 and filtered according to the discussion
in Section 5. Let S denote the set of nodes and T the set of arcs in
the graph. The pseudo-code for the proposed augmenting
procedure is presented in Algorithm 1. The procedure eventually
generates an augmented state space graph ASGðS0,T 0Þ, where S0 is
the set of nodes and T 0 is the set of arcs in the augmented graph.

Algorithm 1 initially creates a copy ASGðS0,T 0Þ of RSG(S,T) (line
3). Then it considers each node in S0 in order (line 4), starting from
node 1 up to node N. Note that node N+1 has no outbound arcs, so
we do not have to consider it. The process is repeated for each
node i, therefore we will only describe the steps performed on a
single node.

We consider every inbound arc at node i (line 5) and we
operate in the following fashion. Given an inbound arc (p,i) with
associated buffer stock bn (line 6), for each outbound arc (i,j) in the
graph (line 7) we check that b�rRði,j�1Þ. If this condition is
satisfied for every outbound arc, then we preserve the inbound
arc (p,i) at node i with the associated buffer stock bn (Fig. 2).
Otherwise, if b�4Rði,j�1Þ (line 8), for a subsequent pair of
replenishment cycles a negative order quantity is scheduled. In
order to resolve this infeasibility we perform the following
transformation (lines 10y18). We introduce a new node i0 in
the graph. We remove arc (p,i) and we introduce a new arc ðp,i0Þ
with associated buffer stock bn (Fig. 3). Then we connect this new
node in the following way.

Let t4 i be the minimum index for which
b�rRði,t�1ÞrRði,tÞr � � �rRði,NÞ. We introduce arc ði0,tÞ with
buffer stock bði,t�1Þ. Then, for each arc (i,t+1),y,(i,N+1) in the

graph, we also introduce ði0,tþ1Þ, . . . ,ði0,Nþ1Þ with buffer stock,
respectively, b(i,t),y,b(i,N). It should be noted that some of the
arcs (i,t+1),y,(i,N+1) may have been removed by the filtering
described in Section 5.

Let t�14 i be the maximum index for which b�4 � � �Z
Rði,t�2Þ. We introduce arc ði0,t�1Þ with buffer stock
b��

Pt�1
k ¼ i

~dk. Obviously arcs ði0,t�2Þ,ði0,t�3Þ, . . . are suboptimal
and should not be introduced, since the inventory carried on from
Fig. 2. Feasible node point.

Fig. 3. Infeasible node point.
the previous replenishment cycle is enough to cover subsequent
periods up to t�1.

Note that, when the process is iterated on subsequent nodes
i+1,y,N, the new inbound arcs that may have been introduced
must also be considered among all the possible ones for a given
node.

By starting from node 1 and by iterating this process for each
node i, 1r irN, we obtain an augmented graph. By construction
the cost of the shortest path in this augmented graph is the
optimal solution cost for our original problem since every possible
negative order quantity scenario has been considered and
replaced with the respective feasible possible courses of action.
Fig. 6. Filtered connection matrix. Expected buffer stock levels and expected cycle

costs (in parentheses) are shown for each arc. The shortest path is highlighted.

Fig. 7. Augmented connection matrix. Expected buffer stock levels and expected

cycle costs (in parentheses) are shown for each arc. The shortest path is

highlighted. Node 3 (and obviously arc (3,4)) has been removed from the network

since the augmenting procedure removed all its inbound arcs.



Table 1
Test set P5.

a N st= ~dt ¼ 1=3

a¼ 0:95 a¼ 0:99

CP DP CP DP

Nod Sec Graph Sec Nod Sec Graph Sec

25 50 857 45 /64;76S 0.33 2474 170 /67;82S 0.30

75 41 386 5400 /102;125S 0.38 180 000� 20 000� /106;133S 0.37

50 50 441 17 /66;84S 0.34 1242 170 /69;88S 0.33

75 23 805 2400 /104;133S 0.37 180 000� 20 000� /108;139S 0.37

100 50 /51;87S 0.21 104 5 /73;109S 0.34

75 /76;134S 0.24 329 30 /113;167S 0.21

200 50 /51;139S 0.23 /51;131S 0.24

75 /76;212S 0.26 /76;200S 0.28

a N st= ~dt ¼ 1=6

a¼ 0:95 a¼ 0:99

CP DP CP DP

Nod Sec Graph Sec Nod Sec Graph Sec

25 50 22 1 /58;65S 0.34 325 17 /61;70S 0.33

75 245 35 /90;103S 0.2 10 118 970 /98;116S 0.20

50 50 /51;69S 0.20 70 3 /63;80S 0.42

75 /76;106S 0.14 155 14 /100;126S 0.37

100 50 /51;103S 0.13 /51;94S 0.12

75 /76;161S 0.26 /76;145S 0.25

200 50 /51;158S 0.22 /51;184S 0.15

75 /76;242S 0.27 /76;226S 0.26

A figure marked with n means that the instance could not be solved in the given limit of 20 000 s (5.55 h).
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Nevertheless, as a consequence of the original filtering performed
on the relaxed graph, the augmented graph will typically feature a
very limited number of node and arcs. This will be shown in the
following sections.

Before demonstrating our method on a simple numerical
example, it is worth mentioning the following. Our model, for the
sake of simplicity, assumes a zero unit purchase/production cost,
also in line with the model in Tarim and Smith (2008).
Nevertheless, the extension of our algorithm to the case of a
non-zero unit production/purchasing cost is quite straightfor-
ward. In fact, as shown in Tarim and Kingsman (2004, p. 113), the
total unit variable cost can be reduced to a function of the
expected closing-inventory-level of the very last period N. There-
fore, considering such an effect in our algorithm is easy, since it
only requires us to modify, in the graph connection matrix, the
costs that appear in the rightmost column, which represents
every possible replenishment cycle that ends in period N.
1 For clarity, in order to keep the graphical presentation as compact as

possible, the expected buffer stock levels have been rounded to the nearest integer

value.
7. An example

We shall consider here a simple example in detail, to show
how in practice it is possible to apply the procedure described.
A single problem over a 5-period planning horizon is
considered and the expected values for period demand are [100,
125, 25, 40, 30]. We assume an initial null inventory level and a
normally distributed demand for every period with a coefficient of
variation st= ~dt ¼ 0:3 for each tAf1, . . . ,Ng, where st denotes the
standard deviation of the demand in period t. We consider an
ordering cost value a¼50 and a holding cost h¼1 per unit per
period. The non-stock-out probability in each period is set to
a¼ 0:95.

Firstly we build the connection matrix for the relaxed problem as
described in Section 4. In Fig. 4 we show the connection matrix with
the respective expected buffer stock level b(i,j�1) associated with
each arc (i,j).1 In Fig. 5 instead with each arc (i,j) we associate the
respective expected cycle cost c(i,j�1). It should be noted that the
two representations are equivalent, since the expected cycle cost
can be easily computed once the expected buffer stock level for a
given cycle is fixed. In Fig. 6 the connection matrix is filtered
according to the procedure presented in Section 5. Expected buffer
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stock levels and expected cycle costs (in parentheses) are indicated
for each arc that has not been removed by the filtering. The shortest
path in this reduced network has a cost of 403. The order periods
and the order quantities are, respectively, [1, 2, 3, 4] and [149, 138,
�25, 83]. This assignment is infeasible for the non-relaxed problem
since the expected order quantity in period 3 is �25, therefore its
cost is a lower bound for the optimal solution cost of our original
problem. According to the procedure described in Section 6 we
augment the filtered graph and we obtain the new graph in Fig. 7.
The shortest path in this augmented network has a cost of 412 and
represents the optimal solution cost of our original problem. The
replenishment periods in this optimal solution can be obtained from
the indexes of the nodes in the shortest path. The respective order
quantities can also be easily obtained from the expected buffer stock
levels associated with each arc in the shortest path. The order
periods and the order quantities are therefore, respectively, [1, 2, 3,
5] and [149, 138, 26, 22].
8. Experimental results

We compared the results obtained with our approach with the
results obtained with the state-of-the-art constraint program-
ming (CP) approach in Tarim et al. (2009), based on the set of
instances originally proposed in Berry (1972). All the experiments
presented in this section were performed on an Intel(R)
Centrino(TM) CPU 1.50 GHz with 500 Mb RAM. As in Tarim et al.
(2009), the demand in each period is assumed to be normally
distributed and we also assume that its coefficient of variation
remains sufficiently low (i.e. less or equal to 1/3) to ensure that
negative demand values can be ignored. We recall that in Tarim
et al. (2009) period demands are generated from seasonal data
Table 2
Test set P6.

a N st= ~dt ¼ 1=3

a¼ 0:95 a¼ 0:99

Graph Sec Graph

2500 75 /102;125S 0.44 /106;133S
110 /153;194S 0.36 /160;208S
145 /197;246S 0.41 /208;266S
180 /242;301S 0.48 /255;327S
215 /284;350S 0.96 /297;376S
250 /329;407S 0.79 /346;439S

5000 75 /104;133S 0.20 /108;139S
110 /155;202S 0.57 /162;214S
145 /199;255S 0.36 /210;272S
180 /245;317S 0.46 /258;337S
215 /287;366S 0.85 /300;386S
250 /332;426S 0.76 /349;450S

10 000 75 /76;134S 0.13 /116;174S
110 /170;270S 0.29 /171;256S
145 /216;344S 0.62 /224;332S
180 /271;439S 0.51 /279;422S
215 /317;517S 0.85 /324;493S
250 /365;593S 1.02 /375;569S

20 000 75 /76;212S 0.14 /76;201S
110 /111;306S 0.21 /111;292S
145 /146;408S 0.27 /146;388S
180 /181;514S 0.35 /181;485S
215 /216;617S 0.67 /216;585S
250 /251;713S 0.68 /251;675S
with no trend: ~dt ¼ 50½1þsinðpt=6Þ�. In addition to the ‘‘no trend’’
case (P1) three others are also considered:
(P2)
Sec

0.3

0.3

0.4

0.4

0.9

0.7

0.4

0.2

0.4

0.5

0.9

0.7

0.3

0.1

0.3

0.6

0.6

0.9

0.1

0.1

0.2

0.4

0.4

0.6
positive trend case, ~dt ¼ 50½1þsinðpt=6Þ�þt,

(P3)
 negative trend case, ~dt ¼ 50½1þsinðpt=6Þ�þð52�tÞ,

(P4)
 life-cycle trend case, ~dt ¼ 50½1þsinðpt=6Þ�þminðt,52�tÞ.
Tests are performed using four different ordering cost values
aAf40,80,160,320g and two different st= ~dt Af1=3,1=6g. The
planning horizon length takes even values in the range [24, 50]
when the ordering cost is 40 or 80 and [14, 24] when the ordering
cost is 160 or 320. The holding cost used in these tests is h¼1 per
unit per period. Tests consider two different service levels
a¼ 0:95 ðza ¼ 0:95 ¼ 1:645Þ and a¼ 0:99 ðza ¼ 0:99 ¼ 2:326Þ.

For almost all these instances our DP approach is either
better—in terms of run time—than the CP approach or equivalent,
with some exceptions for the smallest instances. When the
number of periods considered in the planning horizon grows, our
DP approach clearly scales better than the CP approach. The
maximum improvement observed reaches a factor of 24. Never-
theless, for this set of instances the CP approach remains
competitive and achieves reasonable run times of a few seconds
also for the largest instances.

In what follows, we aim to highlight the limits of the CP
approach and we want to show that our DP approach remains
very effective even for those instances for which the CP approach
performs poorly. In order to do so, we consider the following set
of instances (test set P5). The expected period demands, ~dt , are
generated as uniformly distributed random numbers in [0, 100].
Empirically, in fact, we observed that generating random
sequences of demands rather than seasonal patterns or trends
makes the problem harder to solve. Again we consider four
st= ~dt ¼ 1=6

a¼ 0:95 a¼ 0:99

Graph Sec Graph Sec

8 /90;103S 0.25 /98;116S 0.26

6 /134;157S 0.31 /144;175S 0.28

1 /174;202S 0.41 /185;222S 0.41

9 /211;245S 0.46 /225;268S 0.47

3 /248;285S 0.93 /263;310S 0.88

9 /287;330S 0.75 /305;361S 0.77

8 /76;107S 0.13 /100;126S 0.22

9 /111;152S 0.18 /146;185S 0.28

0 /146;198S 0.21 /187;234S 0.62

5 /181;250S 0.30 /230;295S 0.49

4 /216;296S 0.75 /268;338S 0.49

4 /251;347S 0.61 /312;399S 0.95

4 /76;162S 0.15 /76;147S 0.04

9 /111;230S 0.22 /111;211S 0.10

5 /146;300S 0.26 /146;280S 0.19

9 /181;377S 0.34 /181;354S 0.25

1 /216;448S 0.70 /216;423S 0.58

9 /251;512S 0.62 /251;485S 0.67

5 /76;242S 0.15 /76;228S 0.17

3 /111;352S 0.17 /111;332S 0.16

4 /146;460S 0.39 /146;437S 0.26

9 /181;575S 0.38 /181;546S 0.54

4 /216;685S 0.50 /216;652S 0.47

0 /251;787S 0.80 /251;750S 0.79
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different ordering cost values aAf25,50,100,200g and two
different st= ~dt Af1=3,1=6g. The planning horizon length takes
the values {50, 75}. The holding cost used in these tests is h¼1 per
unit per period. Again we consider two different service levels
a¼ 0:95 ðza ¼ 0:95 ¼ 1:645Þ and a¼ 0:99 ðza ¼ 0:99 ¼ 2:326Þ. Table 1
compares the CP and the DP approach for this new set of
instances. In our test results, the heading ‘‘CP’’ refers to the state-
of-the-art CP approach in Tarim et al. (2009), while ‘‘DP’’ refers to
our novel DP approach. For the CP approach we report the number
of nodes explored (Nod) and the run time in seconds (Sec); for our
DP approach we report the size of the state space graph generated
(Graph) and the run time in seconds (Sec). The size of the state
space graph is described as a pair /N;AS, where N is the number
of nodes and A is the number of arcs. When a field is empty in the
table, this means that the CP approach and the DP approach are
equivalent, since for that particular instance the CP approach was
able to prove optimality at the root node in polynomial time using
the DP relaxation originally proposed in Tarim (1996).

It is immediately clear that for low a/h ratios (that is for the
lowest ordering costs considered), the CP approach has to explore
a large search space and requires a long time to prove optimality,
while our DP approach still generates small state space graphs
and achieves fast runtimes. As the ratio a/h increases, the CP
approach performs better and, for some instance, it is equivalent
to our DP approach.

In the last set of instances considered (test set P6) we aim to
show that our approach is effective even when the planning
horizon is significantly longer, and that the computation is not
affected by the magnitude of the demands considered. The
planning horizon length now ranges up to 250 periods, in order
to show that our approach scales well in the number of periods.
The expected period demands ~dt are generated as uniformly
distributed random numbers in [0, 10 000], in order to show that
large values for the expected demands do not affect the scalability
of our approach. Once more, we consider four different ordering
cost values aAf2500,5000,10 000,20 000g and two different
st= ~dt Af1=3,1=6g. The planning horizon length takes the following
values {75, 110, 145, 180, 215, 250}. The holding cost used in
these tests is h¼1 per unit per period. Also in this case, we
consider two different service levels a¼ 0:95 ðza ¼ 0:95 ¼ 1:645Þ
and a¼ 0:99 ðza ¼ 0:99 ¼ 2:326Þ. The computational results in
Table 2 show that the graphs generated are still extremely
compact and that the run times are mostly under one second even
if a long planning horizon and large demands are considered.
9. Conclusions

We proposed a novel DP approach for computing (Rn,Sn) policy
parameters. Our experimental results show that our approach,
based on the described filtering algorithm for the state space graph
and on the state space graph augmenting procedure, can solve
instances over planning horizons comprising hundreds of periods.
State space relaxation and state space augmentation are two
known strategies in operations research, nevertheless, the idea of
filtering a relaxed state space graph is, to the best of our
knowledge, a novel contribution. As our computational experience
shows, our DP reformulation performs significantly better than the
original MIP approach proposed by Tarim and Kingsman and it also
beats the state-of-the-art reformulations proposed by Tarim and
Smith and Tarim et al. Furthermore our results are not affected by
the magnitude of the demand considered in each period.
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