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In this paper we address the general multi-period production/inventory problem with non-stationary

stochastic demand and supplier lead-time under service level constraints. A replenishment cycle policy

(Rn,Sn) is modeled, where Rn is the nth replenishment cycle length and Sn is the respective order-up-to-

level. We propose a stochastic constraint programming approach for computing the optimal policy

parameters. In order to do so, a dedicated global chance-constraint and the respective filtering

algorithm that enforce the required service level are presented. Our numerical examples show that a

stochastic supplier lead-time significantly affects policy parameters with respect to the case in which

the lead-time is assumed to be deterministic or absent.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

An interesting class of production/inventory control problems
is the one that considers the single location, single product case
under stochastic demand. One of the well-known policies that can
be adopted to control such a system is the ‘‘replenishment cycle
policy’ (R,S). Under the non-stationary demand assumption this
policy takes the form (Rn,Sn), where Rn denotes the length of the
nth replenishment cycle, and Sn the order-up-to-level value for
the nth replenishment. This easy to implement inventory control
policy yields at most 2N policy parameters fixed at the beginning
of an N-period planning horizon. For a discussion on inventory
control policies see Silver et al. (1998). The replenishment cycle
policy provides an effective means of damping the planning
instability. Furthermore, it is particularly appealing when items
are ordered from the same supplier or require resource sharing. In
such a case all items in a coordinated group can be given the same
replenishment period. Periodic review also allows a reasonable
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prediction of the level of the workload on the staff involved and is
particularly suitable for advanced planning environments.
For these reasons, as stated by Silver et al. (1998), (R,S) is a
popular inventory policy. Due to its combinatorial nature, the
computation of (Rn,Sn) policy parameters is known to be a difficult
problem to solve to optimality. An early approach proposed by
Bookbinder and Tan (1988) is based on a two-step heuristic method.
Tarim and Kingsman (2004, 2006) and Tempelmeier (2007) propose
a mathematical programming approach to compute policy para-
meters. Tarim and Smith (2008) give a computationally efficient
constraint programming formulation. An exact formulation and a
solution method are presented in Rossi et al. (2008).

All the above mentioned works assume either zero or a fixed
(deterministic) supplier lead-time (i.e., replenishment lead-time).
However, the lead-time uncertainty, which in various industries is an
inherent part of the business environment, has a detrimental effect on
inventory systems. For this reason, there is a vast inventory control
literature analysing the impact of supplier lead-time uncertainty on
the ordering policy (Whybark and Williams, 1976; Speh and
Wagenheim, 1978; Nevison and Burstein, 1984). A comprehensive
discussion on stochastic supplier lead-time in continuous-time
inventory systems is presented in Zipkin (1986). Kaplan (1970)
characterises the optimal policy for a dynamic inventory problem
where the lead-time is a discrete random variable with known
distribution and the demands in successive periods are assumed to
form a stationary stochastic process. Since tracking all the outstanding
orders through the use of dynamic programming requires a large
multi-dimensional state vector, Kaplan assumes that orders do not
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cross in time and supplier lead time probabilities are independent of
the size/number of outstanding orders (for details on order-crossover
see Hayya et al., 1995).

The assumption that orders do not cross in time is valid for
systems where the supplier production system has a single-server
queue structure operating under a FIFO policy. Nevertheless,
there are settings in which this assumption is not valid and orders
cross in time. This has been recently investigated in Hayya et al.
(2008), Bashyam and Fu (1998) and Riezebos (2006). As Riezebos
underscores, the types of industries that have a higher probability
of facing order crossovers are either located upstream in the
supply chain, or use natural resources, or order strategic materials
from multiple suppliers or from abroad. In a case study, he
showed that the potential cost savings realized by taking order
crossovers into account were approximately 30%. Unfortunately,
he remarks, modern ERP systems are not able to handle order
crossovers effectively.

In a recent work, Babaı̈ et al. (2009) analyze a dynamic
re-order point control policy for a single-stage, single-item
inventory system with non-stationary demand and lead-time
uncertainty. To the best of our knowledge, there is no complete or
heuristic approach in the literature that addresses the
computation of (Rn,Sn) policy parameters under stochastic
supplier lead time and service level constraints. Computing
optimal policy parameters under these assumptions is a hard
problem from a computational point of view. We argue that
incorporating both a non-stationary stochastic demand and a
stochastic supplier lead time—without assuming that orders do
not cross in time—in an optimization model is a relevant and
novel contribution.

In this work, we propose a stochastic constraint programming
(Walsh, 2002) model for computing optimal (Rn,Sn) policy
parameters under service level constraints and stochastic supplier
lead times. In stochastic constraint programming, complex
non-linear relations among decision and stochastic variables—

such as the chance-constraints that enforce the required service
level—can be effectively modeled by means of global chance-

constraints (Hnich et al., 2009). Examples of global chance-
constraints applied to inventory control problems can be found
in Rossi et al. (2008) and Tarim et al. (2009). Our model
incorporates a dedicated global chance-constraint that enforces,
for each replenishment cycle scheduled, the required non-stock-
out probability. The model is tested on a set of instances that are
solved to optimality under a discrete stochastic supplier lead time
with known distribution.

The paper is organized as follows. In Section 2 we provide the
formal definition of the problem and we discuss the working
assumptions. In Section 3 we provide a deterministic reformula-
tion for the chance-constraints that enforce the required service
level. In Section 4 we introduce stochastic constraint program-
ming and we discuss how it is possible to embed the deterministic
reformulation of the chance-constraints within a global chance-
constraint. This global chance-constraint is then enforced in the
stochastic constraint programming model for computing the
optimal policy parameters. In Section 5 we present our computa-
tional experience on a set of instances. Finally, in Section 6, we
draw conclusions.
2. Problem definition

We consider the uncapacitated, single location, single product
inventory problem with a finite planning horizon of N periods and
a demand dt for each period tAf1, . . . ,Ng, which is a random
variable with probability density function gt (dt). We assume that
the demand occurs instantaneously at the beginning of each time
period. The demand we consider is non-stationary, that is it can
vary from period to period, and we also assume that demands in
different periods are independent.

Following Eppen and Martin (1988), an order placed in period t

will be received after lt periods, where lt is a discrete random
variable with probability mass function ftð�Þ. This means that an
order placed in period t will be received after k periods with
probability ft(k). We shall assume that there is a maximum lead-
time L for which

PL
k ¼ 0 ftðkÞ ¼ 1. Therefore the possible lead-time

lengths are limited to L¼ f0, . . . ,Lg and the probability mass
function is defined on the finite set L. Note that lead-times are
mutually independent and each of them is also independent of
the respective order quantity.

A fixed delivery cost a is incurred for each order. A linear
holding cost h is incurred for each unit of product carried in stock
from one period to the next. Without loss of generality, we will
adopt the following assumption that concerns the accounting of
inventory holding costs: we will charge an inventory holding cost
at the end of each period based on the current inventory position,
rather than the current inventory level. This will reflect the fact
that interests are charged not only on the actual amount of items
in stock, but also on outstanding orders. Doing so often
makes sense since companies may assess holding cost on their
total invested capital and not simply on items in stock. A
further and detailed justification for this can be found in Hunt
(1965).

We assume that it is not possible to sell back excess items to
the vendor at the end of a period and that negative orders are not
allowed, so that if the actual stock exceeds the order-up-to-level
for that review, this excess stock is carried forward and not
returned to the supply source. However, such occurrences are
regarded as rare events (see the discussion in Bookbinder and Tan,
1988 and Tarim and Kingsman, 2004) and accordingly the cost of
carrying this excess stock and its effect on the service levels of
subsequent periods are ignored.

As a service level constraint we require that, with a probability
of at least a given value a, at the end of each period the net
inventory will be non-negative. Our aim is to minimize the
expected total cost, which is composed of ordering costs and
holding costs, over the N-period planning horizon, satisfying the
service level constraints by fixing the future replenishment
periods and the corresponding order-up-to-levels at the
beginning of the planning horizon.

The actual sequence of actions is adopted from Kaplan (1970).
At the beginning of a period, the inventory on hand after
all the demands from previous periods have been realized is
known. Since we are assuming complete backlogging, this
quantity may be negative. Also known are orders placed in
previous periods which have not been delivered yet. On the basis
of this information, an ordering decision is made for the
current period. All the deliveries that are to be made during a
period are assumed to be made immediately after this ordering
decision and hence are on hand at the beginning of the period. In
summary, there are three successive events at the beginning of
each period. First, stock on hand and outstanding orders
are determined. Second, an ordering decision is made on the
basis of this information. Third, all supplier deliveries for the
current period, possibly including the most recent orders, are
received.
3. Non-stationary stochastic lead-time

Let us denote the inventory position (the total amount of stock
on hand plus outstanding orders minus back-orders) at the end of
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period t as Pt. It directly follows that

Pt ¼ Itþ
X

fkj1rkr t,lk þk4 tg

Xk, ð1Þ

where It is the inventory level (stock on hand minus back-orders)
at the end of period t, Xk is the size of the replenishment order
placed in period k, XkZ0 (received in period k+ lk), and it is
assumed that I0 equals the initial inventory.

The general chance-constrained programming model for the
problem described in Section 2 is given below. The reader is
referred to Bookbinder and Tan (1988) for the zero lead-time
version of this problem.

min EfTCg ¼

Z
d1

. . .

Z
dN

XN

t ¼ 1

ðadtþhPtÞg1ðd1Þ . . . gNðdNÞdðd1Þ . . . dðdNÞ,

ð2Þ

subject to

dt ¼
1 if Xt 40,

0 otherwise,

(
t¼ 1, . . . ,N, ð3Þ

Pt ¼ I0þ
Xt

k ¼ 1

ðXk�dkÞ t¼ 1, . . . ,N, ð4Þ

Pr Pt Z

X
fkj1rkr t,lk 4 t�kg

Xk

8<
:

9=
;Za t¼ Lþ1, . . . ,N, ð5Þ

Pt AR, Xt Z0, t¼ 1, . . . ,N, ð6Þ

where we comply with the following notation:
Ef:g
 the expectation operator

TC
 total cost

dt
 the demand in period t, a random variable with

probability density function, gt (dt)

a
 the fixed ordering cost (incurred when an order is placed)

h
 the proportional stock holding cost

lt
 the lead-time length of the order placed in period t, a

discrete random variable with a probability mass function

ftð�Þ
dt
 a {0,1} variable that takes the value of 1 if a replenishment
occurs in period t and 0 otherwise
the objective function (Eq. (2)) minimizes the expected total
ordering and inventory holding cost. It should be noted that, by
charging holding cost on the inventory position rather than on the
inventory level, the objective function becomes particularly
simple and it resembles the one employed when the lead time
is zero. Eq. (3) states that if a replenishment occurs in period
t—i.e. the order quantity Xt is greater than 0—then the
corresponding indicator variable dt must take value 1. Eq. (4)
enforces the inventory conservation constraint for each period t.
This constraint is expressed in terms of the inventory position Pt.
Eq. (5) enforces the required service level in each period t, and it is
also expressed in terms of the inventory position Pt. Finally
Eq. (6) states that the inventory position in each period may
either be zero or take any positive/negative value (i.e. full
backorders) and that the order quantity is forced to be greater
or equal to 0.

Note that depending on the probabilities assigned to each lead
time length by the probability mass function, it may not be
possible, in general, to provide the required service level for some
initial periods. Nevertheless, by reasoning on a worst case
scenario, it will always be possible to provide the required service
level a starting from period L+1. Hence, the service level
constraints are enforced in periods L+1,y,N (see Eq. (5)).

Consider a review schedule, which has m reviews
over the N period planning horizon with orders placed at
T1,T2,y,Tm, where TioTiþ1. In order to incorporate the
‘‘replenishment cycle policy’’ into this model, we express the
whole model in terms of a new set of decision variables, RTi

,
i¼1,y,m. Define

Pt ¼ RTi
�
Xt

k ¼ Ti

dk, TirtoTiþ1, i¼ 1, . . . ,m, ð7Þ

where RTi
(‘‘order-up-to-position’’) can be interpreted as the

inventory position up to which inventory should be raised after
placing an order at the ith review period Ti. By doing so, order
quantities Xt have to be decided only after the demands in the
former periods have been realized. Under such a policy the orders
Xt are all equal to zero except at replenishment periods
T1,T2,y,Tm.

The service level constraint has to be expressed as a relation
between the order-up-to-positions such that the overall service
level provided at the end of each period is at least a. In order to
express this service level constraint we propose a scenario-based
approach over the discrete random variables lt, t¼1,y,N. In a
scenario-based approach (Birge and Louveaux, 1997; Tarim et al.,
2006), a scenario tree is generated which incorporates all possible
realisations of discrete random variables into the model explicitly,
yielding a fully deterministic model under the non-anticipativity
constraints.

In our problem we can divide random variables into two sets:
the random variables fltjt¼ 1, . . . ,Ng, which represent lead-times,
and the random variables fdtjt¼ 1, . . . ,Ng, which represent
demands. We deal with each set in a separate fashion,
by employing a scenario-based approach for the lt and a
deterministic equivalent modeling approach for the dt variables.
This is possible since under a given scenario discrete random
variables are treated as constants. The problem is then reduced to
the general multi-period production/inventory problem with
dynamic deterministic lead-times and stochastic demands. It
should be noted that, although it has been assumed that the
supplier lead-time is zero in Tarim and Kingsman (2004), it is
possible to extend their model for the non-zero lead-time
situation without any loss of generality when the lead time is
deterministic and remains constant for each order. In the
Appendix we show how to model the situation in which the
lead time is deterministic and dynamic (i.e. it may take a
different deterministic value in each period). This more general
situation corresponds to what is observed within any given
scenario.

A scenario ot is a possible lead-time realization for all the
orders placed up to period t in a given review schedule. We
denote the probability of a scenario ot as Prfotg. Let lTi

ðotÞ be the
realized lead-time in scenario ot for the order placed in period Ti,
where i¼1,y,m. Finally, let Ot be the set of all the possible
scenarios ot . Note that

P
wt AOt

Prfotg ¼ 1 for all t¼1,y,N.
We define Tp(t) as the latest review before period t in the planning
horizon, for which we are sure that all the former orders,
including the one placed in Tp(t), have been delivered within
period t. Under the assumption that the probability mass function
ftð�Þ is defined on a finite set L, the index p(t) provides a bound for
the scenario tree size. In fact if the possible lead-time lengths in
L are 0,y,L, the earliest order that is delivered in period t with
probability 1 under every possible scenario ot is the latest placed
in the span 1,y,t�L. Therefore since each scenario ot identifies
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the orders that have been received before or in period t, it directly
follows that the number of scenarios in the tree that is needed to
compute the order-up-to-positions for periods t�L,y,t under any
possible review schedule is at most 2L, when we place L+1 orders
in periods t�L,y,t, but it may be lower if fewer reviews are
planned. In order to clarify this concept, a small numerical
example is provided in the Appendix.

The service level constraint at period t is always a relation over
at most L+1 decision variables RTi

that represent the order-up-to-
positions of the replenishment cycles covering the span t�L,y,t.
Let poðtÞ be the value of p(t) under a given scenario ot

when a review schedule is considered. In order to satisfy the
service level constraints in our original model, we require
that the overall service level under all the possible scenarios
for each set of at most L+1 decision variables is at least a or
equivalently,

X
ot AOt

Prfotg � GS RTpo ðtÞ
þ

X
fiji4poðtÞ,lTi

ðot Þr t�Tig

ðRTi
�RTi�1

Þ

0
@

1
AZa, t¼ Lþ1, . . . ,N,

ð8Þ

where S¼
Pt

k ¼ Tpo ðtÞ
dk�

P
fiji4poðtÞ,lTi

ðot Þr t�Tig
ðdTi�1

þ � � � þdTi�1Þ,

and GS( � ) is the cumulative distribution function of S. Further
details on the derivation of Eq. (8) are provided in the Appendix.

As the reader may notice, the service level constraints (Eq. (8))
are now fully deterministic constraints expressed only in terms of
the order-up-to-positions, RTi

. This makes it possible to replace
throughout the rest of the model the Pt variables with their
expected values ~Pt , as originally proposed in Bookbinder and Tan
(1988), since these affect only the objective function in which we
are considering expected values.

We can now express the whole model in terms of the new set
of decision variables Rt, t¼1,y,N. If there is no replenishment
scheduled for period t, that is if dt ¼ 0, then Rt must be equal to
the expected closing-inventory-position in period t�1, that is
Rt ¼

~Pt�1. If there is a review Ti in period t, Rt is simply the order-
up-to-position, RTi

, for this review. Therefore, the set of
the desired order-up-to-positions, fRTi

ji¼ 1, . . . ,mg, as required
for the solution to the problem, comprises those values of Rt for
which dt ¼ 1.

Hence, the complete deterministic equivalent model under the
replenishment cycle policy can be expressed as

min EfTCg ¼
XN

t ¼ 1

ðadtþh ~PtÞ ð9Þ

subject to

dt ¼ 0) Rt ¼
~Pt�1 t¼ 1, . . . ,N, ð10Þ

Rt Z
~Pt�1 t¼ 1, . . . ,N, ð11Þ

Rt ¼
~Ptþ

~dt t¼ 1, . . . ,N, ð12Þ

Eq. (8) (service level constraints),

Rt Z0, ~Pt Z0, dt Af0,1g t¼ 1, . . . ,N, ð13Þ

where fT1, . . . ,Tmg ¼ ftAf1, . . . ,Ngjdt ¼ 1g.
The model neatly resembles the original stochastic program-

ming formulation. The reader can easily notice that, while the
objective function and the remaining constraints in the model are
now deterministic and linear—thus they can be easily modeled by
means of existing mathematical programming packages—Eq. (8)
is deterministic but non-linear and it cannot be implemented in a
straightforward manner by using existing solvers. For this reason,
in the following section, we will introduce a stochastic constraint
programming formulation that we will employ to solve the above
model.
4. A stochastic constraint programming approach

In this section, we aim to propose a stochastic constraint
programming approach for modeling and solving the model
discussed in the previous section. Firstly, we introduce the key
concepts in constraint programming and stochastic constraint
programming, the extension of constraint programming that
deals with problems of decision making under uncertainty.
Secondly, we introduce our stochastic constraint programming
model.
4.1. Constraint reasoning

Constraint programming (CP) (Apt, 2003) is a declarative
programming paradigm in which relations between decision
variables are stated in the form of constraints. Informally
speaking, constraints specify the properties of a solution to be
found. The constraints used in constraint programming are of
various kinds: logic constraints (i.e. ‘‘x or y is true’’, where x and y

are boolean decision variables), linear constraints, and global

constraints (Régin, 2003). A global constraint captures a relation
among a non-fixed number of variables. One of the most well
known global constraints is the alldiff constraint (Régin, 1994),
that can be enforced on a certain set of decision variables
in order to guarantee that no two variables are assigned the same
value.

With each constraint, CP associates a filtering algorithm able to
remove provably infeasible or suboptimal values from the
domains of the decision variables that are constrained and,
therefore, to enforce some degree of consistency (see Rossi et al.,
2006). These filtering algorithms are repeatedly called until no
more values are pruned. This process is called constraint

propagation. In addition to constraints and filtering algorithms,
constraint solvers also feature some sort of heuristic search engine

(e.g. a backtracking algorithm). During the search, the constraint
solver exploits filtering algorithms in order to proactively prune
parts of the search space that cannot lead to a feasible or to an
optimal solution.

Stochastic constraint programming (SCP) was first introduced
in Walsh (2002) in order to model combinatorial decision
problems involving uncertainty and probability. According to
Walsh, SCP combines together the best features of CP (i.e. global
constraints, search heuristics, filtering strategies, etc.) and of
stochastic programming (Kall and Wallace, 1994) (i.e. stochastic
variables, chance-constraints, etc.). In addition to decision vari-
ables, SCP features stochastic variables. Furthermore, in SCP it is
possible to capture complex non-linear relations among decision
and stochastic variables by means of global chance-constraints

(Rossi et al., 2008; Hnich et al., 2009). Similarly to global
constraints, global chance-constraints incorporate efficient stra-
tegies for performing logical inference on these relations during
the search in order to enforce some degree of consistency through
constraint propagation.

In what follows we will introduce an SCP model for computing
(Rn,Sn) policy parameters under non-stationary stochastic de-
mand, lead time, and service level constraints. In order to capture
the service level constraints, a dedicated global chance-constraint
and the respective propagation logic are introduced and incorpo-
rated in the SCP model.
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4.2. A stochastic constraint programming model

We now present an SCP formulation for computing (Rn,Sn)
policy parameters under stochastic lead times. Results from
Section 3 will be employed in the SCP formulation. More
specifically, in order to model the service level constraint
(Eq. (8)), a new global chance-constraint, serviceLevel(�), will
be defined. Such a constraint is needed to dynamically compute
the correct expected closing-inventory-positions f ~Ptjt¼ 1, . . . ,Ng
on the basis of the current replenishment plan, that is
fdtjt¼ 1, . . . ,Ng assignments.

The SCP model that incorporates our dedicated global chance-
constraint is therefore

min EfTCg ¼
XN

t ¼ 1

ða � dtþh � ~PtÞ ð14Þ

subject to

dt ¼ 0) ~Ptþ
~dt�

~Pt�1 ¼ 0 t¼ 1, . . . ,N, ð15Þ

~Ptþ
~dt�

~Pt�1Z0 t¼ 1, . . . ,N, ð16Þ

serviceLevelðd1, . . . ,dN , ~P1, . . . , ~PN ,g1ðd1Þ, . . . ,gNðdNÞ,f ð�Þ,aÞ, ð17Þ

~Pt Z0, dt Af0,1g t¼ 1, . . . ,N: ð18Þ

It should be noted that the domain of each ~Pt variable—as in the
zero lead time case (see Tarim and Smith, 2008)—is limited. In
fact, since the period demand variance is additive, the uncertainty
can only increase in the length of a replenishment cycle. Therefore
the longer a cycle is, the higher are the inventory levels that are
required to achieve a certain service level. It directly follows that a
single replenishment covering the whole planning horizon will
provide upper bounds for the expected period closing-inventory-
positions throughout the horizon.

We now describe the signature of the new constraint we have
introduced. serviceLevelð�Þ describes a relation between all the
decision variables in the model. It also accepts as parameters the
distribution of the demand in each period t, g(dt); the probability
mass function of the lead time f ð�Þ, which, without loss of
generality, is here assumed to be the same for all the periods; and
the required service level a.

A high-level pseudo-code for the propagation logic of
serviceLevelð�Þ is presented in Algorithm 1. Note that to keep
the description of the algorithm simple we assume here a
stochastic lead time l with probability mass function f(l) in every
period. The maximum lead time length is L.

In order to propagate this constraint, we consider every set of
consecutive replenishment cycles covering at least L+1 periods
(that is the one of interest plus L former periods) and having the
smallest possible cardinality in terms of replenishment cycle
number (Algorithm 1, line 5). Obviously, to identify such a group
of cycles, we have to wait until, during the search, a subset of
consecutive dt variables is assigned (Algorithm 1, line 10). Then, in
order to verify if the service level constraint is satisfied for the last
Table 1
Optimal solution.

E{TC}: 356

Period (t) 1 2
~dt

36 28

Rt 125 124

dt 1 1

Shortage probability – –
period in this group, we check that for each replenishment
cycle in the group identified at least one decision variable ~Pt

is assigned (Procedure checkBuffers, line 3 and line 22). If
this is the case the partial policy for the span is completely
defined and, by recalling that Rt ¼

~Ptþ
~dt , its feasibility can

be checked by using the condition in Eq. (8) (Procedure
checkBuffers, line 25). If the condition is not satisfied we
backtrack (Procedure checkBuffers, line 26). Notice that such a
condition involves for each period only a subset of all the decision
variables in the model, which means that our constraint is able to
detect infeasible partial assignments, i.e. nogoods (Rossi et al.,
2006).

Finally, it should be emphasized that, during the search, any CP
solver will be able to exploit constraint propagation and detect
infeasible or suboptimal assignments with respect to the other
constraints in the model. Furthermore, suboptimal solutions may
be pruned by using dedicated cost-based filtering methods (Focacci
et al., 1999; Tarim et al., 2009).
Algorithm 1. propagate
input: d1, . . . ,dN , ~P1, . . . , ~PN , a, d1,y,dN, l, L, N
1
 begin

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
cycles’fg;

pointer’1;

periods’0;

For each period i in 2, . . . ,N do

if di is not assigned then

cycles’fg;

periods’0;

pointer¼�1;

66664
elseif di is assigned to 1 then

if pointera�1 then

cycle’a replenishment cycle over fpointer, . . . ,i�1g;

add cycle to cycles;

$

if periods ZL then�
checkBuffersðÞ;

pointer’i;

periods’periodsþ1;

666666666666666664
else�

periods’periodsþ1;

66666666666666666666666666666666666664
if pointer a�1 then

cycle’a replenishment cycle over fpointer, . . . ,Ng;

add cycle to cycles;

$

if periodsZL then�
checkBuffersðÞ;

�������������������������������������������������������������������

25
 end
3 4 5

42 33 30

129 87 55

1 1 1

5% 5% 5%
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4.2.1. An example

We assume an initial null inventory level and a normally
distributed demand with a coefficient of variation st= ~dt ¼ 0:3 for
each period tAf1, . . . ,5g. The expected values for the demand in
each period are: {36, 28, 42, 33, 30}. The other parameters are
a¼1, h¼1, a¼ 0:95. We consider for every period t in the
planning horizon the following lead time probability mass
function ft(k)¼{0.3(0), 0.2(1), 0.5(2)}, which means that we
receive an order placed in period t after {0,y,2} periods
with the given probability (0 periods: 30%; 1 period: 20%;
2 periods: 50%). It is obvious that in this case we will always
receive the order at most after 2 periods. In Table 1 (Fig. 1) we
show the optimal solution found by the SCP model. We now
want to show that the order-up-to-positions—computed in this
example by using Eq. (8)—satisfy every service level constraint in
the model. We assume that for the first 2 periods no service level
constraint is enforced, since it is not possible to fully control the
inventory in the first 2 periods. Therefore we enforce the required
service level on periods 3, 4 and 5, that is Eq. (8) for t¼3,y,N.
Let us verify that the given order-up-to levels satisfy this
condition for each of these three periods. Since we know
the probability mass function ftð�Þ for each period t in the
planning horizon we can easily compute the probability PrðotÞ

for each scenario ot AOt . We have four of these scenarios for
each period tAf3, . . . ,Ng, since we are placing an order in every
period:

Fig. 1. Optimal policy under stochastic lead time, ft(k)¼{0.3, 0.2, 0.5}.
�
 S1, PrfS1g ¼ 0:15¼ ð0:3þ0:2Þ0:3; in this scenario at period t all
the orders placed are received. That is the order placed in
period t�1 is received immediately (probability 0.3), or after
one period (probability 0.2), while the order placed in period t

is received immediately (probability 0.3)

�
 S2, PrfS2g ¼ 0:35¼ ð0:3þ0:2Þð0:2þ0:5Þ; in this scenario

at period t we do not receive the last order placed in
period t. That is the order placed in period t�1 is
received immediately (probability 0:3), or after one
period (probability 0.2), while the order placed in period t is
not received immediately, therefore it is received after
one period (probability 0.2), or after two periods (prob-
ability 0.5)

�
 S3, PrfS3g ¼ 0:35¼ 0:5ð0:2þ0:5Þ; in this scenario at period t we

do not receive the last two orders placed in periods t and t�1.
That is the order placed in period t�1 is received
after two periods (probability 0.5), and the order placed in
period t is not received immediately, therefore it is received
after one period (probability 0.2), or after two periods
(probability 0.5)

�
 S4, PrfS4g ¼ 0:15¼ 0:5 � 0:3; in this scenario at period t we do

not receive the order placed in period t�1 and we
observe order-crossover. That is the order placed in period
t�1 is received after two periods (probability 0.5), and
the order placed in period t is received immediately
(probability 0.3)
Procedure 1. checkBuffers
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cycle ’ the last element in cycles,

a replenishment cycle over fi, . . . ,jg;

if no decision variable ~Pi, . . . , ~Pj is assigned then

breturn;

counter ’ 1;

For each period t covered by cycle do

formerCycles ’ cycles;

remove cycle from formerCycles;

coveredPeriods ’ the number of periods

covered by cycles in formerCycles;

head ’ first element in formerCycles;

headLength ’ periods covered by head;

if counteroL then

while coveredPeriods�headLengthþcounterZL do

remove head from formerCycles;

head ’ first element in formerCycles;

headLength ’ periods covered by head;

66664
else

b formerCycles ’ fg;

condition ’ true;

For each cycle c in formerCycles do

let fm, . . . ,ng be the periods covered by c;

if no decision variable ~Pm, . . . , ~Pn is assigned then

b condition ’ false;

6666664
if condition then

if Eq:ð8Þ for period t n cycle

and former replenishment

cycles in formerCycles is not satisfied then

b backtrackðÞ;

66666664
counter ’ counterþ1;

6666666666666666666666666666666666666666666666666666666666664
�������
28 e
nd
In the described scenarios every possible configuration is
considered. We do this without any loss of generality. In fact if
some of the configurations are unrealistic (for instance if we
assume that order-crossover may not take place) we need only to
set the probability of the respective scenario to zero. Now it is
possible to write Eq. (8) for each period tAf3, . . . ,Ng. Consider
period 3:

PrfS1g � G
129�42

0:3
ffiffiffiffiffiffiffiffi
422

p
 !

þPrfS2g � G
124�ð28þ42Þ

0:3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
282
þ422

p
 !

þPrfS3g � G
125�ð36þ28þ42Þ

0:3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
362
þ282

þ422
p

 !

þPrfS4g � G
125þð129�124Þ�ð36þ42Þ

0:3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
362
þ422

p
 !

¼ 94:60%ffi95% ð19Þ

where Gð�Þ is the standard normal distribution function. This
means that the combined effect of order delivery delays in
our policy, when all the possible scenarios are taken into
account, gives a no-stock-out probability of about 95% for
period 3. Similar reasoning can be employed to verify that
the given solution satisfies the required service level also for
period tAf4,5g.
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The reader may notice that, since we are placing an order in
every period and since the lead time is at most of two periods, the
service level in any given period is only influenced by the
replenishment in such a period and by the last two replenish-
ments. For instance, the service level in period 4 is only influenced
by the order-up-to-position in periods 3 and 2. Let us consider the
partial assignment in Table 2. The shortage probability in period 4
is greater than the required 5% therefore this partial assignment
constitutes a nogood. As soon as our global chance-constraint
detects this partial assignment during the search, it will
immediately trigger a backtrack and it will prevent the CP
solver from exploring any assignment that extends such a
partial assignment.
Table 4
Optimal policy under no lead time.
5. Computational experience

In this section we solve to optimality an 8-period inventory
problem under stochastic demand and lead time. Different lead
time configurations are considered. The stochastic, deterministic
and zero lead time cases are compared. As in the previous
example we assume an initial null inventory level and a normally
distributed demand with a coefficient of variation st= ~dt ¼ 0:3 for
each period tAf1, . . . ,8g. The expected value ~dt for the demand in
each period t¼1,y,N are listed in Table 3. The other parameters
are a¼30, h¼1, a¼ 0:95. Initially, we consider the problem under
stochastic demand and no lead time. An efficient CP approach to
find policy parameters in this case was presented in Tarim and
Smith (2008) and Tarim et al. (2009). Obviously our approach is
general and can provide solutions for this case as well, although
less efficiently. The optimal solution for the instance considered is
presented in Fig. 2; details about the optimal policy are
reported in Table 4. We observe five replenishment cycles;
policy parameters are: cycle lengths ¼[1, 2, 1, 2, 2] and
Table 3
Forecasts of period demands.

Period (t) 1 2 3 4 5 6 7 8
~dt

15 18 13 33 30 18 23 15

Fig. 2. Optimal policy under no lead time.

Table 2
A partial assignment and the respective shortage probability in period 4. The

dashes, ‘‘–’’, are used to denote decision variables that have not been assigned yet.

E{TC}: 211 (lower bound)

Period (t) 1 2 3 4 5
~dt

36 28 42 33 30

Rt – 124 100 87 –

dt – 1 1 1 –

Shortage probability 6%
order-up-to-positions ¼[72, 42, 49, 65, 52]. The shortage
probability is at most 5%, therefore the service level is met in
every period. The E{TC} is 303.

We now consider the same instance, but with a deterministic
lead time of one period. The optimal solution is presented in
Fig. 3; details about the optimal policy are reported in Table 5. We
observe now only four replenishment cycles; policy parameters
are: cycle lengths¼[2, 1, 2, 3] and order-up-to-positions¼[59, 64,
105, 72]. Again the shortage probability is at most 5% in every
period, which means that the service level constraint is met. The
E{TC} is 456. Therefore we observe now an expected total cost that
is 50.5% higher than the zero lead time case. The replenishment
plan is significantly affected by the lead time both in term of
replenishment cycle lengths and order-up-to-positions.

When a deterministic lead time of two periods is considered,
as the reader may expect, we observe again higher costs and a
different replenishment policy. The optimal solution is presented
in Fig. 4; details about the optimal policy are reported in Table 6.
The number of replenishment cycles is now again 5; policy
parameters are: cycle lengths¼[1, 1, 2, 1, 3] and order-up-to-
positions¼[59, 84, 119, 92, 72]. The service level constraint is met
in every period. The E{TC} is 602. This means that we observe a
cost 98.6% and 32.0% higher than respectively the zero lead time
case and the one period lead time case. The replenishment plan is
again completely modified as a consequence of the lead time
length.

We now concentrate on two instances where a stochastic lead
time is considered and we compare results with the former cases.
Firstly we analyze a stochastic lead time with probability mass
function ft(k)¼{0.2(0), 0.6(1), 0.2(2)}. That is an order is received
E{TC}: 303

Period (t) 1 2 3 4 5 6 7 8

Rt 22 42 24 49 65 35 52 29

dt 1 1 0 1 1 0 1 0

Shortage probability 5% 0% 5% 5% 0% 5% 0% 5%

Fig. 3. Optimal policy under deterministic one period lead time.

Table 5
Optimal policy under deterministic one period lead time, notice that the service

level in the first period can obviously not be controlled.

E{TC}: 456

Period (t) 1 2 3 4 5 6 7 8

Rt 59 44 64 105 72 72 54 31

dt 1 0 1 1 0 1 0 0

Shortage probability – 0% 5% 5% 0% 5% 0% 5%



Fig. 4. Optimal policy under deterministic two-period lead time.

Table 6
Optimal policy under deterministic two-period lead time.

E{TC}: 602

Period (t) 1 2 3 4 5 6 7 8

Rt 59 84 119 106 92 72 54 31

dt 1 1 1 0 1 1 0 0

Shortage probability – – 5% 5% 0% 5% 5% 5%

Fig. 5. Optimal policy under stochastic lead time, ft(k)¼{0.2(0), 0.6(1), 0.2(2)}.

Table 7
Optimal policy under stochastic lead time, ft(k)¼{0.2(0), 0.6(1), 0.2(2)}, in periods

{1, 2} the inventory cannot be controlled.

E{TC}: 532

Period (t) 1 2 3 4 5 6 7 8

Rt 50 72 101 88 79 72 54 31

dt 1 1 1 0 1 1 0 0

Shortage probability – – 5% 5% 3% 5% 5% 5%

Fig. 6. Optimal policy under stochastic lead time, fi(t)¼{0.5(0), 0.0(1), 0.5(2)}.

Table 8
Optimal policy under stochastic lead time, fi(t)¼{0.5(0), 0.0(1), 0.5(2)}.

E{TC}: 562

Period (t) 1 2 3 4 5 6 7 8

Rt 53 79 107 94 87 72 54 31

dt 1 1 1 0 1 1 0 0

Shortage probability – – 5% 5% 0% 5% 5% 5%

R. Rossi et al., / Int. J. Production Economics 127 (2010) 180–189 187
immediately with probability 0.2, after one period with prob-
ability 0.6, and after two periods with probability 0.2. The optimal
solution is presented in Fig. 5; details about the optimal policy are
reported in Table 7. The number of replenishment cycles is again
5, as in the two-period lead time case; policy parameters are:
cycle lengths¼[1, 1, 2, 1, 3] and order-up-to-positions¼[50, 72,
101, 79, 72]. Therefore we see that the number and the length of
replenishment cycles does not change from the deterministic
two-period lead time case, although we observe lower order-up-
to-positions as we may expect since the lead time is in average
one period therefore lower than in the former case. Also the cost
reflects this, in fact it is 11.6% lower than in the two-period
deterministic lead time case. It should be noted that the
uncertainty of the lead time plays a significant role, in fact
although the average lead time is one period, the structure of the
policy resembles much more the one under a two-period
deterministic lead time than the one under a deterministic one
period lead time. Moreover the expected total cost is 16.6% higher
than in this latter case.

We finally consider a different probability mass function for
the lead time: ft(k)¼{0.5(0), 0.0(1), 0.5(2)}, which means that we
maintain the same average lead time of one period, but we
increase its variance. The optimal solution is presented in Fig. 6;
details about the optimal policy are reported in Table 8. The
number of replenishment cycles is still 5; policy parameters are:
cycle lengths¼[1, 1, 2, 1, 3] and order-up-to-positions¼[50, 72,
101, 79, 72]. Although the average lead time is still one period,
order-up-to-positions are slightly higher than in the former case
where the variance of the lead time was lower. Also the cost
reflects this, in fact it is 5.6% higher than in the former case, but
this is still lower than the expected total cost of the two-period
deterministic lead time case.

To summarize, in our experiments we saw that supplier lead
time uncertainty may significantly affect the structure of the
optimal (Rn,Sn) policy. Computing optimal policy parameters
constitutes a hard computational and theoretical challenge. Under
different degrees of lead time uncertainty, when other input
parameters for the problem remain fixed, order-up-to-positions
and reorder points in the optimal policy change significantly.
Deciding what the optimal decisions are for certain input
parameters is a counterintuitive task. Our approach provides a
systematic way to compute optimal policy parameters.
6. Conclusions

A novel approach for computing replenishment cycle policy
parameters under non-stationary stochastic demand, stochastic
lead time and service level constraints has been presented. The
approach is based on SCP and it employs a dedicated global
chance-constraint in order to enforce the required service level in
each period. The assumptions under which we developed our
approach for the stochastic lead time case proved to be less
restrictive than those commonly adopted in the literature for
complete methods. In particular we faced the problem of order-
crossover, which is a very active research topic. Our approach
merged well-known concepts such as deterministic equivalent
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modeling of chance-constraints and scenario-based modeling.
Our computational experience showed that a stochastic supplier
lead time may significantly impact the structure and the cost of
the optimal replenishment cycle policy with respect to the case in
which the lead time is deterministic or absent. In our future
research, we aim to develop dedicated cost-based filtering
algorithms able to significantly speed up the search for the
optimal policy parameters.
Appendix A

A.1. Deterministic equivalent non-linear formulation of the service

level constraints

We discuss the main steps required to derive the deterministic
equivalent non-linear formulation of the service level constraints
(Eq. (8)).

To begin, we discuss how to obtain a deterministic equivalent
formulation for the chance-constraints that enforce the required
service level when the lead time in each period varies and
assumes a given deterministic value. The same reasoning is then
easily generalized to the case in which the lead time is stochastic
and assumes a different distribution from period to period.

When a dynamic deterministic lead time Lt Z0 is considered in
each period t¼1,y,N, an order placed in period t will be received
only at period t+Lt, that is

It ¼ I0þ
X

fkjkZ1,Lkþkr tg

Xk�
Xt

k ¼ 1

dk t¼ 1, . . . ,N: ð20Þ

Let us recall that the inventory position, Pt, represents the total
amount of inventory on-hand plus outstanding orders minus
backorders at the end of period t. It directly follows that

Pt ¼ Itþ
X

fkj1rkr t,Lk þk4 tg

Xk, ð21Þ

where we assume P0 ¼ I0. It is easy, then, to reformulate the
model using the inventory position.

Next, we modify the general stochastic programming formula-
tion in order to incorporate the ‘‘replenishment cycle policy’’.
Consider a review schedule, which has m reviews over the N

period planning horizon with orders placed at {T1,T2,y,Tm}, where
Ti4Ti�1, TmrN�LTm

. For convenience, T1 is defined as the start of
the planning horizon and Tm +1¼N+1 as the period immediately
after the end of the planning horizon.4 The associated inventory
reviews will take place at the beginning of periods Ti, i1,y,m. In
the replenishment cycle policy considered here, clearly the orders
Xt are all equal to zero except at replenishment periods
T1,T2,y,Tm. The inventory level It carried from period t to period
tþ1 is the opening inventory plus any orders that have arrived up
to and including period t less the total demand to date. Hence, the
inventory balance equation becomes,

It ¼ I0þ
X

fijLTi
þTi r tg

XTi
�
Xt

k ¼ 1

dk, t¼ 1, . . . ,N: ð22Þ

Define Tp(t) as the latest review before period t in the planning
horizon, for which all the former orders, including the one placed
in Tp(t), are delivered within period t, therefore

pðtÞ ¼maxfij8jAf1, . . . ,ig,TjþLTj
rt, i¼ 1, . . . ,mg, ð23Þ
4 The review schedule may be generalized to consider the case where T1 41, if

the opening inventory I0 is sufficient to cover the immediate needs at the start of

the planning horizon.
for all t¼1,y,N. The inventory level It at the end of period t

(Eq. (22)) can be expressed as

It ¼ I0þ
XpðtÞ
i ¼ 1

XTi
þ

X
fiji4pðtÞ,LTi

þTi r tg

XTi
�
Xt

k ¼ 1

dk, t¼ 1, . . . ,N: ð24Þ

We now want to reformulate the constraints of the chance-
constrained model in terms of a new set of decision variables RTi

,
i¼1,y,m. Define,

Pt ¼ RTi
�
Xt

k ¼ Ti

dk, TirtoTiþ1, i¼ 1, . . . ,m, ð25Þ

where RTi
can be interpreted as the inventory position up to which

inventory should be raised after placing an order at the ith review
period Ti. We can now express the whole model in terms of these
new decision variables RTi

. The new problem is to determine the
number of reviews, m, the Ti, and the associated RTi

for i¼1,y,m.
Let us now express Eq. (24) using RTi

as decision variables

It ¼ RTpðtÞ
þ

X
fiji4pðtÞ,LTi

þTi r tg

ðRTi
�RTi�1

þdTi�1
þ � � � þdTi�1Þ

�
Xt

k ¼ TpðtÞ

dk, t¼ 1, . . . ,N: ð26Þ

As mentioned earlier, a is the desired minimum probability
that the net inventory level in any time period is non-negative.
Depending on the values assigned to Lt it is obviously not possible
to provide the required service level for some initial periods. In
general, we provide the required service level a starting from the
period t, for which the value t+Lt is minimum. Let M be this
period. Notice that, it will never be optimal to place any order in a
period t such that tþLt 4N, since such an order will not be
received within the given planning horizon.

By substituting It with the right hand term in Eq. (26) we obtain

GS RTpðtÞ
þ

X
fiji4pðtÞ,LTi

þTi r tg

ðRTi
�RTi�1

Þ

0
@

1
AZa, t¼M, . . . ,N: ð27Þ

where S¼
Pt

k ¼ TpðtÞ
dk�

P
fiji4pðtÞ,LTi

þTi r tgðdTi�1
þ . . . þdTi�1Þ, and

GS(.) is the cumulative distribution function of S.
The service level constraints are now deterministic and they

are expressed only in terms of the order-up-to-positions. Eq. (27)
can be directly employed in order to obtain Eq. (8), under the
original assumption that the lead time in each period tAf1, . . . ,Ng
is a discrete random variable lt.

A.2. Scenarios for orders in the pipeline: a numerical example

Consider a planning horizon of N¼6 periods. The probability
mass function for the lead-time in each period t¼1,y,6 is
ftð�Þ ¼ f1=3ð0Þ,1=3ð1Þ,1=3ð2Þg, therefore an order will arrive im-
mediately with probability 1/3, after one period with probability
1/3, and after 2 periods with probability 1/3. It follows that in our
example L¼2 and ftð�Þ is defined on a finite set L that comprises 3
possible states. Let us now consider period t¼5. Clearly, Tp(t)¼3,
in fact with probability 1.0 an order placed at period 3, as well as
any other order placed at previous periods, is received by period 5.
Under a review schedule that places an order in every period,
there are 2L

¼4 possible scenarios for the remaining orders that
have been delivered by period 5:
�
 S1, PrfS1g ¼ ð1=3þ1=3Þ1=3; both the orders placed at periods 4
and 5 have been delivered by period 5;

�
 S2, PrfS2g ¼ ð1=3þ1=3Þð1=3þ1=3Þ; the order placed at period 4

has been delivered by period 5, but not the one placed at period 5;
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�
 S3, PrfS3g ¼ 1=3 � 1=3; the order placed at period 5 has been
delivered by period 5, but not the one placed at period 4;

�
 S4, PrfS3g ¼ 1=3ð1=3þ1=3Þ; the orders placed at periods 4 and 5

have not been delivered by period 5;
It is easy to see that under any other possible review schedule

the number of scenarios to be considered for the orders that have
been delivered by period 5 is less or equal to 2L

¼4. For instance,
consider a review schedule in which orders are placed only in
period 1, period 3, and period 5. In this case we only have 2
possible scenarios at period 5. As in the previous case, any order
placed at period 3 or before will be received with probability 1.0
by period 5. No order is placed at period 4. The 2 scenarios for the
remaining order are
�
 S1, PrfS1g ¼ 1=3; the order placed at period 5 has been
delivered by period 5;

�
 S2, PrfS1g ¼ 2=3; the order placed at period 5 has not been

delivered by period 5.
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