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Operational fixed job scheduling problems select a set of jobs having fixed ready and processing times
and schedule the selected jobs on parallel machines so as to maximize the total weight. In this study,
we consider working time and spread time constrained versions of the operational fixed job scheduling
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perform very well in terms of both solution quality and time.
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1. Introduction

Fixed job scheduling (FJS) is an applied area of scheduling
where tasks (jobs) with specified weights, ready times and dead-
lines are to be processed on parallel resources (machines). A task
can be processed only between its ready time and deadline, and
its processing time is exactly equal to the difference between
these.

The FJS problems are of two types: operational and tactical.
The tactical fixed job scheduling (TFJS) problems aim to minimize
the number or cost of the resources while processing all tasks.
The operational fixed job scheduling (OFJS) problems aim is to
select a subset of tasks for processing so that the total weight is
maximized.

The FJS problems have many application areas in manufactur-
ing and service operations as mentioned in many reported work.
Kovalyov et al. (2007) and Kolen et al. (2007) survey the potential
applications of the FJS problems together with their theory. Bekki
and Azizoglu (2008) study the OFJS problem on uniform parallel
machines. Kroon (1990) and Kroon et al. (1995) mention the
applications in assigning aircrafts to gates, and the capacity
planning of maintenance personnel. Fischetti et al. (1987, 1992)
and Martello and Toth (1986) consider an application of the TFJS
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problem in scheduling the bus drivers whereas Wolfe and
Sorensen (2000) consider an application of the OFJS problem in
scheduling the earth-observing satellites. Other cited application
areas include class scheduling (Kolen and Kroon, 1991), satellite
data transmission (Faigle et al., 1999) and printed circuit board
manufacturing (Spieksma, 1999).

The machine operating time constraints in FJS are introduced
by Fischetti et al. (1987, 1989). These constraints are of two types:
working time and spread time. Working time constraints impose
a limit on the processing load of each machine, letting no machine
operate for more than T time units. Spread time of a machine is
defined as the time between the start of its first operation and the
finish of its last operation, including the idle times in between.
The spread time constraints limit this time span with an upper
bound, S.

The operating time constraints find their applications in both
manufacturing and service operations. In manufacturing environ-
ments, it may not be economical to operate some high-precision/
high-cost equipment for more than a prespecified time (working
time) and/or the machines may be available for a particular
specified time period (spread time). In service environments like
car rental systems, hotel room reservations and personnel sche-
duling, the resources may have operation time constraints
imposed by the technical or union regulations.

Fischetti et al. show that the TFJS problems with working time
and spread time constraints are strongly NP-hard, in their 1987
and 1989 studies, respectively. They develop lower bounds
and branch and bound (B&B) algorithms and report on their
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satisfactory average-case performances based on the data gener-
ated close to the real-life situations. In their study, Fischetti et al.
(1992) provide several polynomial time heuristic algorithms for
both problems and report on their satisfactory worst-case
performances.

The research on the OFJS problem with operating time con-
straints is very limited despite its practical importance. Bouzina
and Emmons (1996) study the OFJS problem under working time
constraints. The authors prove that the preemptive problem is
polynomially solvable when all job weights are equal; however it
is NP-hard in the ordinary sense when the job weights are
arbitrary. The OFJS problems with spread time and working time
constraints are studied by Eliiyi and Azizoglu in their 2006 and
2010 studies, respectively. They show that both problems are NP-
hard in the strong sense and report their several polynomially
solvable special cases. They propose B&B algorithms with several
problem size reduction mechanisms and dominance conditions.
For both problems, the algorithms return optimal solutions for
problem instances with up to 100 jobs and 4 machines. Solyali
and Ozpeynirci (2009) study the OFJS problem with spread time
constraints, and develop a branch and price algorithm that out-
weighs the B&B algorithm proposed by Eliiyi and Azizoglu (2006).
Very recently Rossi et al. (2010) develop two heuristic algorithms,
namely greedy heuristic and genetic algorithm and report on the
satisfactory behavior of their algorithms.

In this study, we consider the OFJS problem with working time
and spread time constraints. For each problem, we develop
several heuristic procedures that use efficient upper bounds and
dominance conditions. Our aim is to find powerful lower bounds
in reasonable times. There are two heuristic procedures that
consider the spread time constraints (Rossi et al., 2010). We
compare the performance of our heuristic algorithm with those
procedures. Our computational study reveals that our algorithm
outweighs greedy heuristic over all problem instances; however
the genetic algorithm slightly outweighs our algorithm. To the
best of our knowledge there is no reported heuristic study for the
OFJS problem with working time constraints. As both problems
have many practical applications and are to be solved quite
frequently, our study fills an important gap in the literature and
can be used for large problem size instances conveniently. The
rest of the paper is organized as follows. We present the
mathematical formulations of the problems in Section 2. We
present our heuristic algorithms in Sections 3 and 4. Section 5
presents the results of our computational study designed to
evaluate the performances of the algorithms. The conclusions
are discussed in Section 6.

2. Problem formulations

There are n jobs to be scheduled for processing on m identical
parallel machines. Job j arrives at its ready time r;, and completes
at its deadline dj, if selected for processing. The processing time of
job j is pj=d;—r; and its weight is w;. Without loss of generality,
we assume that all data are integer and the jobs are indexed in
non-decreasing order of their ready times.

In the OFJS problem with working time constraints (OFJSW),
each machine processes a maximum of T time units. We assume
that the total processing time of all jobs, i.e., 2}1:1;71, is greater
than T, so that the working time constraint is not redundant. For
the OFJS problem with spread time constraints (OFJSS), recall that
the spread time for machine k is defined as (diu)—ri1)) where
k(1) is the first job and k(I) is the last job processed by machine k.
The spread time for machine k(dy)— 1)) cannot exceed its limit
S in any feasible solution of the OFJSS problem.

The time is assumed to be divided into intervals not necessa-
rily equal in length. We let {t;, t, ..., t;} be the sequence of the r;
and d; values in chronological order with duplicates removed, and
P, be the set of available jobs in interval g, i.e., the set of jobs that
resides interval [ta,taﬂ) between its ready time and deadline,
a=1,2,...,z—-1.

The binary assignment variable is defined as follows:

1,
Xjk = 0

The following integer programming model formulated by
Bouzina and Emmons (1996) represents the OFJSW problem:

if job j is processed on machine k

. vj, k.
otherwise J

m n
Maximize > wix; (1)
k=1j=1
subject to
m
> xe<1 j=1...n 2)
k=1
Zjepaxjksl k=1,...m a=1,2,...,z2-1 3)
n
> opx<T k=1,..,m (4)
=
Xpe{0,1} k=1,..m j=1,.,n 5)

The objective function (1) maximizes the total weight of the
processed jobs. Constraint set (2) ensures that each job is processed
by at most one machine. The condition that no machine can process
more than one job at a time is handled by constraint set (3). Working
time constraints (T-constraints) are stated in constraint set (4).
Constraint set (5) forces the integrality in job-machine assignments.

To impose the spread time limit, we define set I; as the
incompatibility set for job j, as L;={i|li>j; ri<d; or di—rj>S}.
Then, the assignment of job j and any job ie]; to the same machine
violates the spread time constraint. The following integer pro-
gramming model formulated by Eliiyi and Azizoglu (2006) repre-
sents the OFJSS problem:

m n
Maximize Z Z WiXjy 6)
k=1j=1
subject to
m
ijksl j=1,...n )
k=1
> xu<1 k=1...m a=12,.,z-1 (8)
JjePq
Xig+xp<1 k=1,...m, j=1,..,n-1, iel 9)
Xpef0,1} k=1,...m j=1,...,n (10)

The objective function (6) maximizes the total weight of the
processed jobs. Constraint sets (7) and (8) ensure that each job is
processed on at most one machine and no machine can process
more than one job at a time, respectively. Constraint set (9)
imposes the spread time constraints. Constraint set (10) forces
the integrality in job-machine assignments.

3. A filtered beam search for the OFJSW problem

Beam search is a heuristic B&B algorithm, which evaluates
nodes at each level, keeping the most promising f nodes while
discarding the rest. f3 is called the beam width. As some nodes are
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permanently discarded, the solution returned by the beam search
heuristic may not be optimal, but smaller solution times and
memory requirements are obtained when compared to B&B. The
promising f nodes are determined by the beam evaluation
function.

The 8 value and the beam evaluation function influence the
performance of the beam search algorithm. A careful evaluation
with many nodes at each level is time consuming while a crude
prediction is quick but may discard good solutions. In an attempt
to resolve this trade-off, hence increase the efficiency of a beam
search algorithm, the filtered beam search is developed by Ow
and Morton (1988).

In filtered beam search, at any level a quick evaluation is first
made for all nodes and the most promising o nodes are selected
for further branching. o is called the filter width. A thorough
evaluation is then made on selected o nodes, for reducing the
number of promising nodes to the beam width, f5. The filtered
beam search can use a powerful evaluation function in evaluating
the filtered o nodes and this may lead to better solutions while
keeping the solution times at a reasonable level due to the
filtering process. The settings of o and f values are important
and based on initial experimentation.

Many successful applications of the beam search technique are
reported, some noteworthy of which are due to Morton and
Pentico (1993), Della Croce et al. (2004), Ghirardi and Potts
(2005) and Valente and Alves (2006). Morton and Pentico
(1993) discuss the details and several variations of the beam
search technique.

We propose a filtered beam search algorithm to find an
approximate solution for the OFJSW problem. We now state the
components of our filtered beam search algorithm.

3.1. Filtered beam search tree

We use the branching scheme proposed in Eliiyi and Azizoglu
(2010). A node at level [ of the search tree corresponds to a partial
solution in which the decisions about the first [ jobs are made. For
each node emanating from level [, there are at most (m+1)
decisions: one for rejecting job (I+1) and one for processing job
(I4+1) on machine k, k=1, ..., m. Assigning to machine k is feasible
if the machine does not process any overlapping job and the
T-constraint is not violated. When there is more than one
machine with no job assignments, only one of them is considered
in order to eliminate the duplication of the partial solutions. Fig. 1
illustrates our branching tree for three jobs and three machines.

3.2. Initial feasible solution

To find an initial feasible solution we form six feasible solu-
tions, i.e., lower bounds (LB), using simple greedy job sequencing

and machine assignment rules. We order the jobs by maximum
weight per processing time (w;/p;), maximum weight (w;) and the
shortest processing time (p;) rules. We assign the first job of the
order using two rules: the least-loaded machine and the most-
loaded machine, while satisfying T-constraints. Three sequencing
rules together with two assignment rules give a total of six lower
bounds, some of which may be identical.

Each of these lower bounds is improved by two polynomial-
time improvement algorithms-exchange and insert and replace-
ment-in a sequential manner. The exchange and insert type
heuristic tries to exchange two scheduled jobs between machines.
The algorithm performs an exchange only if any unscheduled job
can be processed after the exchange. The algorithm performs the
move that yields the maximum total weight, and proceeds until
no moves are possible or after n iterations. The replacement
heuristic exchanges a scheduled job with one or more unsched-
uled jobs. The algorithm considers all possible exchanges and
performs the most-improving one. It stops when no further
improvement is possible or after n iterations.

The maximum lower bound value after the improvements is
used as the best known lower bound, i.e., the incumbent solution.
The incumbent solution is updated whenever a feasible solution
with a higher total weight value is reached.

3.3. Size reduction properties

Eliiyi and Azizoglu (2010) present some properties that char-
acterize the structure of the optimal solution and use them to
reduce the tree size. We also use the results of these properties to
fathom the nodes of our search tree. For the sake of completeness,
we state these properties and discuss their implementation in our
search process.

Property 1. If w; > w;, r; <r1j and d; > d;, then any optimal solution
that includes job i should also include job j.

In our search tree, the node representing the rejection of job i
is fathomed if there exists a scheduled job j such that w;>w;
ri<riand dj>d;.

Property 2. If wj=w;, r;<r; and d;>d; with strict inequality
holding at least once, then there exists an optimal schedule that
includes job j if job i is processed.

In our search tree, the node that rejects job i is fathomed if
there exists a scheduled job j such that wi=wj, r;<r; and d;>d,,
with strict inequality holding at least once.

Property 3. Let S; be the set of jobs that dominate job i. If [S;| > m,
then no optimal solution processes job i.

In our search tree, we remove job i from the partial solution if
‘Si| >m.

Fig. 1. The filtered beam search tree.
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Property 4. If r; <rj<d;<dj, w;>wj, p;<pj, and no job is avail-
able for processing during [r;1;], then any solution that includes
job j, but not job i, cannot be optimal.

All nodes that represent the assignment of job j on any
machine are fathomed if there exists an unscheduled job i (such
that p; < p;, ri <17 < d; <dj, and w; > wj;), and no job k that satisfies
ri < <dg <rj is scheduled.

We evaluate each node that is not fathomed by the above
properties, using the filter evaluation function.

3.4. Filter evaluation function

We use lower bounds as filter evaluation functions. In doing
so, we form the wj/p; list and assign its first job to the least and
most-loaded machine. The maximum of the two lower bound
values is taken for evaluation. o Nodes having the highest lower
bounds are selected and the rest of the nodes in the level are
permanently discarded.

3.5. Beam evaluation function

We use upper bounds as beam evaluation functions. As in
Eliiyi and Azizoglu (2010), we use the surrogate relaxation of the
problem to obtain an upper bound. In the surrogate relaxation,
constraint set (4) representing the T-constraints is replaced by the
following inequality:

D.T. Eliiyi, M. Azizoglu / Int. ]. Production Economics 132 (2011) 107-121

In the absence of the overlapping constraints, this representa-
tion reduces to a single knapsack problem with capacity mT. The
single knapsack problem is NP-hard in the ordinary sense (Garey
and Johnson, 1979). Eliiyi and Azizoglu (2010) show that the
surrogate relaxation of the problem can be solved in polynomial
time when partial processing and preemption are allowed. We
call this upper bound UBW;.

When the working time constraints are ignored, the problem
reduces to the classical OF]S problem, which can be solved in
0(n®) time using Minimum Cost Network Flow model (see
Bouzina and Emmons, 1996). Although this solution can be used
as an upper bound, it is shown to be computationally inefficient
by Eliiyi and Azizoglu (2010) in their B&B implementation.
However, they show that the longest-path upper bound, UBW,,
is efficient when there is only a single available machine in the
partial solution. This solution can be obtained in O(n) time
(Solyali and Ozpeynirci, 2009). If only one machine remains
available, we use Min{UBW,, UBW,}, otherwise we use UBW,.

The node is fathomed if its upper bound is not greater than the
incumbent solution. If any upper bound leads to a feasible
solution, we fathom the node and update the incumbent solution
if the upper bound is greater. Among the remaining nodes, we
select # nodes having largest upper bounds for further branching.
We stop whenever we reach the lowest level of the search tree.
The incumbent solution returned by the filtered beam search is
improved using the exchange and insert and replacement
improvement algorithms in a sequential manner. The pseudo-
code of the procedure is provided in Fig. 2.

m n
> > pixg<mT @) Our algorithm considers at most ofn nodes as off nodes at
k=1j=1 each level are evaluated and there are n levels. The algorithm runs
INITIAL SOLUTION:
Compute six lower bounds, as explained in Section 3.1;
Improve each lower bound solution, store solutions in LBW1, ..., LBW6;

Incumbent = Max{LBWI, ..., LBW6}.
FILTERED BEAM SEARCH:

For each level (1,..., n-2) of the tree
Clear a-list ;

Do for each node in B-list

For each non-fathomed child node

End For
End Do
Clear p-list;

Do for each node in the o-list

End Do
End For
For all nodes in the B-list (nodes of level n-1)
Branch from the node;
Compute the objective function value;
Update Incumbent if solution is better than Incumbent;
End For
IMPROVEMENT:
Update Incumbent by applying the two improvement algorithms

Return Incumbent.

Branch from node (create at most m+1 branches, using dominance conditions to decide whether to fathom);

Compute LBW as best of six lower bounds, store solution if better than Incumbent;

Store node in the a-list if LBW > minimum LBW in a-list (keep at most a nodes);

Compute UBW as UBW |, or lower of UBW | and UBW, if only one available machine;
Update Incumbent if solution if feasible and better than Incumbent;

Store node in the B-list if UBW > minimum UBW in B-list (keep at most § nodes);

Fig. 2. The pseudo-code of the filtered beam search algorithm for the OFJSW problem.
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in polynomial time, as at each node polynomial time operations
are performed and polynomial number of nodes is evaluated. The
improvement procedures run also in polynomial time as the
number of iterations is limited. Hence the whole algorithm runs
in polynomial time.

4. Two-phase heuristic algorithm for the OFJSS problem

To find a lower bound to the OFJSS problem, we develop a two-
phase heuristic algorithm. In the first phase, we enumerate first
jobs for each machine and select the most promising combina-
tions for further evaluation. As the first jobs determine the spread
time limits, they have a critical importance in shaping the
solution. After selecting the promising first job combinations,
the second phase defines a time-phased algorithm for each
selected combination. We provide the details in the following
subsections.

4.1. Phase 1: A procedure to enumerate first jobs

We find the promising first jobs using the branching algorithm
by Eliiyi and Azizoglu (2006). According to this algorithm, a node
at level I of the search tree corresponds to a partial solution where
the first jobs on the first  machines are set. We always branch to a
node having a higher index to avoid the duplication of the
solutions. At the lowest level of the tree, i.e., at level m, there
are at most (n!/(m!(n—m)!)) nodes. Some of these nodes are
eliminated using the following properties by Eliiyi and Azizoglu
(2006).

Property 5. Let r;<r;<d;<d;, and B={l|d;<r;<d;}. Then, any
optimal solution that includes job i as the first job on any machine
should also include job j, if 3=, p(w;+w;) < w;.

Property 6. Let rj<r;, and C={l|rj+S<d;<r;+S}). Then, the
following statements are true:

i. If ;< d;, any optimal solution that includes job i as the first job
on any machine should also include job j, if >, . «(w;+w;) <w;.

ii. If r; > d;, any optimal solution that includes job i as the first job
on any machine should also include job j, if >, -w; <w;.

The following property follows Properties 5 and 6. Let,
Ri={j:ri<r<di<d, and Y wi+w; <wj},
leB
where B={l|d; <1 <dj},
Q={:r<r and Y w+wyY <w),
leC
where C={l|r;+S<d; <r;i+S},

where

_ {1 if jobs i and j overlap
10 otherwise ’

Property 7. If |RUQ;| > m, then job i cannot be a first job in any
optimal solution.

At level m, for each node that cannot be eliminated by the
above properties, we compute two upper bounds: UBS; and UBS,.
We use UBS=Min{UBS;,UBS;} to evaluate the node. UBS; is found
for a known set of first jobs, by allowing preemption and partial
processing (Eliiyi and Azizoglu, 2006). The algorithm proceeds in
chronological sequence {ty, t5, ..., t,}of ready times and deadlines,
optimizes the assignments in each interval until all intervals are
considered or no machine remains available. A solution for a

specified interval [tg,t;11), a=1,2, ...,z—1, is found by assigning
0O(m) jobs having highest weight per unit time, each to one of the
available machines. UBS, is found by solving m single machine
problems separately, hence allowing the assignment of one job to
more than one machine. Each single machine problem is solved
by the longest path algorithm.

We update the incumbent solution if UBS at a node gives a
feasible solution with higher total weight value. We fathom the
node if its UBS is no better than the incumbent solution. We store
best y nodes having the highest UBS values for further evalua-
tions. The parameter ) is set by initial experimentation.

For finding an initial incumbent solution we use two proce-
dures. Our first procedure utilizes the MCNF solution, which is
optimal in the absence of the spread time constraints (Bouzina and
Emmons, 1996). If the MCNF solution violates the spread time
constraints on some machine, we convert this infeasible solution to
a feasible one for that machine. In doing so, in the MCNF solution
for each job j on violated machine k, we subtract the weights of the
jobs that violate the spread time constraint assuming job j is the
first job on that machine. We select the maximum of such
solutions as the solution on machine k. We let the overall lower
bound, LBS;, be the sum of the weights on all machines.

Our second procedure uses a decomposition idea and solves
nm longest path problems in a sequential manner. For each
machine, once its first job is found, the set of jobs that can be
scheduled without violating the spread time constraint is deter-
mined automatically. The longest path problem is then solved on
the machine using this set in O(n) time (Solyali and Ozpeynirci,
2009). Each unscheduled job is tried for the first job, and the best
longest path solution is fixed as the schedule of the machine. The
machine and the jobs on its longest path are eliminated from
further consideration, and the procedure is repeated for the
remaining machines. We let LBS, be the sum of the weights on
all machines.

The improvement procedures (defined in Section 3.2) are
also employed on the LBS; and LBS, solutions and the better of
the two improved solutions is used as an initial incumbent
solution.

4.2. Phase 2: A time-phased MCNF algorithm

In this section we present the details of our time-phased
MCNF-based algorithm. The time-phased algorithm is run for
each of the selected y nodes (first job combinations) of Phase 1.

We assume the machines are indexed in chronological order of
the ready times of their first jobs, i.e., ri)<rym)<... <Tia)-
< ... <T'ma) Where k(1) represents the index of the first job on
machine k, k=1,..., m. For each machine k, k=1,..., m, start and
end times are set to sy=ry(1) and ex=ry1)+S, respectively.

We create m intervals, one for each end time, as [si.eq),
[eq,e2), ..., [ém_1,em). Our time-phased algorithm solves m MCNF
problems, each in one interval, with the active machines, i.e., the
machines that are available for processing jobs in that interval.
The sum of the partial solutions’ total weight values over all
intervals provides a lower bound. The step-wise description of the
algorithm is given below:

4.2.1. Algorithm phased MCNF

S0. Given a first job combination, index the machines in non-
decreasing order of the ready times of their first jobs.
Determine start and end times and create m intervals as
described above.
Let B={j|j=1, ..., n} be the set of unscheduled jobs.
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S1. For each interval I,

[s1,e1), [e1.e2), ..., [em—1.em):
Determine the set of machines that are active in the current
interval, I, as

k=1, ...,m corresponding to

My ={v|e, 1 <sy<epe,>e1,v=1,..,m}

Check if the first jobs exist on all active machines. If yes, Fy:
set of first jobs, else F,=0.

Determine the set of jobs that are available in the current
interval, as

Ap={ie BAigF|ey_ 1 <1y <egl.

If F, # 0, solve MCNF(M,,F,Ai), else solveMCNF(M,,Ay).
In the resulting solution, if there is an unfinished job on
machine k (current machine), i.e., if a job j exists such that
di> e
Remove job from machine k.
Fix the schedule on machine k, eliminate machine k and
fixed jobs from further consideration (delete jobs from
set B).
If there is at least one unfinished job in any of the other
machines:
For machines with unfinished jobs:
Update the partial schedule on those machines
including the unfinished jobs.
Set the unfinished job as the first job on that
machine.
Delete all jobs before the first job from set B.
For machines with no unfinished jobs:
Update the partial schedule on those machines.
Set the last finished job as the first job on that
machine.
Delete all jobs before the first job from set B.
Let early be the earliest-starting first job among
machines.
Update Sk+1=Tearly-
Else (If no unfinished jobs on other machines):
Update the partial schedules on each machine.
Delete scheduled jobs from set B.
Update F,=0, and s, 1=¢€;
End For.
S2. The solution is the sum of the weights of jobs scheduled
over all machines.
S3. Improve the solution by the improvement algorithms.

Algorithm phased MCNF utilizes the following two procedures
to find an optimal solution of an interval. Procedure
MCNF(M,,Fi,Ar) solves a MCNF problem to find the optimal
solution for an interval when the first jobs are known (Eliiyi
and Azizoglu, 2006). The solution is optimal, since the constructed
network gives the optimal solution in the absence of the spread
time constraints. We create such a problem for each interval by
determining the active machine and job sets. The description of
procedure MCNF(M,,Fi,Ay) is given below.

4.2.2. Procedure MCNF(My,Fy,Ax)

Construct the following network: create a source node s, nodes
1,2, ..., |AUF| for each job, and a dummy node t=|AUF|+1.
Connect node s to each node in F, with arc cost zero and capacity
1. Connect node j to j+1 with arc cost zero and capacity m,
j=1, ..., |AUF/, for all j¢F. Create arc(j,k), where k is the first job
not overlapping with job j and k¢F, for j=1, ..., |AkUF|. If no
such job exists, create arc(j,t). Each of these arcs has cos t—w; and
capacity 1.

Require a flow of m units from s to t. Solve the resulting MCNF
problem.

Procedure MCNF(M;,Ax) below solves a MCNF problem to find
the optimal solution for an interval when the first jobs are not
known, as shown by Bouzina and Emmons (1996).

4.2.3. Procedure MCNF(M,Ax)

Construct the following network: create nodes s=1, ..., n for each
job, and a dummy node, t=n+ 1. Connect node j to node j+1 with
arc cost zero and capacity m, j=1, ..., n. Create arc(j,k), where k is the
first job not overlapping with job j, j=1, ..., n. If no such job exists,
create arc(j,t). Each of these arcs has cos t—w; and capacity 1.

Require a flow of m from s to t. Solve the resulting MCNF
problem.

The incumbent solution returned by the phased MCNF algo-
rithm is improved by an insertion type improvement procedure
that tries to insert the most-improving unscheduled job into the
schedule. With this algorithm, the boundary jobs, i.e., the unfin-
ished jobs which may have been eliminated are re-tried to be
scheduled. The two improvement algorithms presented in Section
3.2 are then executed on the solution. The pseudo-code of the
whole process is given in Fig. 3.

In the first phase, the algorithm evaluates (n!/(m!(n—m)!))
solutions. Note that (n!/(m!(n—m)!)) has an order of n™, which is
polynomial for fixed m and exponential for arbitrary m. Each solution
is evaluated in polynomial time. The second phase also runs in
polynomial time as MCNF problem is solved y times each in O(n®)
time. The improvement procedures also run in polynomial time, as
stated before. Hence the whole algorithm runs in polynomial time
when m is fixed and in exponential time when m is arbitrary.

5. Computational experiments

All algorithms have been implemented in MS Visual C++ 6.0,
and experimentally evaluated on a 2.8 GHz Core2Duo computer
with 4 GB memory. We consider two classes of random test
problems adapted from Fischetti et al. (1992):

1. r=1: the ready times are uniform in [0,200].

2. r=2: 30% of the ready times are uniform in [30,40], 30% are
uniform in [130,140] and 40% are uniform in [0,29], [41,129],
[141,200].

As in Eliiyi and Azizoglu (2006, 2010) we use two uniform
distributions for processing times: [5,10] (p=1) and [5,40] (p=2)
and three uniform distributions for weights: w;=p; (w=1), [5,10]
(the low variability case, w=2) and [5,40] (the high variability
case, w=3). We set T=50 and S=100.

For each of the twelve combinations of ready times, processing
times and weights, 10 test problems are generated for
n=20, 30, ..., 100 and 250 and m=2, 3, 4. For the OF]JSS problem,
we could not obtain solutions to our heuristic in reasonable time
for 250 jobs and 4 machines instances. For the OFJSW problem,
we include also large-sized instances with 10 machines and 250
and 500 jobs.

For the OFJSS problem, we use additional test problems
generated by Rossi et al. (2010) using our generation scheme.
Rossi et al. (2010) try 20, 40, 60, 80 and 100 jobs instances and
generate 20 problem instances for each combination of r, p and w.
We run our heuristic with their data and compare the solution
values with those of their heuristics, namely greedy heuristics
and genetic algorithm.

The performances of the algorithms are evaluated by their
deviations from the optimal solutions and the solution times.
We find the optimal solutions using the commercial software
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INITIAL SOLUTION:
Compute two lower bounds LBS1, and LBS2;
Improve each lower bound solution;
Incumbent is the maximum of the improved solutions;
FIRST JOB SEARCH:
At each level (1,..., m-2) of the tree:
Branch from node: Create at most n branches, one for each job, using dominance conditions to decide whether to fathom;
At each level m-1 of the tree:
Branch from the node;
Compute UBS = Min{UBS, ,UBS,} ;
Fathom node if necessary;
Update Incumbent if solution is better than Incumbent;
TIME-PHASED MCNF SOLUTION:
For each of the created nodes by FIRST JOB SEARCH
Run Algorithm Phased MCNF;
Improve solution by insertion;
Apply the two improvement algorithms to solution;
Update Incumbent if solution is better than Incumbent;
End For
Return Incumbent.
Fig. 3. Pseudo-code of the two phase algorithm for the OFJSS problem.
Table 1
Performance of the beam search algorithm for r=1.
n P w m=2 m=3 m=4
% dev. opt. % opt. Avg. CPLEX % dev. opt. % opt. Avg. CPLEX % dev. opt. % opt. Avg. CPLEX
Avg. Max. CPU CPU Avg. Max. CPU CPU Avg. Max. CPU CPU
20 1 1 0.00 0.00 100 0.00 0.15 0.60 4.00 70 0.00 0.77 0.00 0.00 100 0.00 0.65
2 0.52 2.54 60 0.00 0.54 0.00 0.00 100 0.00 0.29 0.00 0.00 100 0.00 0.62
3 0.00 0.00 100 0.00 0.70 0.11 0.84 80 0.00 0.81 0.00 0.00 100 0.00 0.41
2 1 0.00 0.00 100 0.00 0.44 0.33 1.33 70 0.00 0.39 0.45 2.03 60 0.00 0.79
2 0.28 1.49 80 0.00 1.14 0.52 3.95 80 0.00 0.89 1.12 3.49 50 0.00 1.54
3 1.13 6.30 60 0.00 0.69 2.63 6.55 10 0.00 0.85 1.40 3.30 30 0.00 0.96
30 1 1 0.00 0.00 100 0.00 0.13 0.00 0.00 100 0.00 0.34 0.05 0.50 90 0.00 1.35
2 0.15 0.75 80 0.00 0.52 0.46 1.16 40 0.00 0.82 0.14 0.91 80 0.00 0.73
3 0.41 1.29 40 0.00 0.62 0.32 1.30 40 0.00 1.13 0.13 0.47 60 0.00 0.96
2 1 0.00 0.00 100 0.00 0.17 0.13 0.67 80 0.00 0.40 0.25 1.00 70 0.00 0.97
2 0.12 1.23 90 0.00 0.65 0.61 2.27 60 0.00 1.42 1.51 3.57 40 0.02 2.26
3 117 3.65 50 0.00 0.31 1.63 5.91 20 0.00 0.97 2.23 4.21 10 0.01 1.21
40 1 1 0.00 0.00 100 0.00 0.14 0.00 0.00 100 0.00 0.13 0.00 0.00 100 0.00 0.22
2 0.44 1.47 60 0.00 0.78 0.70 2.15 40 0.00 1.05 0.56 1.44 30 0.00 1.36
3 0.63 1.82 50 0.00 0.68 0.83 2.30 10 0.00 1.18 0.61 1.10 0 0.00 3.21
2 1 0.00 0.00 100 0.00 0.35 0.07 0.67 90 0.00 0.61 0.10 0.50 80 0.00 0.61
2 0.83 3.00 50 0.00 0.51 0.96 3.03 30 0.00 1.36 1.53 3.17 10 0.00 1.40
3 0.33 1.86 60 0.00 0.59 1.74 3.94 20 0.00 1.27 2.65 4.48 0 0.00 4.82
50 1 1 0.00 0.00 100 0.00 0.13 0.00 0.00 100 0.00 0.13 0.00 0.00 100 0.00 0.27
2 0.28 0.76 60 0.00 0.42 0.52 1.08 30 0.00 340.76 0.49 0.84 20 0.00 1.70
3 0.56 2.36 60 0.00 0.66 0.83 1.49 20 0.00 1.27 0.78 1.84 0 0.00 3.94
2 1 0.00 0.00 100 0.00 0.15 0.00 0.00 100 0.00 0.38 0.05 0.50 90 0.00 0.47
2 0.26 2.63 90 0.00 0.50 0.55 291 60 0.00 1.07 1.48 3.01 0 0.00 2.65
3 0.98 4.08 50 0.00 1.03 1.58 3.95 20 0.00 1.73 1.49 4.30 0 0.00 2.88
60 1 1 0.00 0.00 100 0.00 0.14 0.00 0.00 100 0.00 0.21 0.00 0.00 100 0.00 0.19
2 0.53 1.36 50 0.00 0.68 0.25 1.02 70 0.00 0.63 0.53 2.25 30 0.00 1.65
3 0.54 1.39 40 0.00 0.60 0.98 2.44 0 0.00 1.48 0.33 0.73 20 0.01 4.41
2 1 0.00 0.00 100 0.00 0.25 0.00 0.00 100 0.00 0.39 0.00 0.00 100 0.00 0.24
2 0.41 3.06 80 0.00 0.62 0.98 3.76 40 0.00 1.42 0.96 4.03 40 0.00 4.99
3 0.82 4.04 60 0.00 0.50 2.01 4.64 10 0.00 2.02 2.61 5.45 0 0.00 5.73
70 1 1 0.00 0.00 100 0.00 0.14 0.00 0.00 100 0.00 0.49 0.00 0.00 100 0.00 0.19
2 0.20 0.69 70 0.00 0.62 0.38 0.96 30 0.00 0.81 0.49 1.13 30 0.00 1.44
3 0.65 1.93 30 0.00 1.30 0.72 1.53 20 0.00 1.93 0.79 1.82 20 0.00 1.49
2 1 0.00 0.00 100 0.00 0.22 0.00 0.00 100 0.00 0.19 0.05 0.50 90 0.00 0.23
2 0.60 3.09 70 0.00 0.71 0.90 2.08 40 0.00 1.29 1.20 2.80 20 0.00 1.84
3 1.42 4.10 40 0.00 0.45 1.01 213 10 0.00 1.77 2.20 3.16 0 0.00 2.95
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n P w m=2 m=3 m=4
% dev. opt. % opt. Avg. CPLEX % dev. opt. % opt. Avg. CPLEX % dev. opt. % opt. Avg. CPLEX
Avg. Max. CPU CPU Avg. Max. CPU CPU Avg. Max. CPU CPU
80 1 1 0.00 0.00 100 0.00 0.14 0.00 0.00 100 0.00 0.24 0.00 0.00 100 0.00 0.28
2 0.39 133 60 0.00 0.77 0.40 0.92 40 0.00 0.60 0.37 0.74 20 0.00 1.66
3 0.73 2.63 30 0.00 0.58 0.84 291 30 0.00 1.18 0.76 1.82 10 0.00 1.27
2 1 0.00 0.00 100 0.00 0.18 0.00 0.00 100 0.00 0.32 0.00 0.00 100 0.00 0.29
2 0.52 2.17 70 0.00 0.70 1.02 3.23 30 0.00 1.48 1.35 225 0 0.00 2.19
3 1.45 4.58 30 0.00 0.45 1.83 4.58 10 0.00 1.85 1.77 2.65 0 0.00 5.01
90 1 1 0.00 0.00 100 0.00 0.16 0.00 0.00 100 0.00 0.21 0.00 0.00 100 0.00 0.20
2 0.24 1.24 70 0.01 0.88 0.22 0.88 70 0.00 1.18 0.38 1.37 40 0.00 1.31
3 0.22 0.66 50 0.00 0.75 0.59 1.40 0 0.00 2.18 0.75 1.50 20 0.00 1.48
2 1 0.00 0.00 100 0.00 0.15 0.00 0.00 100 0.00 0.18 0.00 0.00 100 0.00 0.27
2 0.42 227 80 0.00 0.91 1.15 2.74 30 0.00 1.24 1.44 1.95 0 0.02 3.91
3 1.19 3.40 20 0.00 1.09 245 533 0 0.00 1.43 2.02 3.33 0 0.00 3.78
100 1 1 0.00 0.00 100 0.00 0.15 0.00 0.00 100 0.00 0.14 0.00 0.00 100 0.00 0.25
2 0.37 1.26 50 0.00 0.85 0.35 1.28 50 0.00 36.52 0.28 0.75 40 0.00 1.34
3 0.27 0.65 20 0.00 1.27 0.31 1.11 40 0.00 1.37 0.49 1.77 20 0.00 44.86
2 1 0.00 0.00 100 0.00 0.09 0.00 0.00 100 0.00 0.21 0.00 0.00 100 0.00 0.25
2 0.16 1.64 90 0.00 0.39 1.00 1.95 20 0.00 1.16 1.22 3.64 10 0.00 1.57
3 1.34 3.99 10 0.00 0.50 1.57 2.78 0 0.00 2.28 1.88 3.01 0 0.00 4.99
250 1 1 0.00 0.00 100 0.00 0.16 0.00 0.00 100 0.00 0.52 0.00 0.00 100 0.01 0.59
2 0.16 1.10 80 0.00 0.87 0.19 1.12 70 0.01 1.18 0.24 0.86 60 0.01 345
3 0.37 0.79 30 0.00 0.85 0.17 0.51 40 0.01 1.89 0.22 0.58 10 0.01 2.46
2 1 0.00 0.00 100 0.01 0.25 0.00 0.00 100 0.01 0.44 0.00 0.00 100 0.01 0.75
2 0.51 1.42 40 0.00 0.81 0.58 1.42 30 0.00 1.71 0.43 1.02 40 0.00 2.04
3 0.77 2.67 40 0.00 1.01 1.13 1.98 0 0.00 1.95 0.99 1.90 0 0.01 241
Table 2
Performance of the beam search algorithm for r=2.
n p w m=2 m=3 m=4
% dev. opt. % opt. Avg. CPLEX % dev. opt. % opt. Avg. CPLEX % dev. opt. % opt. Avg. CPLEX
Avg. Max. CPU CPU Avg. Max. CPU CPU Avg. Max. CPU CPU
20 1 1 0.54 341 80 0.00 0.18 0.33 3.28 90 0.00 0.12 0.00 0.00 100 0.00 0.14
2 0.75 2.88 60 0.00 0.38 0.55 4.13 80 0.00 0.16 0.00 0.00 100 0.00 0.25
3 0.00 0.00 100 0.00 0.53 0.00 0.00 100 0.00 0.59 0.09 0.92 90 0.00 0.75
2 1 0.50 1.00 50 0.00 0.50 0.53 2.00 50 0.00 0.93 0.50 1.50 50 0.00 1.03
2 0.48 3.13 80 0.00 0.36 1.45 5.63 40 0.00 0.70 1.41 3.70 40 0.00 1.41
3 0.38 1.86 60 0.00 0.65 0.69 2.12 50 0.00 0.76 1.98 6.46 40 0.00 0.67
30 1 1 0.00 0.00 100 0.00 0.16 0.76 2.86 50 0.00 0.78 0.29 238 80 0.00 0.22
2 0.34 0.89 60 0.00 0.26 0.64 245 60 0.00 0.72 0.05 0.55 90 0.00 0.16
3 0.44 2.82 60 0.00 0.37 0.49 1.77 60 0.00 0.69 0.11 0.76 80 0.00 0.21
2 1 0.00 0.00 100 0.00 0.37 0.20 0.67 70 0.00 0.77 0.40 1.50 40 0.00 0.59
2 0.77 4.92 80 0.00 0.83 1.33 6.00 70 0.00 0.93 2.48 6.19 10 0.00 1.79
3 0.35 2.00 80 0.00 0.42 0.84 3.35 50 0.00 0.62 1.24 4.26 50 0.00 1.08
40 1 1 0.00 0.00 100 0.00 0.27 0.83 4.96 80 0.00 0.18 0.51 2.00 70 0.00 0.85
2 0.49 2.34 70 0.00 0.66 0.62 1.73 40 0.00 0.74 0.81 3.20 50 0.00 1.25
3 0.94 4.12 40 0.00 0.63 1.35 4.30 20 0.00 0.49 0.84 2.60 20 0.00 0.76
2 1 0.00 0.00 100 0.00 0.40 0.07 0.67 90 0.00 0.45 0.20 1.00 70 0.00 0.63
2 0.46 3.33 80 0.00 0.41 1.17 5.22 50 0.00 2.78 1.39 4.12 40 0.00 1.41
3 1.03 4.73 60 0.00 0.74 2.07 4.78 10 0.00 1.27 2.87 4.81 0 0.00 2.26
50 1 1 0.00 0.00 100 0.00 0.12 0.00 0.00 100 0.00 0.45 0.36 2.62 80 0.00 0.43
2 0.92 2.40 40 0.00 0.50 1.06 1.69 10 0.00 0.65 1.08 2.20 10 0.00 3.39
3 0.56 2.29 50 0.00 1.01 1.33 3.85 20 0.00 1.12 0.95 2.39 0 0.00 1.59
2 1 0.00 0.00 100 0.00 0.25 0.00 0.00 100 0.00 0.50 0.15 1.00 80 0.00 0.66
2 0.52 2.90 70 0.00 0.54 2.20 4.90 20 0.00 1.07 1.58 3.23 20 0.00 227
3 0.94 6.19 70 0.00 0.59 3.06 6.99 10 0.00 1.14 2.10 4.24 0 0.00 4.78
60 1 1 0.00 0.00 100 0.00 0.10 0.00 0.00 100 0.00 0.14 0.00 0.00 100 0.00 0.18
2 0.33 1.94 80 0.00 047 0.73 1.54 20 0.00 1.26 1.12 1.90 0 0.00 1.77
3 1.04 3.67 40 0.00 0.48 1.58 2.68 10 0.00 1.16 1.22 2.25 0 0.00 1.73
2 1 0.00 0.00 100 0.00 0.39 0.00 0.00 100 0.00 0.21 0.05 0.50 90 0.00 0.42
2 0.36 1.22 70 0.00 0.67 0.95 248 40 0.00 1.20 223 3.55 0 0.00 1.88
3 1.02 3.83 50 0.00 0.60 1.86 4.47 10 0.00 1.23 2.18 4.48 0 0.00 3.33
70 1 1 0.00 0.00 100 0.00 0.14 0.00 0.00 100 0.00 0.35 0.00 0.00 100 0.00 0.20
2 0.83 1.52 20 0.00 0.48 1.03 2.15 10 0.00 0.65 1.01 2.03 10 0.00 79.29
0.91 1.79 40 0.00 0.72 1.72 3.69 0 0.00 1.95 1.10 1.61 0 0.00 3.69
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Table 2 (continued )
n p w m=2 m=3 m=4
% dev. opt. % opt. Avg. CPLEX % dev. opt. % opt. Avg. CPLEX % dev. opt. % opt. Avg. CPLEX
Avg. Max. CPU CPU Avg. Max. CPU CPU Avg. Max. CPU CPU
2 1 0.00 0.00 100 0.00 0.15 0.07 0.67 90 0.00 0.31 0.05 0.50 90 0.00 0.36
2 0.98 3.77 50 0.00 0.46 1.95 4.55 10 0.00 1.20 1.40 2.90 0 0.00 3.02
3 1.14 3.65 40 0.00 0.48 2.20 4.84 10 0.00 1.29 2.49 4.81 0 0.00 3.91
80 1 1 0.00 0.00 100 0.00 0.16 0.00 0.00 100 0.00 0.23 0.00 0.00 100 0.00 0.18
2 0.53 1.30 40 0.00 0.43 1.01 222 10 0.00 1.11 1.07 1.59 0 0.00 1.25
3 0.70 1.39 30 0.00 0.60 1.44 2.64 10 0.00 1.57 1.20 2.19 10 0.00 1.85
2 1 0.00 0.00 100 0.00 0.19 0.00 0.00 100 0.00 0.38 0.05 0.50 90 0.00 0.35
2 1.10 3.19 20 0.00 0.64 1.58 3.57 0 0.00 1.60 1.56 4.24 20 0.00 431
3 0.88 3.32 50 0.00 0.43 1.63 4.77 10 0.00 1.94 2.33 6.18 10 0.00 4.95
90 1 1 0.00 0.00 100 0.00 0.15 0.00 0.00 100 0.00 0.22 0.00 0.00 100 0.01 0.17
2 0.83 3.03 50 0.00 0.51 0.83 143 10 0.00 1.11 1.12 1.88 0 0.01 1.73
3 0.84 2.90 30 0.00 1.36 1.80 3.67 0 0.00 1.09 2.68 4.18 0 0.00 1.68
2 1 0.00 0.00 100 0.00 0.21 0.00 0.00 100 0.00 0.15 0.00 0.00 100 0.00 0.26
2 0.51 2.15 70 0.00 0.98 1.36 2.63 20 0.00 1.31 1.71 2.92 10 0.00 3.99
3 1.36 3.75 40 0.00 1.18 2.11 5.07 0 0.00 1.48 2.59 5.52 10 0.00 5.12
100 1 1 0.00 0.00 100 0.00 0.11 0.00 0.00 100 0.00 0.26 0.00 0.00 100 0.00 0.24
2 0.70 1.96 30 0.00 0.48 0.58 1.79 40 0.00 1.30 0.81 1.45 10 0.03 1.53
3 0.53 2.19 30 0.00 0.43 1.07 1.65 10 0.00 1.74 1.45 2.28 0 0.00 2.23
2 1 0.00 0.00 100 0.00 0.23 0.00 0.00 100 0.00 0.23 0.00 0.00 100 0.00 0.25
2 0.81 3.09 60 0.00 0.32 1.21 2.80 10 0.00 1.51 2.04 3.87 0 0.02 1.63
3 0.92 3.54 40 0.00 0.65 1.95 3.51 0 0.00 2.19 2.84 5.56 0 0.00 3.97
250 1 1 0.00 0.00 100 0.00 0.18 0.00 0.00 100 0.01 0.81 0.00 0.00 100 0.01 0.32
2 0.69 2.89 40 0.00 0.72 0.67 1.58 30 0.01 1.51 0.49 0.63 20 0.01 2.52
3 1.13 1.91 10 0.00 0.79 0.67 3.00 0 0.01 1.87 0.61 1.16 10 0.01 2.68
2 1 0.00 0.00 100 0.01 0.36 0.00 0.00 100 0.01 0.49 0.00 0.00 100 0.01 0.70
2 0.46 1.57 70 0.00 0.75 1.25 2.52 0 0.00 1.65 1.35 2.46 10 0.00 2.21
3 1.69 3.63 20 0.00 0.59 1.61 3.31 10 0.00 2.31 2.10 4.81 10 0.01 3.00
Table 3
Performance of the beam search algorithm for large instances (m=10).
n P w r=1 r=2
% dev. opt. % opt. Avg. CPLEX % dev. opt. % opt. Avg. CPLEX
Avg. Max. CPU CPU Avg. Max. CPU CPU
250 1 1 0.00 0.00 100 0.01 0.39 0.00 0.00 100 0.01 0.36
2 0.24 0.29 0 0.02 6.69 0.75 1.05 0 0.02 21.81
3 0.32 0.66 0 0.02 9.41 1.18 2.48 0 0.03 40.55
2 1 0.00 0.00 100 0.01 0.59 0.00 0.00 100 0.01 0.44
2 1.11 1.94 0 0.01 26.48 1.71 243 0 0.01 103.00
3 1.28 2.01 0 0.01 333.92 2.37 3.72 0 0.01 487.77°
500 1 1 0.00 0.00 100 0.03 2.92 0.00 0.00 100 0.03 1.24
2 0.21 0.37 10 0.05 7.32 0.63 1.01 0 0.06 13.46
3 0.12 0.27 10 0.06 7.53 0.79 1.36 0 0.07 18.54
2 1 0.00 0.00 100 0.03 1.13 0.00 0.00 100 0.02 1.54
2 0.64 1.06 0 0.02 11.60 1.55 237 0 0.03 44.97
3 0.85 1.59 0 0.03 29.03 1.82 2.49 0 0.03 589.67*
¢ One out of ten instances could not be solved in 3600 s by CPLEX.
Table 4
Performance of the time-phased MCNF algorithm for r=1.
n P w m=2 m=3 m=4
% dev. opt. % opt Avg. CPLEX % dev. opt. % opt. Avg. CPLEX % dev. opt % opt. Avg. CPLEX
Avg. Max. CPU CPU Avg. Max. CPU CPU Avg. Max. CPU CPU
20 1 1 0.00 0.00 100 1.76 0.23 0.00 0.00 100 10.61 0.20 0.00 0.00 100 18.48 0.33
2 0.18 1.77 90 1.67 0.16 0.00 0.00 100 9.47 0.20 0.33 3.25 90 20.17 0.32
3 0.00 0.00 100 1.82 0.17 0.00 0.00 100 8.93 0.20 0.00 0.00 100 18.16 0.33
2 1 0.00 0.00 100 0.37 0.16 0.04 0.43 90 5.09 0.32 0.48 1.56 60 21.49 0.33
2 0.58 5.80 90 0.75 0.17 0.57 5.75 90 8.98 0.23 1.00 5.00 60 24.08 0.29
3 0.00 0.00 100 0.96 0.18 0.17 1.74 90 8.76 0.25 0.94 4.88 70 17.52 0.27
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Table 4 (continued )

n p w m=2 m=3 m=4
% dev. opt. % opt  Avg. CPLEX % dev. opt. % opt. Avg. CPLEX % dev. opt % opt. Avg. CPLEX
Avg. Max. CPU CPU Avg. Max. CPU CPU Avg. Max. CPU CPU
30 1 1 0.00 0.00 100 4.06 0.12 0.00 0.00 100 16.85 0.16 0.06 0.56 90 35.06 0.32
2 0.00 0.00 100 4.58 0.12 0.12 1.16 90 19.79 0.16 0.00 0.00 100 31.10 0.31
3 0.19 1.92 90 5.03 0.12 0.22 1.41 80 23.40 0.15 0.12 0.87 80 47.64 0.31
2 1 0.00 0.00 100 1.05 0.18 0.34 2.29 80 12.79 0.28 0.08 0.83 90 33.42 0.53
2 0.00 0.00 100 1.96 0.14 0.19 0.99 80 17.84 0.15 0.93 3.08 50 38.36 0.45
3 0.00 0.00 100 1.54 0.13 0.20 1.42 80 18.53 0.20 0.63 2.70 70 38.17 0.34
40 1 1 0.20 1.96 90 6.64 0.13 0.00 0.00 100 12.31 0.16 0.13 1.33 90 24.95 0.24
2 0.00 0.00 100 5.86 0.15 0.11 1.09 90 12.40 0.16 0.39 1.91 70 25.36 0.26
3 0.00 0.00 100 5.91 0.14 0.41 3.45 80 13.81 0.16 0.20 1.53 80 23.32 0.27
2 1 0.00 0.00 100 1.54 0.17 0.18 1.45 80 874 035 0.00 0.00 100 26.00 0.66
2 0.42 4.17 90 3.61 0.14 0.00 0.00 100 15.89 0.22 0.14 0.73 80 26.97 0.38
3 0.23 2.28 90 2.61 0.18 0.00 0.00 100 19.25 0.22 0.69 1.68 20 22.83 0.57
50 1 1 0.00 0.00 100 7.89 0.19 0.10 0.49 80 23.65 0.22 0.45 2.63 70 47.92 0.32
2 0.00 0.00 100 8.56 0.14 0.28 1.90 80 21.48 0.30 0.11 1.12 90 48.20 0.33
3 0.00 0.00 100 8.70 0.16 0.36 293 80 23.00 0.37 0.12 0.93 80 50.52 0.33
2 1 0.00 0.00 100 1.71 0.28 0.07 0.72 90 12.91 0.60 0.08 0.81 90 48.53 1.06
2 0.00 0.00 100 3.58 0.19 0.75 2.08 50 21.19 0.34 0.50 1.85 70 46.78 0.65
3 0.19 1.91 90 5.22 0.22 0.54 3.02 70 20.26 0.36 0.98 3.54 40 45.38 0.66
60 1 1 0.19 0.70 70 9.90 0.17 0.12 0.43 70 24.48 0.36 0.26 1.06 70 65.39 0.67
2 0.05 0.51 90 9.86 0.15 0.88 2.54 40 23.95 0.32 0.73 3.01 60 61.20 0.60
3 0.00 0.00 100 9.61 0.21 0.12 0.66 80 24.08 0.24 0.30 0.98 50 57.89 0.61
2 1 0.00 0.00 100 2.21 0.30 0.10 1.04 90 20.57 0.71 0.13 0.78 80 60.89 1.52
2 0.11 1.09 90 7.25 0.16 0.83 3.31 50 22.85 0.45 1.46 4.79 40 55.46 0.68
3 0.25 247 90 6.27 0.21 1.01 3.28 50 22.84 040 0.63 3.50 60 60.15 0.70
70 1 1 0.00 0.00 100 7.38 0.22 0.54 1.23 30 22.82 0.23 0.39 1.34 50 66.37 3.84
2 0.11 1.12 90 6.94 0.22 0.80 4.71 70 28.52 0.28 0.19 0.95 70 74.60 0.57
3 0.09 0.58 80 6.73 0.24 0.19 1.14 70 22.69 0.28 0.20 1.01 70 61.95 0.63
2 1 0.00 0.00 100 2.04 0.56 0.00 0.00 100 19.51 0.64 0.05 0.26 80 70.95 1.77
2 0.55 2.86 70 4.67 0.29 0.86 4.44 50 17.38 0.36 0.89 2.58 40 52.92 0.82
3 0.08 0.81 90 5.06 0.28 0.74 2.36 50 15.63 0.42 0.93 4.27 20 55.99 1.31
80 1 1 0.00 0.00 100 7.78 0.24 0.36 1.20 40 29.37 0.52 0.56 1.54 40 101.34 1.00
2 0.05 0.49 90 7.38 0.21 0.40 211 40 27.76 037 0.48 1.55 30 89.76 0.77
3 0.00 0.00 100 7.49 0.32 0.12 0.75 70 28.01 0.44 0.42 1.66 50 80.90 0.52
2 1 0.00 0.00 100 2.19 0.54 0.00 0.00 100 23.89 0.87 0.03 0.26 90 107.38 1.96
2 0.36 2.50 80 5.97 0.36 0.13 1.33 90 17.48 0.58 1.08 2.68 20 78.67 0.99
3 0.00 0.00 100 5.93 0.46 0.93 3.48 40 26.05 0.55 0.71 2.18 40 72.32 0.88
90 1 1 0.00 0.00 100 9.01 0.27 0.50 1.52 40 33.65 0.45 0.96 1.57 10 177.18 1.72
2 0.20 1.52 80 7.63 0.26 0.25 1.10 60 30.77 0.37 0.67 2.25 30 152.00 1.17
3 0.07 0.46 80 7.84 0.28 047 1.37 50 33.18 0.53 0.37 1.06 40 132.40 1.36
2 1 0.00 0.00 100 2.90 0.46 0.03 0.35 90 24.54 1.05 0.10 0.76 80 194.13 1.97
2 0.00 0.00 100 532 0.30 0.56 247 60 24.18 0.59 0.82 1.41 10 103.65 1.32
3 0.14 1.40 90 5.98 0.28 0.67 2.20 50 27.69 0.57 1.32 3.11 20 112.68 0.99
100 1 1 0.27 1.64 70 11.79 047 0.34 0.76 40 41.03 0.83 0.93 2.32 10 27544  2.04
2 0.14 1.44 90 9.69 0.24 0.53 1.35 40 40.65 0.68 1.66 4.23 0 247.43 0.93
3 0.46 1.28 50 8.60 0.31 0.55 1.74 40 39.91 0.53 0.85 2.07 30 206.19 1.04
2 1 0.00 0.00 100 3.73 0.48 0.03 0.34 90 35.36 1.26 0.05 0.51 90 300.78 2.55
2 0.15 1.50 90 8.46 0.44 0.85 1.99 20 29.19 0.61 1.69 3.89 10 162.04 1.49
3 0.00 0.00 100 8.09 0.48 0.95 2.85 50 21.47 0.87 1.16 2.69 30 168.70 1.49
250 1 1 0.00 0.00 100 14.95 2.55 0.24 0.67 50 682.65 9.47 - - - - -
2 0.04 0.41 90 8.81 1.74 0.82 1.98 20 37384 6.62 - - - - -
3 0.38 1.46 60 9.51 1.89 1.32 2.66 10 34758  4.70 - - - - -
2 1 0.00 0.00 100 13.67 430 0.00 0.00 100 683.15 8.96 - - - - -
2 0.12 0.64 80 11.18 1.40 1.02 4.18 20 57.79 5.90 - - - - -
3 0.00 0.00 100 10.84 1.39 1.18 3.45 40 71.86  4.30 - - - - -

CPLEX 12.1. The optimal solutions are reached in reasonable
times.

To set the parameters of the algorithm we carry a pilot run
with fewer instances. For the OFJSW problem, we take 120
random problem instances with 40 and 80 jobs and 4 machines.
To find the best values for (o,f) pair, we try (2m,m), (8m,4m),
(16m,8m) and (20m,10m). As (o) values increase, solution
quality also tends to increase at an expense of higher solution
times. We find that (16m,8m) is the best combination in terms of
solution quality and time.

For the OFJSS problem, to find the best value for parameter y ,
the pilot runs are carried with 40, 70 and 80 jobs and 4 machines,
or a total of 120 instances. We try y=25m, y=50m, y=100m and
find that y=100m provides higher good-quality solutions in
reasonable times.

5.1. The OFJSW problem

In this section we discuss the performance of our filtered beam
search algorithm developed for the OFJSW problem. Tables 1 and 2
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give the average and maximum deviations of our lower bounds
from the optimal solutions for r=1 and r=2, respectively. The
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beam search algorithm finds the optimal solution. The tables also
include the average CPU times for the filtered beam search

“%opt” column gives the percentage of the instances our filtered and CPLEX.
Table 5
Performance of the time-phased MCNF algorithm for r=2.
n P w m=2 m=3 m=4
% dev. opt. % opt. Avg. CPLEX % dev. opt. % opt. Avg. CPLEX % dev. opt. % opt. Avg. CPLEX
Avg. Max. CPU CPU Avg. Max. CPU CPU Avg. Max. CPU CPU
20 1 1 0.00 0.00 100 0.87 0.16 0.10 1.02 90 8.76 0.24 0.25 2.48 90 20.97 0.23
2 0.00 0.00 100 1.06 0.16 0.00 0.00 100 6.98 0.23 0.00 0.00 100 18.80 0.22
3 0.00 0.00 100 0.71 0.16 0.03 0.35 90 9.35 0.24 0.00 0.00 100 21.73 0.22
2 1 0.07 0.68 90 0.37 0.17 0.52 5.18 90 3.74 0.25 0.15 1.51 90 14.68 0.23
2 0.00 0.00 100 0.38 0.18 0.75 7.46 90 5.21 0.27 0.00 0.00 100 19.62 0.23
3 0.00 0.00 100 0.46 0.16 0.00 0.00 100 6.38 0.25 0.20 1.95 90 18.60 0.22
30 1 1 0.00 0.00 100 2.64 0.12 0.00 0.00 100 14.74 0.18 0.28 1.59 80 32.75 0.32
2 0.10 1.03 90 2.49 0.12 0.00 0.00 100 21.79 0.19 0.00 0.00 100 31.76 0.31
3 0.00 0.00 100 2.00 0.13 0.00 0.00 100 21.73 0.17 0.27 2.74 90 31.40 0.31
2 1 0.00 0.00 100 0.80 0.17 0.23 2.32 90 9.79 0.26 0.34 1.97 70 17.94 0.41
2 0.00 0.00 100 0.82 0.14 0.00 0.00 100 14.95 0.27 0.24 2.44 90 18.07 0.29
3 0.15 1.53 90 0.91 0.13 0.09 0.92 90 12.45 0.24 0.21 2.08 90 21.01 0.31
40 1 1 0.00 0.00 100 435 0.13 0.06 0.63 90 11.12 0.19 0.00 0.00 100 20.99 0.25
2 0.00 0.00 100 4.58 0.14 0.00 0.00 100 10.72 0.19 0.22 1.63 80 18.94 0.31
3 0.00 0.00 100 3.67 0.13 0.09 0.93 90 13.89 0.20 0.00 0.00 100 19.00 0.25
2 1 0.27 2.67 90 1.63 0.20 0.00 0.00 100 11.21 0.30 0.44 3.46 70 18.03 0.47
2 0.28 2.78 90 2.36 0.13 0.25 1.63 80 12.91 0.23 0.17 0.90 80 17.62 0.29
3 0.00 0.00 100 1.95 0.13 0.46 2.50 70 10.52 0.20 1.26 3.75 30 19.81 0.34
50 1 1 0.00 0.00 100 7.17 0.14 0.00 0.00 100 20.05 0.22 0.15 1.50 90 40.11 0.29
2 0.00 0.00 100 6.24 0.16 0.00 0.00 100 20.93 0.31 0.05 0.47 90 38.73 0.27
3 0.00 0.00 100 7.39 0.15 0.06 0.64 90 19.55 0.25 0.38 2.26 70 45.48 0.31
2 1 0.00 0.00 100 2.18 0.26 0.12 1.21 90 16.25 0.42 0.22 1.13 70 37.01 0.82
2 0.00 0.00 100 2.50 0.15 0.00 0.00 100 16.50 0.31 0.00 0.00 100 41.73 0.51
3 0.00 0.00 100 2.50 0.15 0.03 0.30 90 17.17 0.29 0.62 247 40 35.83 0.42
60 1 1 0.08 0.79 90 7.80 0.19 0.13 1.25 90 2145 0.29 0.45 2.37 80 48.11 0.41
2 0.31 3.09 90 8.13 0.22 0.00 0.00 100 20.06 0.40 0.09 0.93 90 50.70 0.45
3 0.55 5.54 90 796  0.15 0.00 0.00 100 2083 033 0.21 1.08 80 48.60 0.44
2 1 0.00 0.00 100 3.08 0.31 0.18 1.80 90 17.28 0.72 0.59 2.01 60 47.35 0.97
2 0.00 0.00 100 3.45 0.22 0.18 0.95 80 16.30 0.32 0.43 2.42 60 39.56 0.60
3 0.00 0.00 100 5.20 0.18 0.15 0.70 70 18.69 0.51 1.14 5.96 50 41.79 0.55
70 1 1 0.00 0.00 100 5.55 0.26 0.19 1.89 90 20.79 0.30 0.29 2.90 90 51.65 0.47
2 0.00 0.00 100 5.05 0.23 0.21 1.05 70 14.26 0.33 0.05 0.46 90 40.25 0.37
3 0.07 0.36 80 5.56 0.20 0.00 0.00 100 13.31 0.32 0.11 0.51 60 40.10 0.31
2 1 0.00 0.00 100 2.57 0.42 0.00 0.00 100 22.90 0.67 0.48 3.14 60 50.25 0.85
2 0.00 0.00 100 3.04 0.23 0.10 1.01 90 11.11 0.65 0.41 0.74 40 37.30 0.65
3 0.00 0.00 100 3.39 0.26 0.18 0.91 80 12.25 0.61 0.72 3.22 50 40.17 0.86
80 1 1 0.06 0.65 90 6.14 0.38 0.20 0.93 70 22.70 0.29 0.24 1.26 60 64.68 0.60
2 0.28 2.15 80 6.05 0.36 0.34 2.06 60 23.85 0.35 0.39 2.80 70 43.74 0.41
3 0.04 0.39 90 5.84 0.18 0.22 0.70 60 20.17 0.40 0.42 142 50 48.95 0.51
2 1 0.00 0.00 100 4.03 0.53 0.04 0.36 90 25.32 0.76 0.00 0.00 100 92.64 1.26
2 0.00 0.00 100 4.10 0.39 0.99 3.55 50 12.73 0.58 0.81 3.25 50 51.23 0.71
3 0.29 293 90 3.25 0.42 0.02 0.21 90 12.55 0.50 1.35 432 20 57.22 0.94
90 1 1 0.13 0.65 80 6.25 0.19 0.10 0.53 80 27.78 0.40 0.37 1.37 70 99.63 0.70
2 0.00 0.00 100 7.59 0.26 0.48 2.12 60 27.44 0.46 0.04 0.35 90 76.54 0.59
3 0.16 1.56 90 6.22 0.29 0.38 1.84 70 17.97 0.46 0.10 0.47 70 76.00 0.62
2 1 0.00 0.00 100 3.04 0.35 0.00 0.00 100 26.07 1.01 0.00 0.00 100 144.08 145
2 0.29 1.80 80 4.34 0.29 0.51 2.29 60 15.52 0.56 0.47 1.84 50 55.02 1.19
3 0.27 2.17 80 4.51 0.39 0.50 2.63 70 14.53 0.78 1.45 5.17 30 58.12 0.94
100 1 1 0.00 0.00 100 8.13 0.24 0.55 1.75 40 22.33 0.53 0.22 0.79 70 190.40 0.72
2 0.00 0.00 100 8.62 0.27 0.26 1.35 70 18.37 0.54 0.26 1.20 70 119.35 0.98
3 0.00 0.00 100 8.78 0.26 0.61 2.29 70 23.97 0.60 0.36 247 60 96.57 0.88
2 1 0.00 0.00 100 4.61 0.50 0.07 0.70 90 28.26 1.26 0.05 0.27 80 248.86 1.82
2 0.00 0.00 100 6.49 0.69 0.65 3.01 60 25.69 0.84 1.00 3.16 40 80.31 0.93
3 0.00 0.00 100 6.99 0.28 0.24 0.97 70 24.66 0.75 1.35 4.15 10 108.98 0.81
250 1 1 0.00 0.00 100 15.07 1.48 0.28 1.03 40 406.03 4.13 - - - - -
2 0.05 0.47 90 9.60 1.27 0.91 2.12 30 119.81 3.46 - - - - -
3 0.00 0.00 100 9.04 1.14 0.65 1.66 20 88.31 3.28 - - - - -
2 1 0.00 0.00 100 13.63 2.05 0.00 0.00 100 634.38 5.81 - - - - -
2 0.91 3.68 70 7.05 1.30 1.51 335 20 34.71 5.89 - - - - -
3 0.00 0.00 100 8.05 1.48 0.55 1.96 40 42.67 2.57 - - - - -




Table 6

Performance of the time-phased MCNF algorithm vs. GH and GGA by Rossi et al. (2010) for r=1.

n p w m=2 m=3 m=4
MCNF GH GGA MCNF GH GGA MCNF GH GGA
% dev. opt. % opt. % dev.opt. % opt. % dev.opt. %opt. % dev.opt. % opt. % dev.opt. %opt. %dev.opt. % opt. % dev.opt. % opt. % dev.opt. % opt. % dev. opt. % opt.
Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max.
20 1 1 017 323 95 121 714 75 0.00 0.00 100 0.00 0.00 100 0.68 584 80 0.00 0.00 100 0.00 0.00 100 0.68 640 80 0.00 0.00 100
2 000 0.00 100 090 6.72 80 0.00 0.00 100 0.16 3.13 90 095 455 75 0.00 0.00 100 0.00 0.00 100 114 594 70 0.00 0.00 100
3 023 435 95 065 432 70 0.00 0.00 100 039 7.38 95 0.51 338 75 0.00 0.00 100 046 5.24 85 048 530 85 0.00 0.00 100
2 1 038 714 95 017 282 90 0.00 0.00 100 0.13 2.08 90 064 487 75 0.00 0.00 100 041 3.06 80 051 355 80 0.00 0.00 100
2 000 0.00 100 0.65 476 80 0.10 2.38 95 0.16 2.04 90 203 971 50 0.00 0.00 100 020 1.63 85 120 9.68 60 0.00 0.00 100
3 017 319 95 126 6.10 65 0.00 0.00 100 0.00 0.00 100 119 927 70 0.00 0.00 100 053 8.40 85 065 636 80 0.00 0.00 100
40 1 1 017 199 90 1.65 7.50 50 0.00 0.00 100 0.10 1.18 90 062 294 55 0.00 0.00 100 0.06 0.82 90 172 588 25 0.00 0.00 100
2 007 138 95 134 5.03 40 0.00 0.00 100 0.02 0.39 95 1.10 10.00 55 0.00 0.00 100 034 228 80 1.07 7.69 55 0.00 0.00 100
3 000 0.00 100 224 888 45 0.00 0.00 100 0.05 0.96 95 095 526 60 0.00 0.00 100 0.09 143 90 1.07 4.44 45 0.00 0.00 100
2 1 000 0.00 100 063 335 65 0.00 0.00 100 0.14 1.66 85 090 4.17 40 0.03 0.78 95 035 3.20 65 117 3.70 40 0.00 0.00 100
2 013 1.03 85 139 492 45 0.06 1.64 95 030 2.61 85 243 1571 35 0.00 0.00 100 037 347 75 197 682 25 0.00 0.00 100
3 095 18.03 95 150 944 45 0.05 1.01 95 0.70 4.58 55 135 730 40 0.00 0.00 100 036 1.77 60 203 814 15 0.00 0.00 100
60 1 1 014 216 90 149 952 35 0.00 0.00 100 0.03 0.63 95 044 2.08 65 0.00 0.00 100 032 1.67 60 122 377 40 0.00 0.00 100
2 013 167 85 053 240 60 0.00 0.00 100 0.08 1.54 95 1.15 443 40 0.00 0.00 100 034 1.69 70 1.69 755 30 0.00 0.00 100
3 006 089 85 1.76 8.89 30 0.00 0.00 100 0.04 048 90 0.75 6.69 55 0.00 0.00 100 040 1.42 65 1.66 3.68 15 0.00 0.00 100
2 1 093 1765 95 0.63 280 60 0.00 0.00 100 030 1.68 75 112 493 40 0.02 0.19 95 0.19 1.80 75 148 6.59 20 0.00 0.00 100
2 047 390 80 059 258 60 0.00 0.00 100 025 3.06 80 3.03 1067 35 0.00 0.00 100 0.18 1.44 75 191 870 45 0.00 0.00 100
3 009 117 85 227 774 40 0.00 0.00 100 041 1.88 70 1.15 6.05 55 0.00 0.00 100 053 231 50 256 8.78 45 0.00 0.00 100
80 1 1 008 072 85 1.76 19.23 50 0.00 0.00 100 024 0.90 65 136 474 20 0.00 0.00 100 025 1.03 65 097 294 20 0.03 0.49 95
2 036 233 75 099 426 45 0.03 2.56 95 0.00 0.00 95 133 6.07 30 0.00 0.00 100 027 2.86 70 124 387 35 0.00 0.00 100
3 012 126 90 0.51 349 60 0.04 1.20 95 0.17 2.01 80 1.19 3.92 50 0.00 0.00 100 0.36 248 55 144 352 10 0.00 0.00 100
2 1 000 0.00 100 073 377 50 0.06 0.71 95 0.01 0.25 90 1.56 6.98 30 0.00 0.00 100 049 217 30 135 820 10 0.00 0.00 100
2 006 061 90 223 2593 55 0.09 2.50 95 041 2.11 65 269 656 25 0.04 0.00 100 048 3.81 70 215 952 30 0.06 0.85 95
3 042 317 80 230 1143 35 0.07 2.79 95 0.67 3.95 65 3.01 15.02 30 0.00 0.00 100 0.68 2.81 45 3.01 631 15 0.00 0.00 100
100 1 1 020 169 75 189 746 25 0.00 0.00 100 036 1.15 55 129 417 20 0.06 0.55 90 032 1.28 45 152 442 20 0.03 0.22 90
2 007 136 95 2.86 3333 50 0.00 0.00 100 027 1.15 60 138 730 30 0.05 0.76 90 051 238 40 121 419 30 0.00 0.00 100
3 025 211 75 159 920 35 0.00 0.00 100 020 1.20 55 125 6.19 15 0.00 0.00 100 034 1.89 45 2.08 5.70 0 0.00 0.00 100
2 1 003 062 095 1.07 441 25 0.00 0.00 100 0.06 0.54 85 147 7.02 35 0.03 0.39 95 0.14 0.87 65 215 943 25 0.01 0.15 95
2 006 110 95 1.71 8.00 45 0.00 0.00 100 058 234 40 1.70 533 10 0.08 1.15 95 111 3.60 35 251 532 15 0.00 0.00 100
3 026 281 90 129 932 55 0.03 0.59 95 046 2.87 65 299 806 20 0.00 0.00 100 0.65 3.88 50 192 510 15 0.00 0.00 100
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Table 7

Performance of the time-phased MCNF algorithm vs. GH and GGA by Rossi et al. (2010) for r=2.

n P w m=2 m=3 m=4
MCNF GH GGA MCNF GH GGA MCNF GH GGA
% dev. opt. % opt. % dev.opt. % opt %dev.opt. %opt. %dev.opt. %opt. %dev.opt. %opt. %dev.opt. %opt. % dev.opt. %opt. % dev.opt. % opt. % dev. opt. % opt.
Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max.
20 1 1 0.00 0.00 100 0.61 6.82 85 0.00 0.00 100 0.00 0.00 100 049 875 90 0.00 0.00 100 0.18 3.51 95 028 263 85 0.00 0.00 100
2 0.00 0.00 100 131 16.67 80 0.00 0.00 100 0.00 0.00 100 120 631 70 0.00 0.00 100 0.11 1.08 90 0.89 9.80 80 0.00 0.00 100
3 0.00 0.00 100 118 7.64 75 0.00 0.00 100 0.00 0.00 100 047 945 95 0.00 0.00 100 0.00 0.00 100 020 3.70 90 0.00 0.00 100
2 1 020 243 90 022 373 90 0.00 0.00 100 0.02 0.45 95 0.13 224 90 0.00 0.00 100 046 2.51 70 0.53 3.88 75 0.00 0.00 100
2 0.00 0.00 100 092 877 80 0.00 0.00 100 0.10 1.98 95 141 698 70 0.00 0.00 100 0.32 5.15 85 1.71 6.82 40 0.00 0.00 100
3 0.00 0.00 100 044 4.09 80 0.00 0.00 100 0.34 2.99 85 141 698 70 0.00 0.00 100 0.03 0.59 95 1.71 6.82 40 0.00 0.00 100
40 1 1 051 473 80 1.85 13.04 45 0.00 0.00 100 0.18 3.51 95 036 2.56 80 0.00 0.00 100 0.03 0.64 95 038 299 75 0.00 0.00 100
2 0.00 0.00 100 1.00 851 80 0.00 0.00 100 0.11 1.08 90 0.69 3.68 70 0.00 0.00 100 0.00 0.00 100 1.65 530 30 0.00 0.00 100
3 010 1.98 95 121 7.09 65 0.00 0.00 100 0.00 0.00 100 1.62 5.66 45 0.00 0.00 100 0.07 1.33 90 0.68 4.06 45 0.00 0.00 100
2 1 018 348 95 044 441 80 0.00 0.00 100 0.31 231 80 1.18 556 35 0.00 0.00 100 0.50 3.22 70 1.14 645 55 0.00 0.00 100
2 0.00 0.00 100 1.81 15.00 70 0.00 0.00 100 0.38 4.11 75 149 758 50 0.00 0.00 100 0.09 1.75 95 193 1739 55 0.00 0.00 100
3 020 194 85 235 1259 60 0.13 3.51 95 0.28 1.99 80 202 935 30 0.03 0.87 95 0.17 1.00 70 193 823 35 0.00 0.00 100
60 1 1 0.00 0.00 100 0.58 481 75 0.00 0.00 100 033 1.78 70 094 579 45 0.00 0.00 100 0.19 1.18 75 046 351 60 0.00 0.00 100
2 0.00 0.00 100 0.15 1.56 90 0.00 0.00 100 0.08 1.02 90 0.63 4.55 65 0.00 0.00 100 0.27 2.10 80 135 541 40 0.00 0.00 100
3 0.00 0.00 100 028 125 65 0.00 0.00 100 0.18 2.32 90 0.76  2.83 50 0.00 0.00 100 0.19 1.76 75 097 456 35 0.00 0.00 100
2 1 0.00 0.00 100 062 381 75 0.19 235 85 0.27 1.86 70 1.26 435 30 0.04 1.71 95 0.20 2.04 75 0.82 563 50 0.00 0.00 100
2 015 2.88 95 1.09 6.06 65 0.00 0.00 100 0.25 2.38 85 1.60 10.62 50 0.00 0.00 100 0.54 3.77 65 3.13 15.71 30 0.00 0.00 100
3 007 134 95 3.01 1354 35 0.00 0.00 100 0.70 3.89 55 129 752 50 0.00 0.00 100 044 5.24 80 3.51 2556 30 0.00 0.00 100
80 1 1 0.06 1.05 95 030 230 65 0.00 0.00 100 0.20 2.56 90 1.04 3.68 45 0.00 0.00 100 0.11 0.81 85 0.52 192 50 0.00 0.00 100
2 0.02 045 95 079 3.64 45 0.03 2.56 85 0.17 1.81 90 141 412 35 0.11 2.14 95 026 1.92 80 090 5.11 50 0.00 0.00 100
3 015 286 95 119 6.73 45 0.06 2.86 90 0.32 249 75 117 3.77 45 0.01 0.32 95 022 2.03 75 1.00 737 25 0.00 0.00 100
2 1 019 1.52 80 0.89 429 50 0.00 0.00 100 0.20 1.26 80 0.78 3.11 35 0.00 0.00 100 049 1.95 60 1.21 570 35 0.00 0.00 100
2 0.00 0.00 100 068 3.70 70 0.06 1.04 95 0.27 191 75 203 581 20 0.00 0.00 100 0.54 3.76 65 255 8.16 25 0.03 045 95
3 048 250 75 1.72 11.05 60 0.06 0.87 95 045 3.61 70 1.18 8.21 45 0.07 244 95 0.65 5.08 70 235 11.66 20 0.00 0.00 100
100 1 1 0.07 078 85 047 350 60 0.00 0.00 100 0.31 1.88 65 0.86 3.59 40 0.03 0.36 95 021 1.37 60 095 397 40 0.02 0.35 95
2 0.09 1.16 90 030 233 80 0.03 1.16 95 0.11 1.25 90 0.68 3.59 50 0.06 1.32 90 049 3.18 40 2.02 19.64 30 0.00 0.00 100
3 004 043 85 0.86 447 45 0.00 0.00 100 0.23 2.83 80 121 472 25 0.00 0.00 100 0.20 1.61 65 073 2.15 30 0.00 0.00 100
2 1 004 039 90 091 3.85 40 0.06 0.59 95 0.26 1.70 75 1.16 459 45 0.05 0.80 95 0.52 2.16 55 141 8.06 15 0.03 0.61 95
2 021 278 80 2.74 2593 40 0.00 0.00 100 0.12 1.24 85 191 1064 35 0.00 0.00 100 0.85 2.81 40 280 792 10 0.00 0.00 100
3 0.09 1.66 95 2.04 6.29 40 0.18 2.63 95 0.12 0.93 75 197 14.69 30 0.02 0.71 95 0.76 2.26 35 2.70 1522 30 0.00 0.00 100
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As can be observed from Tables 1 and 2, the performance of
the algorithm is superb in terms of both solution time and
solution quality. All deviations from the optimal solutions are
very small and the deviations increase slightly with increases in
problem size. We find optimal solutions for all instances with
w=1. We observe that the instances with r=1 and p=1 are easier
to solve than those in r=2 and p=2, respectively. The hardest to
solve instances are from n=250, r=2, p=3 and w=3 combina-
tion. Even for this combination the average deviations are 1.69%,
1.61% and 2.1%, for m=2, 3 and 4, respectively. Hence we can
conclude that our algorithm performs consistently well over all
parameter combinations. It can also be observed from the tables
that the number of jobs and machines do not have a significant
effect on the performance of our algorithm in terms of solution
time. We find that almost all CPU times are below 0.01 s even for
the largest problem size with 250 jobs and 4 machines. CPLEX
solves those problems in about 2-3 s.

In Table 3, we report on the performance of our filtered beam
search algorithm for large sized instances with 10 machines and
250 and 500 jobs. Instances with 20 machines are also tried;
however the CPLEX software could not find the optimal solutions
in one hour for these instances.

As can be observed from Table 3, when w=1, all solutions
returned by the filtered beam search algorithm are optimal. For
w=2 or 3, the majority of the average deviations are below 1%.
The CPU times for the algorithm are very small as well; the largest
average CPU times are 0.03 and 0.07 s, for n=250 and n=500,
respectively. On the other hand, CPLEX cannot solve two problem
instances in 3600 s.

5.2. The OFJSS problem

In this section we discuss the performance of our time-phased
MCNF algorithm (together with phase 1, i.e., branching phase)
developed for the OFJSS problem. Tables 4 and 5 report the
average and maximum deviations of our lower bounds from the
optimal solutions by the CPLEX software for r=1 and r=2,
respectively. The tables also include the average CPU times.
Empty entries in the tables indicate that our algorithm could
not return solutions in one-hour.

It can be observed from the tables that our algorithm for the
OFJSS problem performs well. The largest average deviations are
1.69% and 1.35% for r=1 and r=2, respectively. The majority of
the average deviations are below 1%. When m=2, the algorithm
finds optimal solutions for majority of the problem instances
and when m=4, the algorithm finds optimal solutions for about
60-70% of the instances. The maximum deviations are also very
small; hence our algorithm has a consistently well behavior over
all problem instances.

Main drawback of the time-phased MCNF algorithm is its
solution complexity, which is dramatically affected by the num-
ber of machines. We observe that the algorithm cannot solve
medium and large sized instances with more than four machines
in reasonable time. This is due to the fact that the algorithm
performs the branching phase in O(n™) time, which increases
exponentially with the number of machines. This observation is in
line with the observations of Eliiyi and Azizoglu (2006) for the
B&B method. Note from the tables that when n=250, the average
CPU times are around 10s when m=2. However, when m
becomes 4, the instances could not be solved in one hour.

We also include an experiment using the data used in Rossi
et al. (2010). We report the results of our experiment in
Tables 6 and 7 for r=1 and r=2, respectively.

As can be observed from the tables our algorithm performs
very well over all problem sizes and parameter combinations. It
produces optimal solutions to the majority of the instances when

n and m are relatively small. For almost all problem combinations
more than half of the solutions are optimal and almost all average
deviations are below 1%. The largest average deviation of the
genetic algorithm and our algorithm are 0.2% and 1.11%, respec-
tively. Hence genetic algorithm performs slightly better than our
algorithm. Our algorithm performs better than greedy heuristic
for all problem sizes and parameter combinations. When r=1, our
average deviations are below 0.93%, 0.7% and 1.11% for m=2,
3 and 4, respectively. These respective deviations are 2.86%, 3.01%
and 3.01% for the greedy heuristic.

Rossi et al. (2010) compare their solution times with those of
the commercial solver XPress MP. The results of their computa-
tional study reveal that the solver returns optimal solutions in
less than 4 minutes whereas their genetic algorithm runs in about
one second.

6. Conclusion

In this study we consider the operational fixed job scheduling
problem under working time and spread time constraints. Both
problems have important practical implications, and are shown to
be NP-hard in the strong sense. We develop several polynomial
time heuristics for both problems that employ powerful bounding
procedures and reduction properties. An extensive computational
study is carried out to observe the performances of the algorithms
compared to the optimal solutions.

Our algorithms perform very well for problems up to 100 jobs
and 4 machines and 250 jobs and 3 machines, for the OFJSS
problem and up to 500 jobs and 10 machines for the OFJSW
problem. The computation times do not increase significantly
with the problem size, hence the instances with many more jobs
and machines could be solved. As the problems have many
practical applications and are likely to be solved frequently due
to their operational nature, our approximation algorithms may
prove quite useful for practitioners.

Our algorithms can be modified to the operational fixed job
scheduling problems where working time and spread time con-
straints are imposed simultaneously.
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