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• Combining 2D ECG beats with novel deep 
learning approach to identify arrhythmias.

• 2D ECG beat images are provided from 1D 
ECG signals in the MIT-BIH database.

• Outperforming method alleviating imbal-
anced data in arrhythmia classification.

• The automatic cardiac arrhythmia de-
tection method improves diagnostic effi-
ciency.
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Background: Electrocardiogram (ECG) is a method of recording the electrical activity of the heart and it 
provides a diagnostic means for heart-related diseases. Arrhythmia is any irregularity of the heartbeat 
that causes an abnormality in the heart rhythm. Early detection of arrhythmia has great importance 
to prevent many diseases. Manual analysis of ECG recordings is not practical for quickly identifying 
arrhythmias that may cause sudden deaths. Hence, many studies have been presented to develop 
computer-aided-diagnosis (CAD) systems to automatically identify arrhythmias.
Methods: This paper proposes a novel deep learning approach to identify arrhythmias in ECG signals. 
The proposed approach identifies arrhythmia classes using Convolutional Neural Network (CNN) trained 
by two-dimensional (2D) ECG beat images. Firstly, ECG signals, which consist of 5 different arrhythmias, 
are segmented into heartbeats which are transformed into 2D grayscale images. Afterward, the images 
are used as input for training a new CNN architecture to classify heartbeats.
Results: The experimental results show that the classification performance of the proposed approach 
reaches an overall accuracy of 99.7%, sensitivity of 99.7%, and specificity of 99.22% in the classification 
of five different ECG arrhythmias. Further, the proposed CNN architecture is compared to other popular 
CNN architectures such as LeNet and ResNet-50 to evaluate the performance of the study.
Conclusions: Test results demonstrate that the deep network trained by ECG images provides outstanding 
classification performance of arrhythmic ECG signals and outperforms similar network architectures. 
Moreover, the proposed method has lower computational costs compared to existing methods and 
is more suitable for mobile device-based diagnosis systems as it does not involve any complex 
preprocessing process. Hence, the proposed approach provides a simple and robust automatic cardiac 
arrhythmia detection scheme for the classification of ECG arrhythmias.
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1. Introduction

A heartbeat is an event that occurs when the heart contracts 
and relaxes rhythmically. Electrocardiogram (ECG) is a tool used for 
observing the electrical activity of the heart. Each heartbeat has a 
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P wave, QRS complex, and T wave that represent repolarization and 
depolarization of the atria and ventricles of the heart. The heart 
rate for a healthy person ranges from 60 to 100 beats per minute 
[1]. The heartbeat depends on one’s instant activity that it may 
beat slower or faster. The heart beats faster when exercising, and 
it beats slower than active conditions during resting or sleeping.

Arrhythmia is any abnormality in the cardiac cycle that can be 
considered as an irregular heart rate or irregular waveform [2]. 
A heart that has an arrhythmic heartbeat cannot pump enough 
blood throughout the body as well as it should. This condition 
may damage many organs and pose a threat to daily life. Since 
cardiac arrhythmias are a major threat to human health, their 
early and accurate detection is essential in medical practice [3]. 
Manual analysis of the ECG signal recordings is not efficient to 
correctly detect abnormalities in the heart rhythm [4,5]. Analy-
sis of long-duration ECG signals by physicians is a burdensome 
and time-consuming task that may yield inaccurate results. De-
veloping automatic cardiac arrhythmia detection algorithms reduce 
the physician’s workload, decreases arrhythmia detection time, and 
also improves diagnostic efficiency and accuracy. Many studies in 
the literature presented some forms of computer-aided systems by 
using different feature extraction and classification techniques to 
accurately detect abnormalities in the ECG signals.

There have been several methods for automatically detecting 
arrhythmias based on signal processing, feature extraction, and 
machine learning algorithms [6]. Recorded ECG signals are gener-
ally contaminated by different noise types or artifacts which may 
change the characteristics of the ECG signal. In the preprocessing 
stage, contaminants are removed from ECG signals applying differ-
ent filtering operations [7]. The feature extraction stage is crucial 
for the discrimination of arrhythmic signals from regular ones. Fea-
tures are extracted from the ECG signals by using various methods 
in the time or the frequency domain [7]. Among the time-domain 
ECG morphology and heart rate features [8], R-R interval and lin-
ear discriminant analysis (LDA) [9] have been widely used. In the 
frequency-domain, features based on Fourier transform [10], spec-
tral correlation [11], and variational mode decomposition (VMD) 
[12] have been used. The preprocessing and feature extraction 
stages construct an analysis system for the final learning algo-
rithms. Conventional machine learning algorithms such as Support 
Vector Machine (SVM) [13], Random Forest (RF) [14], and Artifi-
cial Neural Networks (ANN) [15] have been utilized in previous 
studies for the classification of different arrhythmia types. In [16], 
time-frequency (TF) analysis of ECG signals is applied in the de-
tection of cardiac arrhythmias. Pseudo Wigner-Ville Distribution is 
utilized to obtain a TF representation of ECG signals obtained from 
the American Heart Association (AHA) and Massachusetts Institute 
of Technology (MIT) - Boston’s Beth Israel Hospital (BIH) databases. 
Four different classifiers; Logistic Regression with L2 Regulariza-
tion (L2-RLR), Adaptive Neural Network Classifier (ANNC), SVM, 
and Bagging are used to classify ventricular fibrillation, ventricu-
lar tachycardia, normal sinus, and other rhythms. Although many 
studies have developed arrhythmia detection algorithms by using 
preprocessing, feature extraction, and machine learning techniques, 
they have limitations for accurately classifying arrhythmias. Loss 
of ECG beat characteristics in noise filtering, not selecting optimal 
features for classification, low classification performance is exam-
ples of these limitations that directly affect the success of the 
studies [17].

The architecture of conventional neural network algorithms 
contains input, output, and hidden layers. Deep Learning (DL) is 
a novel neural network structure that contains more than three 
layers and has become more favorable in detection and classifica-
tion studies compared to conventional techniques [18]. In DL, fea-
ture extraction and classification parts are embedded in the model 
which automatically identifies the optimal features from the input 
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data [19]. DL has become very popular in recent studies since it 
provides improved performance of ECG arrhythmia classification. 
DL may be categorized into different types based on the training 
methods such as recurrent neural networks (RNNs), deep neural 
networks (DNNs), convolutional neural networks (CNNs), and Long 
short-term memory (LSTM). Zhang et al. [20] proposed an RNN 
and clustering-based method to find patient-specific ECG classifi-
cation algorithms by using the MIT-BIH arrhythmia database. Al 
Rahhal et al. [21] proposed a DNN based method to classify ECG 
signals using three different databases. In [22], the temporal fea-
tures of ECG heartbeats are detected with DNN on the MIT-BIH 
database with 99.09% accuracy. Yildirim et al. designed a 16-layer 
deep CNN to classify 17 different arrhythmias on ECG signals taken 
from the MIT-BIH dataset. In [23], authors proposed a novel 3-layer 
deep genetic ensemble of classifiers to detect 17 different arrhyth-
mias which achieved 99.37% classification accuracy.

CNN is a popular deep learning architecture for the automatic 
classification of ECG signals [24]. Kiranyaz et al. [25] introduced a 
one-dimensional (1D) 3-layer CNN with an R-peak wave for ECG 
arrhythmia classification. Baloglu et al. [26] used CNN algorithms 
with the end-to-end structure on 12-lead ECG signals for auto-
matic detection of myocardial infarction on ECG signals with over 
99% accuracy. Savalia et al. [27] proposed multilayer perception 
(MLP) and CNN-based methods to identify first-degree AV block 
(FAV) and ventricular bigeminy diseases. In [28], the authors pro-
posed an 11-layer CNN structure to detect different ECG segments 
with an accuracy of 92.50% using 2 seconds, and 94.90% using 5 
seconds ECG segments. Yao et al. [29] proposed an attention-based 
time-incremental CNN (ATI-CNN), that preserves spatial and tem-
poral characteristics of ECG signals with the integration of a CNN 
architecture and recurrent cells. Their results attained 81.2% ac-
curacy. Besides using a 1D CNN for ECG arrhythmia classification, 
there are several studies in the literature based on 2D CNNs. The 
hidden structure of CNN can extract various local features from 2D 
input samples. The spatially adjacent pixels may be represented by 
utilizing nonlinear and multiple filters. Hence, the recent state-of-
the-art studies proposed 2D CNNs for ECG arrhythmia classifica-
tion, these approaches motivated researchers to implement CNNs 
with 2D image-based input data. In these studies, ECG signals are 
converted into 2D images and provided input for CNN [17,30]. The 
CNN architecture is considered to be more suitable for the analysis 
and classification of 2D data. It achieves better results compared 
to other classical techniques in image processing [31]. Jun et al. 
[17] proposed deep 2D CNN based on 7 different arrhythmia de-
tection methods using 2D grayscale ECG beat images, and compare 
the performance of their proposed architecture with well-known 
structures such as AlexNet and VGGNet. Huang et al. [32] used TF 
spectrograms that are obtained from five different ECG beats by 
short-time Fourier transform (STFT). Spectrogram images are uti-
lized as input data to the 2D deep CNN which yielded an average 
accuracy of 99.00%.

Although there are many studies for arrhythmia detection in 
the literature, most of them experience various problems such as 
excessive depth in the network, training cost, and computational 
complexity. Considering the benefits and drawbacks of the existing 
techniques, this paper proposes a novel DL approach for identi-
fying different arrhythmia types in ECG signals. In this approach, 
the CNN model is selected as the network structure, and ECG sig-
nals are converted into ECG images to be used as input to a new 
CNN architecture. Five different arrhythmia types are considered 
for classification. Before converting 1D ECG signals into 2D im-
ages, segmentation is applied to the ECG signals to extract the ECG 
beats. Then each ECG beat is converted into a 2D grayscale image 
and used as input data for the CNN architecture. The classification 
performance of the proposed DL approach is compared to LeNet 
and ResNet-50 architectures.
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Fig. 1. The graphical representation of the proposed methodology.
2. Material and methods

The proposed ECG arrhythmia classification algorithm consists 
of the following steps; heartbeat segmentation, image transforma-
tion, and ECG arrhythmia classification by using 2D CNN archi-
tecture. The schematic diagram of the methodology is shown in 
Fig. 1. The ECG signals are taken from the MIT-BIH arrhythmia 
database [33]. Five different arrhythmia types are selected from 
the database. ECG signals are segmented into heartbeats and con-
verted into ECG heartbeat images which are then used to train the 
network.

2.1. ECG database

MIT-BIH arrhythmia database [33] includes different arrhythmic 
signals which are independently annotated by two or more cardi-
ologists according to their arrhythmia types. Each record includes 
two-channel ECG signals which are the modified limb lead II (MLII) 
and one of the modified leads V1, V2, or V5. Due to the deforma-
tion of the second channel, MLII lead recordings are used in this 
study. The duration of each signal is 30-min with 360 Hz sampling 
frequency and is filtered by a 0.1-100 Hz bandpass filter. The MIT-
BIH database is well-known to be imbalanced by the non-equal 
number of ECG beats for each arrhythmia which deteriorates the 
accuracy of DNN and CNN models [34]. The deep learning algo-
rithms may tend to be biased for the type of arrhythmia classes 
that include many samples as the number of heartbeats are not 
equal for each class of arrhythmia in the dataset. Recently, some 
approaches have been proposed to eliminate the imbalance effect 
in the MIT-BIH database. A novel study proposed a data augmen-
tation technique using 15 different classes from MIT-BIH to gen-
erate a balanced database. In this approach, the proposed model 
trained with the same techniques and hyperparameters using the 
original imbalanced database and balanced database that is cre-
ated with the augmentation technique to observe the effect of the 
balanced dataset. Their results revealed that augmenting the im-
balanced original dataset with generated heartbeats outperforms 
the performance of arrhythmia classification than using the pro-
posed techniques trained with the original dataset [35]. Oh et al. 
[36] utilized a combination of CNN and LSTM for classifying five 
classes of the MIT-BIH dataset which are normal (N), left bundle 
branch block (LBBB), right bundle branch block (RBBB), prema-
ture ventricular contraction (PVC), atrial premature beat (APB) and 
normalization technique is applied to standardize the input data. 
Huang et al. [32] proposed 2D CNN using spectrograms of the 
five different classes of arrhythmias as input for ECG arrhythmia 
detection. The nearly equal numbers of five different arrhythmias 
which are N, LBBB, RBBB, PVC, and APB are selected to balance the 
dataset and classified to achieve the highest accuracy. Recent stud-
ies have revealed that data augmentation techniques and providing 
an equal number of beat samples among classes of the dataset can 
be used as approaches to stabilize the imbalance ratio (IR) [37].

Considering the limitations of the MIT-BIH dataset and ap-
proaches that are applied to overcome them, arrhythmia classes 
with an approximately equal number of heartbeats are utilized 
to train the model and to eliminate the imbalance effect of the 
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database. Besides, the processing of a large amount of heartbeat 
data plays a vital role in DL-based approaches for successfully 
analyzing and classifying them. As a result, the process of deter-
mining the types of arrhythmia was performed based on the two 
criteria mentioned above. The specific 5 arrhythmia type that in-
cludes many heartbeat data and an approximately equal number of 
beat samples among them are determined to provide the normal-
ized and big dataset. Consequently, five different arrhythmia types 
which are N, LBBB, RBBB, PVC, and Paced beat (PB) are selected 
from the database. Another advantage of selecting the 5 specific 
types of arrhythmia is that it provides a fair comparison with 
recent studies that make a certain number of arrhythmia classi-
fications. The sample sizes of ECG beats for the considered classes 
are given in Table 1.

2.2. Heartbeat segmentation

Python programming language is utilized for analyzing and 
classifying ECG arrhythmic signals. In the MIT-BIH database, each 
heartbeat of a signal is annotated by cardiologists based on the 
QRS structure and type of the heartbeats. To identify annotated 
heartbeats, WFDB Toolbox for Python is applied to the ECG signals. 
This toolbox finds the QRS complex of each beat on the signal, sep-
arates heartbeats from the signal, and categorizes them according 
to their arrhythmia types. An example drawing of the ECG signals 
in the MIT-BIH database, and the segmented 2D heartbeat images 
are illustrated in Fig. 2. ECG records and the number of ECG beats 
for each arrhythmia type are shown in Table 1. After completing 
the segmentation, each ECG beat is converted into ECG image for-
mation.

2.3. 2D signal-to-image transformation

CNN is mainly used for analyzing 2D data since it automatically 
learns the optimal features from raw image data. Based on this 
popular advantage, a 2D CNN model is proposed in this study for 
ECG arrhythmia classification. After the segmentation of ECG sig-
nals into heartbeats, each beat is transformed into image formation 
by plotting the time-amplitude waveform and saving it as an image 
in Python. CNN model directly processes the input images while 
noisy ECG beats do not affect the performance of classification. 
Furthermore, the model automatically extracts robust features that 
eliminate the manual long-duration feature extraction step. Exam-
ining ECG images for arrhythmia detection by CNN is much similar 
to expert examination. Experts analyze ECG signals according to 
their observation of the ECG graph and diagnose arrhythmia type. 
They use the time amplitude behavior of ECG signals. The other 
advantage of image formation is increasing data size for CNN ar-
chitectures. In general, deep learning methods need a large amount 
of data for successfully analyzing and classifying them. Through 
beat segmentation and image transformation steps, the total size 
of the dataset is increased. After completing the image transfor-
mation, each heartbeat image is converted into a 64 × 64-pixel
grayscale image. There are two main reasons for the image size 
tune to 64 × 64. The first is to choose the lowest resolution that 
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Table 1
The number of beats for each arrhythmia type and ECG records.

Beat Type Classes Annotation Beat Count Record Numbers

Normal N N 8017 102 104 105 106 114 116
Left Bundle Branch Block LBBB L 8072 109 111 207 214
Right Bundle Branch Block RBBB R 7256 118 124 212 231 232 207
Premature Ventricular Contraction PVC V 6970 105 106 107 114 116 119 203 207 208 210 213 214 215 221 228 233
Paced Beat PB / 7024 102 104 107 217

Fig. 2. Parts of different ECG signals and arrhythmic beat segmentation examples.
can represent the lines of the ECG signal drawing without any de-
generation, while at the same time avoid increasing the training 
cost for the deep learning architecture where thousands of ECG im-
ages are trained. The other is to avoid negative dimensions in the 
pooling layers of the deep network. Moreover, during the training 
of the proposed model, various image sizes are tested to yield the 
best performance. Further, all images are generated with the same 
color and converted into grayscale since there is no need to pro-
cess the RGB color information in the CNN model. The RGB color 
depth of ECG images is not a significant feature to differentiate 
arrhythmia types [38]. Thus, grayscale image conversion provides 
a decreased dimension of images and reduces the computational 
complexity, and the classification time.

2.4. Convolutional neural network

CNN is a deep learning algorithm based on artificial neural net-
work structures. Conventional machine learning techniques include 
three layers which are the input layer, one hidden layer, and the 
output layer. An artificial neural network consists of more than 
three layers that have several hidden layers in its structure. The 
structure is inspired by the brain working system that includes 
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many hidden layers. In the hidden layer which includes many 
neurons, the input is transformed into something that the output 
layer can use. Neurons provide feature detection from the input 
data. The mathematical representation of artificial neuron is de-
fined as;

yj = fj (x) = ϕ
(
wj,x + bj

)
(1)

where f j is a function of the input x weighted by a vector of 
connection weights w j completed by a neuron bias b j , and asso-
ciated with an activation function ϕ . The schematic diagram of an 
artificial neuron is visualized in Fig. 3.

Artificial neural networks have been used in many different 
areas as computer vision, speech recognition, natural language pro-
cessing, bioinformatics, drug design, and medical image analysis. 
CNN is a part of artificial neural networks especially designed for 
analyzing 2D data like images or videos. In contrast to conven-
tional machine learning algorithms, CNN architectures do not need 
to extract hand-crafted features from the raw data. Both feature 
extraction and classification parts are embedded in the architec-
ture and so automatically identify the robust features from the 
input data [19]. CNN has three characteristic layers; convolution, 
pooling, and fully connected layer.
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Fig. 3. Mathematical representation of a standard node in a DNN.
In the convolution layer, input samples are convolved with a 
specific kernel. Many features are provided by moving the specific 
kernel [30]. The equation of discrete convolution function is de-
fined as;

(f ∗ g) (x) =
∑

t

f (t)g (x + t) (2)

where f and g are two functions. For 2D signals like images, the 
equation is changed as;

K ∗ G (i, j) =
∑
m,n

K (m,n) G (i + m, j + n) (3)

where K is a convolution kernel, G is a 2D signal. The convolution 
process provides to extract effective features from the input. The 
pooling layer is used for reducing the dimension of the input sam-
ple by keeping the optimal features. In the fully connected layer, 
all neurons of the current layer are inter-connected to the neu-
rons in the next layer. As such, the results of the convolution and 
pooling layers are used for classification. Between convolution and 
fully connected layers, there is a flattened layer where multidimen-
sional feature vectors are transformed into 1D output vectors [39]. 
Also, in the fully connected layer, data is provided from the flat-
tened layer and the learning process is realized through the neural 
network. The SoftMax function is used in the last layer to classify 
each ECG arrhythmia class. When the training of CNN is complete, 
the model is created for the classification.

In this study, a novel CNN model is designed, inspired by the 
LeNet model which is a well-known CNN architecture. The pro-
posed model has three convolution layers, three pooling layers, and 
a fully connected layer. Maximum pooling is implemented as the 
pooling layer. It selects only the maximum value within the fea-
ture matrix obtained by convolution filters which provide reducing 
the number of output neurons. To specify the output values of the 
kernel in the layer, the activation function is used. The rectified lin-
ear unit (ReLU) is utilized in the proposed model as an activation 
function which is defined in (4).

f (x) = max (0,x) (4)

Here x is an element of the output kernel after the convolution or 
pooling layer. The proposed model structure is illustrated in Fig. 4.

2.5. Training and testing

The cross-validation is usually not processed because of train-
ing costs and time duration in deep learning approaches. The deep 
learning-based studies need to process huge datasets so the valida-
tion split technique can be able to provide the function of n-fold-
cross-validation. Despite this, the 5-fold cross-validation method 
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was used in addition to the validation split process to observe the 
performance of the study. In the random validation split process, 
the dataset is separated into two parts; 80% of total input data 
is using for training and remains is using for testing. Then, the 
part reserved for training was applied to a 5-fold cross-validation 
process. Hence, the test data is included 7519 ECG beat images 
and label distribution of ECG beats in test sample size found as 
1664, 1423, 1604, 1440, and 1388 for Normal (0), PB (1), LBBB 
(2), RBBB (3), and PVC (4) classes, respectively. These ECG images 
are randomly split as training or test samples to achieve balanced 
distribution. In the learning or training, a proposed model training 
sample set is utilized, and the test sample set is utilized to validate 
the proposed model. In the training phase, standard backpropaga-
tion with a batch size of 64 is implemented for stochastic learning. 
The weights are updated according to the following equation;

wl =
(

1 − mλ

s

)
wl−1 − m

x

∂c

∂w
(5)

where w is weight, l is layer number, n is learning rate, λ is the 
regulation parameter, s is the total number of training samples, x
is the batch size, and c is the cost function. In addition, the biases 
are updated according to the following equation;

bl = bl−1 − n

x

∂c

∂w
(6)

In the proposed algorithm, the learning rate is chosen as 0.001. 
Adam optimizer is used for optimization, and cross-entropy is se-
lected for the loss function calculation. After all the training epochs 
are completed, the proposed algorithm performs a test on the CNN 
model. The summary of the proposed CNN architecture with layer 
parameters is shown in Table 2.

The proposed CNN model is compared with LeNet and ResNet-
50 architectures to evaluate the accuracy rate of the study. LeNet 
architecture contains two convolution layers, two pooling layers, 
and a fully connected layer. As the proposed CNN architecture 
mimics the LeNet, the summary of LeNet architecture with layer 
parameters is also demonstrated in Table 3.

2.6. Performance evaluation metrics

The performance of the proposed model is evaluated utilizing 
various metrics which are accuracy (ACC), specificity (SPE), recall 
(REC), precision (PRE), and F1-Score [40]. The ACC is indicated as 
the total number of correctly classified ECG beat images divided by 
the total number of test images. The accuracy-based performance 
evaluation is performed for machine and deep learning algorithms, 
which is not sufficient in the case of imbalanced labeled testing 
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Fig. 4. Schematic diagram of the proposed CNN architecture.

Table 2
Summary of proposed CNN architecture.

Layers Type Layer Parameters Input Size

Layer 2 Conv2D Kernel size = 2×2 Kernel = 20 Stride = 1 64×64×1
Layer 3 Max-pooling Kernel size = 2×2 Kernel = 20 Stride = 2 64×64×20
Layer 4 Conv2D Kernel size = 2×2 Kernel = 50 Stride = 1 32×32×20
Layer 5 Max-pooling Kernel size = 2×2 Kernel = 50 Stride = 2 32×32×50
Layer 6 Conv2D Kernel size = 2×2 Kernel = 100 Stride = 1 16×16×50
Layer 7 Max-pooling Kernel size = 2×2 Kernel = 100 Stride = 2 16×16×100
Layer 8 FC Kernel = 500 8×8×100
Layer 9 Output Kernel = 5 500

Table 3
Summary of LeNet architecture.

Layers Type Layer Parameters Input Size

Layer 2 Conv2D Kernel size = 2×2 Kernel = 16 Stride = 1 64×64×1
Layer 3 Max-pooling Kernel size = 2×2 Kernel = 16 Stride = 2 64×64×16
Layer 4 Conv2D Kernel size = 2×2 Kernel = 32 Stride = 1 32×32×16
Layer 5 Max-pooling Kernel size = 2×2 Kernel = 32 Stride = 2 32×32×32
Layer 6 FC Kernel = 500 16×16×32
Layer 7 Output Kernel = 5 500
and training sets. Hence, additional performance metrics are in-
cluded in the evaluations. The REC metric is referred to as a true 
positive rate which is predicted as positive, while the SPE metric 
is referred to as a true negative rate which is predicted as nega-
tives. The PRE is referred to as the proportion of classified positive 
cases that are correctly real positives. The F1-Score metric is cal-
culated by evaluating the harmonic mean of PRE and REC values. 
These performance metrics are calculated as follows;

ACC = TP + TN

TP + TN + FP + FN
(7)

SPE = TN

TN + FP
(8)

REC = TP

TP + FN
(9)

PRE = TP

TP + FP
(10)

F1 Score = 2x REC × PRE

REC + PRE
(11)

The confusion matrix is provided to express the number of true 
positives (TPs), true negatives (TNs), false positives (FPs), false 
negatives (FNs), and test sample size. The above five evaluation 
metrics are generated after the calculation of the confusion matrix 
process. Here, the FPs referred to the number of test samples for 
different classes but are incorrectly assigned for actual class, while
FNs referred to the number of test samples for actual class, but 
are incorrectly assigned for different classes. TPs are the number 
of test samples that belong to a class and are correctly indicated 
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as the same class and TNs are the number of test samples for dif-
ferent classes that are correctly predicted by the proposed model.

The Receiver Operating Characteristic (ROC) curve serves as a 
graphic presentation of the trade-off between sensitivity (the false-
positive rates) and specificity (the false-negative rates). The per-
centage of false-positive (1-specificity) is indicated by the x-axis, 
goes from 0 to 1 (0-100%) and the percentage of false negatives is 
indicated by the y-axis, goes from 0 to 1 (0-100%) on the represen-
tation of the ROC curve. When the ideal values (100% sensitivity 
and 100% specificity) are provided, the point on the ROC curve 
would be at the upper left-hand corner (0,1) which means that 
the better the test is at discriminating between cases and non-
cases. The area between ROC and the axes calculated as the Area 
Under the ROC Curve (AUC). It can get any value between 0 and 
1 as both x- and y-axis have values goes from 0 to 1. The fact 
that AUC is closer to 1 indicates that the better the overall perfor-
mance of the test. The AUC is an appropriate metric to examine 
algorithm performance as it is independent of the prediction crite-
rion selected. Also, in order to observe the training result clearly, 
the average of 5 training ACC values obtained after 5-fold cross-
validation was calculated. The performance of the proposed model 
has been evaluated thanks to the performance evaluation metrics 
mentioned above.

3. Results

In this study, Keras and TensorFlow libraries are used as the 
backend for deep learning algorithms. All experiments are carried 
out on a computer with Nvidia GeForce RTX 2080 Ti GPU and 64 
GB RAM by using Cuda 10.1, cudart64_101.dll, and Tensor Flow 2.0.
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Fig. 5. Performance metrics of the test phases; (a, b, c) graphs of accuracy and loss functions, (d, e, f) ROC curves, and (g, h, i) confusion matrices. The left column indicates 
ResNet-50, the mid column indicates LeNet, and the right column indicates the proposed architecture. (For interpretation of the colors in the figure(s), the reader can be 
referred to the web version of this article.)
The proposed 2D CNN-based study is separated into two 
phases; training (the training data is divided into 5 parts in it-
self for cross-validation) and testing. The data in the testing phase 
are those never used in the training phase. The proposed network 
is trained by the training dataset which contains 30072 samples 
and validated by a 7519-sample test set. In Fig. 5, the training 
and testing performance of the proposed CNN architecture is given 
in comparison with LeNet and ResNet-50 architectures. Fig. 5 (c) 
demonstrates the training and validation performance of the pro-
posed architecture about zero training loss, 100% training accuracy, 
0.0273 validation loss, and 99.7% validation accuracy. The fact that 
the training accuracy and validation accuracy are being parallel to 
each other and converge to 100%, and the training loss and vali-
dation loss are being parallel to each other, converges to zero are 
indicators that the model is not exposed to overfitting during the 
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testing and training phase. Furthermore, Fig. 5 (f) represents the 
confusion matrix and Fig. 5 (i) represents the ROC curves for the 
testing phase of the study. The confusion matrix consists of ground 
truth and predicted labels, where the column is the true label, and 
the row is the predicted label. The classification results of the pro-
posed CNN model are satisfactory, as observed by the high number 
of correct answers in the blue cells and the low number of incor-
rect answers in the white cells. According to the confusion matrix 
of the proposed study, the correctly estimated number of arrhyth-
mias (TPs), the number of arrhythmias estimated in the false class 
(FNs), and the success of the model in each class can be calcu-
lated. The TPs, FNs, and accuracy for the PB class are obtained as 
1417, 6, and 99.58%, respectively. These values are calculated as 
1646, 18, and 98.92% for the N class, respectively. Also, these val-
ues obtained as 1595, 9, and 99.44% for LBBB class; 1432, 8, and 
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Fig. 6. The effect of parameter variations on the performance of the proposed deep network.
99.44% for RBBB class and 1371, 17, and 98.78%, for PVC class, re-
spectively. Standard performance metrics such as SPE, PRE, REC, 
F1-Score, and ACC are used to evaluate the performance of the 2D 
CNN model. Additionally, various epoch and batch sizes are exam-
ined to obtain the highest classification performance. The proposed 
model is first created with 90 epochs and 256 batch sizes and re-
sulted in 92% accuracy. 100 epochs and 128 batch sizes yielded 
96% accuracy. The model yielded the highest accuracy by increas-
ing the epoch number and decreasing the batch size. Nevertheless, 
increasing the epoch size beyond 150 did not affect accuracy. Thus, 
the epoch was chosen as 150 to avoid increasing the training cost. 
Moreover, decreasing the batch size to less than 64 also reduced 
accuracy. For this reason, the batch size is tuned to 64.

In addition to examining the effect of epoch and batch size 
changes on the performance of the model, the effect of changing 
input image sizes, changing learning rate hyperparameter, and the 
number of model layers on the accuracy was also examined. A vi-
sualization of the effect of some parameter changes on accuracy is 
given in Fig. 6. Note that, in order to tune the optimum parame-
ter, the relevant parameter is changed while the other parameters 
are fixed to the values where the best accuracy is obtained. Image 
sizes are chosen to square sizes and a power of 2 in all trials. The 
main reason for this is to avoid the padding process in the con-
volutional and pooling layers. Thus, the image size was chosen as 
256 × 256 and an accuracy of 99.7 was obtained. Afterward, the 
model was trained with input image sizes at 128 × 128, 64 × 64, 
32 × 32, and 16 × 16, respectively. The highest accuracy has been 
achieved with 64 × 64, 128 × 128, and 256 × 256 image sizes. 
Similar to the epoch size selection, the image size was chosen as 
64 ×64 in order to avoid increasing the training cost. Also, the rea-
son why image size lower than 16 was not selected; to keep the 
resolution at a sufficient level to avoid distortion of the ECG im-
ages and to avoid negative dimension when applying the pooling 
process in the training phase. Additionally, for the ResNet-50 archi-
tecture, the lowest image size that can be used as an input without 
any padding is 64 ×64. Another reason why image size was chosen 
as 64 × 64 is to compare the trained models as equal conditions as 
possible. In order to observe the effect of the learning rate hyper-
parameter on training performance, the learning rate was chosen 
as 0.01, 0.001, and 0.0001, respectively. Experimental results show 
that when the learning rate is tuned to 0.001, the highest accuracy 
is yielded.

Finally, in addition to conducting experimental studies to tune 
the number of layers in the proposed architecture, the obtained 
results by training ResNet-50 (more layers) and LeNet (fewer lay-
ers) architectures were considered. Therefore, it is adopted to 
yield higher accuracy with fewer layers (lower training cost). In 
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Table 4
Classification performances of the trained models.

Metrics ResNet-50 LeNet Proposed

Classifier Type 5 different multi-class
The Best Training ACC (%) 100 99.9 100
Avg. Cross-Val. ACC (%) 99.16 98.8 99.9
Test ACC (%) 98.28 97.89 99.7
F1-Score (%) 98.11 97.78 99.24
SPE (%) 98.30 97.54 99.22
REC (%) 98.12 98.07 99.7
PRE (%) 98.26 97.88 99.5
Avg. Multi-AUC 0.98 0.97 1.00
Mean Squared Error 0.107 0.131 0.049
Training Loss ∼0 0.073 ∼0
Validation Loss 0.0548 0.0281 0.0273

the proposed model layers containing convolution and subsequent 
max-pooling with 20, 50, 100, 150, and 200 kernels, respectively, 
were tested by freezing some layers. The highest performance was 
yielded in 3-layer architecture. In the parameter tuning process, 
the principle of providing the lowest cost has been adopted while 
creating the lightest system. Finally, 150 epoch sizes, 64 batch 
sizes, 3-layer architecture, 0.001 learning rate, and 64 × 64 image 
sizes are tuned to be optimum for the proposed experiment. With 
these tuned parameters, an outstanding multiclass arrhythmia clas-
sification performance with an accuracy of 99.7 was yielded. De-
tailed performance evaluation metrics of the study are demon-
strated in Table 4.

4. Discussion

This study presents a new method for the ECG arrhythmia clas-
sification using 2D ECG signal-to-image representations with the 
deep learning approach. In our previous study [38], five differ-
ent arrhythmia types were differentiated using ECG signal and 
LeNet architecture with an accuracy of 97.42%. The five different 
heartbeats are categorized as non-ectopic beats, ventricular ectopic 
beats, fusion beats, supraventricular ectopic beats, and unclassifi-
able beats. However, the label distribution between heartbeat cat-
egories was not balanced. In this study, almost equally distributed 
(IR = 1.16) five arrhythmias are classified based on a proposed 
2D CNN architecture. In addition, while the previous study was 
built on a traditional CNN architecture, a new architecture that is 
not as deep and does not have a high computational complex-
ity is proposed in this study. The performance of the proposed 
model is evaluated with ECG signals from the MIT-BIH database. 
The balanced label distribution of datasets is very important for 
deep learning-based studies. The case where the number of heart-
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Table 5
Performance comparison table with recent studies.

Work Year Database Arrhythmia Types Beat Count / IR Classifier Performance

Chen et al. [41] 2020 MITDB Normal, Atrial Fibrillation, 
Ventricular Bigeminy,
Pacing Rhythm, Atrial Flutter, 
Sinus Bradycardia

Total: 3027
Test: 605
IR: 21

CNN
LSTM

ACC: 99.32% 
SEN: 97.75% 
SPE: 99.51%
N/A

Huang et al. [32] 2019 MITDB Normal, PVC
LBBB, RBBB, APB

Total: 2520
Test: 420
IR: 1.5

CNN ACC: 99%
N/A
N/A

Oh et al. [36] 2018 MITDB Normal, PVC
LBBB, RBBB, APB

Total: 16499
Test: 1650
IR: 23.97

CNN ACC: 98.10% 
SEN: 97.50% 
SPE: 98.70%

Yildirim et al. [43] 2018 MITDB Normal, PVC, LBBB
RBBB, PB

Total: 7376
Test: 1476
IR: 4.29

Bi-LSTM ACC: 99.39%
N/A
N/A

RA-Mahfuz et al. [45] 2021 MITDB Normal, PVC, LBBB
RBBB, PB

Total: 38000
Test: 1000
IR: 1.24

CNN ACC: 99.9% 
SEN: 99.9% 
SPE: 99.98% 
AUC: 0.999

Sahoo et al. [8] 2017 MITDB Normal, LBBB
RBBB, PB

Total: 109494
Test: 1071
IR: 1.19

SVM ACC: 98.39% 
SEN: 96.86% 
SPE: 98.92%

Acharya et al. [42] 2017 MITDB Normal, Fusion, Unknown
Supraventricular Ectopic
Ventricular Ectopic

Total: 109449
Test: 10945
IR: 112.96

CNN ACC: 94.03% 
SEN: 96.71% 
SPE: 91.54%

Zubair et al. [44] 2016 MITDB Normal, Unknown
Supraventricular Ectopic,
Ventricular Ectopic, Fusion

Total: 100389
Test: 88752
IR:7927

CNN ACC: 92.70%
N/A
N/A

Kiranyaz et al. [25] 2015 MITDB Normal, Unknown, Fusion
Supraventricular Ectopic
Ventricular Ectopic

Total: 83648
Test: N/A
IR: 5754.23

CNN ACC: 99% 
SEN: 93.90% 
SPE: 98.90%

Li et al. [24] 2020 MITDB Normal, Supraventricular Ectopic, 
Ventricular Ectopic, Fusion, 
Unknown

Total: 94013
Test: 18803
IR: 100.26

CNN ACC: 99.38% 
SEN: 94.54% 
SPE: 98.14%

This Work 2021 MITDB Normal, PVC
LBBB, RBBB, PB

Total: 37339
Test: 7519
IR: 1.16

CNN ACC: 99.70% 
SEN: 99.70% 
SPE: 99.22% 
AUC: 1.00
beats is not equal for each class causes an imbalanced dataset that 
affects the accuracy performance in deep learning approaches. In 
order to eliminate this problem, the balanced label distribution is 
achieved by determining arrhythmia classes containing an approx-
imately equal number of heartbeats from the MIT-BIH dataset. The 
classification success of the balanced data distribution may be ob-
served in this outstanding classification performance.

The deep learning structures may be converted to deeper net-
works by appending different types of layers to increase the clas-
sification performances. The deeper networks have complex struc-
tures hence their training time duration may be increased to days. 
The training time is a crucial issue in the design of automatic clas-
sification systems. The performances of the complex multi-layered 
structures can be evaluated considering the above parameters. The 
LeNet architecture consists of 7 layers which are 2 convolutional 
layers, 2 max-pooling layers, and a fully connected layer. The des-
ignation of a deeper version of the LeNet structure is aimed at 
the implementation of effective layers to obtain higher classifi-
cation achievements. In this study, a novel CNN structure that 
mimics LeNet has achieved 99.7% accuracy for classifying differ-
ent arrhythmias. Moreover, well-known CNN structures ResNet-50 
which includes 70 layers, and LeNet that consists of only 7 layers 
are also employed to classify the 2D ECG beat images to compare 
their results with the proposed model and evaluate the complexity 
of these models. Although the complexity of ResNet-50 is higher 
than the LeNet based model, the proposed model yielded higher 
accuracy than ResNet-50. Comparison of arrhythmia classification 
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results of the proposed study with previous studies is summarized 
in Table 5.

Many studies in the literature achieved a lower accuracy rate 
than the proposed approach, although they involve many deep net-
work layers. Recently, Li et al. [24] proposed ResNet-31 based ECG 
heartbeats classification using five classes of single-lead and 2-lead 
datasets and achieved 99.06% and 99.38% accuracy for training and 
testing respectively. In another study [41], ECG fragments, and RR 
interval of six different arrhythmia types are differentiated based 
on 5-fold cross-validation using 12 layers CNN architecture and 
two layers of LSTM network with an accuracy of 99.32%. In other 
studies, 11 layers CNN [32], 10 layers CNN+LSTM [36], 11 layers 
CNN [28], 9 layers CNN [42], are proposed to differentiate different 
arrhythmias with an accuracy of over 90%. The proposed approach 
improves the classification performance with less network layer 
depth (9 layers CNN). On the other hand, the average training time 
for each epoch is increased due to deeper layers in the above stud-
ies. This CNN architecture-based classification shortens the average 
training time per epoch due to less network depth. Compared to 
existing studies, the proposed method achieved high classification 
performance with a low-depth network, very fast trainable pat-
tern coefficients that take up less space which makes it less com-
plex, and thus may perform better in portable ECG devices. The 
faster and higher accuracy classification with fewer layers than 
other studies was achieved in all classes using the proposed ap-
proach. Also, compared to the ResNet-based architectures used in 
[24], they achieved similar accuracy with the proposed study. Out-
performing state-of-the-art DL-based approaches, a five-class clas-
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sification method is presented using 2D ECG beats in grayscale 
and alleviating imbalanced data distribution. Hence, the proposed 
study employed a simple and effective CNN approach to differen-
tiate the heartbeat arrhythmias.

The experimental results show that the proposed model outper-
forms the accuracy of LeNet by utilizing a less complex structure. 
Accuracy-loss graphs obtained from training ResNet-50 and tradi-
tional LeNet architecture are shown in Fig. 5 (a) and Fig. 5 (b), 
respectively. The ROC curves are shown in Fig. 5 (d) and Fig. 5 (e), 
respectively. Finally, the confusion matrixes are shown in Fig. 5 (g) 
and Fig. 5 (h), respectively. It can be observed in Fig. 5 (a) that the 
ResNet-50 architecture has a high validation loss fluctuation. This 
is thought to be caused by shortcuts in residual networks. Besides, 
after the 80th epoch, the loss values converged to zero. In Fig. 5
(b), although the accuracy-loss drawings obtained from the LeNet 
architecture seem more stable, they could not exceed a certain ac-
curacy value. The most stable accuracy-loss graph is obtained by 
the proposed architecture in Fig. 5 (c). Similarly, the ROC Curves 
in Fig. 5 (d, e, f), are examined, it is seen that the best ideal re-
sult is obtained with the proposed architecture in Fig. 5 (f). Finally, 
the confusion matrices in Fig. 5 (g, h, i) prove the robustness of 
the proposed 2D ECG image transformation method. Ultimately, 
the results demonstrated that the proposed model, ResNet, and 
LeNet yielded an accuracy of 99.7%, 98.28%, and 97.89%, respec-
tively. These accuracy values show that ResNet and LeNet achieve 
lower classification success than the proposed model. Thus, it was 
that the harmony between the higher performances and the com-
plexity of the structure is related to the selection of effective layer 
types that are in the correct order, optimal filter dimensions, and 
other training parameters. The developed automatic cardiac ar-
rhythmia detection algorithm improves diagnostic efficiency and 
accuracy while reducing the training time. The innovative contri-
bution of the proposed study may be emphasized as follows:

• This paper proposes a novel deep learning approach for iden-
tifying different arrhythmia types utilizing 2D ECG beats that 
are obtained from 1D ECG signals by a signal-to-image trans-
formation procedure.

• The benefits of using 2D gray-scale images on the proposed 
CNN structure were demonstrated.

The proposed method,

• does not require any complex pre-processing of ECG signals, 
and QRS complex determination to perform classification,

• does not contain any manual computationally demanding fea-
ture extraction steps as in the traditional machine learning 
methods,

• investigates the performance improvements by using a novel 
2D CNN-based model in the classification of arrhythmia types 
compared to well-known CNN approaches such as LeNet and 
ResNet-50,

• increases classification performance while decreasing the com-
putational cost compared to the well-known CNN architectures 
for mobile-based decision-making systems,

• optimizes the deep network hyperparameters to yield the best 
classification performance.

5. Conclusion

This paper proposes a novel approach for the accurate classi-
fication of ECG arrhythmias based on 2D CNN architecture. ECG 
heartbeats are transformed into 2D time-amplitude images to be 
used as input data for CNN architecture. This study demonstrates 
that a combination of simple ECG time-amplitude images, and 
the image classification capability of the CNN architecture may 
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provide the highest classification performance with the elimina-
tion of manual preprocessing steps such as noise filtering, feature 
extraction, and feature selection. The proposed novel 2D CNN ar-
chitecture includes relatively fewer layers compare to other CNNs 
and has yielded better performance compared to the well-known 
CNN architectures. Additionally, the proposed model was gener-
ated with balanced label distribution to minimize the imbalanced 
dataset effect. Considering the experimental results, the proposed 
method is a simple, effective, and useful approach that may be 
used by experts for quickly and automatically identifying cardio-
vascular problems on ECG signals. In future studies, the proposed 
algorithm may be implemented for home healthcare monitoring 
systems, by combining mobile applications and portable ECG de-
vices, that will automatically detect arrhythmias in real-time and 
share them with physicians.

6. Abbreviations

ACC Accuracy
ANN Artificial Neural Network
ANNC Adaptive Neural Network Classifier
ATI-CNN Attention-based Time-Incremental Convolutional Neural 

Network
APB Atrial Premature Beat
AUC Area Under the ROC Curve
AV Atrioventricular Node
CAD Computer-Aided Diagnosis
CNN Convolutional Neural Network
DL Deep Learning
DNN Deep Neural Network
ECG Electrocardiogram
FAV First Degree AV Block
FN False Negative
FP False Positive
IR Imbalance Ratio
LBBB Left Bundle Branch Block
LDA Linear Discriminant Analysis
LSTM Long Short-Term Memory
MLII Modified Limb Lead II
MLP Multilayer Perception
N Normal
PB Paced Beat
PRE Precision
PVC Premature Ventricular Contraction
RBBB Right Bundle Branch Block
REC Recall
ReLU Rectified Linear Units
RF Random Forest
ROC Receiver Operating Characteristic
SA Sinoatrial Node
SPE Specificity
STFT Short-Time Fourier Transform
SVM Support Vector Machine
TF Time Frequency
TN True Negative
TP True Positive
VMD Variational Mode Decomposition
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