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We study almost automorphic solutions of the discrete delayed neutral dynamic 
system

x(t + 1) = A(t)x(t) + ΔQ(t, x(t− g(t))) + G(t, x(t), x(t− g(t)))

by means of a fixed point theorem due to Krasnoselskii. Using discrete variant of 
exponential dichotomy and proving uniqueness of projector of discrete exponential 
dichotomy we invert the equation and obtain some limit results leading to sufficient 
conditions for the existence of almost automorphic solutions of the neutral system. 
Unlike the existing literature we prove our existence results without assuming 
boundedness of inverse matrix A (t)−1. Hence, we significantly improve the results 
in the existing literature. We provide two examples to illustrate effectiveness of our 
results. Finally, we also provide an existence result for almost periodic solutions of 
the system.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The theory of neutral type equations has a significant application potential in certain fields of applied 
mathematics, biology, and physics dealing with modelling and controlling the dynamics of real life processes 
(see [6,19,21,43], and references therein). In particular, investigation of periodic solutions of neutral dynamic 
systems has a special importance for researchers interested in biological models of certain type of populations 
having periodical structures (see [14,25,28]). There is a vast literature on stability analysis, oscillation theory, 
and periodic solutions of neutral differential and neutral functional equations (see e.g. [2,23,33,36,38,44]). 
We may refer to [3,24,34,35,37] for studies handling neutral difference and neutral dynamic equations on 
time scales.
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Periodicity may be a strong restriction in some specific real life models including functions not strictly 
periodic but having values close enough to each other at every different period. Many mathematical models 
(see e.g. [22,31,32]) in signal processing and astrophysics require the use of almost periodic functions, 
informally, being a nearly periodic functions where any one period is virtually identical to its adjacent 
periods but not necessarily similar to periods much farther away in time. The theory of almost periodic 
functions was first introduced by H. Bohr [13] and generalized by A.S. Besicovitch, W. Stepanoff, S. Bochner, 
and J. von Neumann at the beginning of 20th century (see [7,10,11,40]). The idea of almost periodicity can 
roughly be regarded as a relaxation of strict the periodicity notion. A continuous function f : R → R is said 
to be almost periodic if the following characteristic property holds:

A. For any ε > 0, the set

E (ε, f(x)) := {τ : |f (x + τ) − f(x)| < ε for all x ∈ R}

is relatively dense in the real line R. That is, for any ε > 0, there exists a number l (ε) > 0 such that any 
interval of length l (ε) contains a number in E (ε, f(x)).

Afterwards, S. Bochner showed that almost periodicity is equivalent to the following characteristic prop-
erty which is also called the normality condition:

B. From any sequence of the form {f (x + hn)}, where hn are real numbers, one can extract a subsequence 
converging uniformly on the real line (see [8,9,18]).

Obviously, every periodic function is almost periodic. However, there exist almost periodic functions 
which are not periodic. For instance, the function

f (t) = eit + eiπt

is almost periodic but there is no any real number ω �= 0 such that f (t + ω) = f (t), since the functions eit
and eiπt are linearly independent.

Theory of almost automorphic functions was first studied by S. Bochner [10]. It is a property of a function 
which can be obtained by replacing convergence with uniform convergence in normality condition (B). More 
explicitly, a continuous function f : R → R is said to be almost automorphic if for every sequence {h′

n}n∈Z+

of real numbers there exists a subsequence {hn} such that limm→∞ limn→∞ f(t + hn − hm) = f(t) for each 
t ∈ R. For more reading on almost automorphic functions, we refer to [20] and [30]. Obviously, almost 
periodicity implies almost automorphicity but not vice versa. It is shown in [42] that the function

f (t) =
2 + exp (it) + exp

(
i
√

2t
)∣∣2 + exp (it) + exp

(
i
√

2t
)∣∣ , t ∈ R

is almost automorphic but not almost periodic.
Unlike the vast literature on almost periodicity, there is a poor research backlog on almost automorphic 

solutions of difference equations. To the best of our knowledge the study of almost automorphic solutions of 
difference equations was begun by Araya et al. in [4]. Afterwards, C. Lizama and J.G. Mesquita [27] studied 
almost automorphic solutions of non-autonomous difference equations

u (k + 1) = A (k)u (k) + f (k, u (k)) , k ∈ Z.

Employing exponential dichotomy and contraction mapping principle they proposed some existence results. 
Furthermore, in [26] C. Lizama and J.G. Mesquita perfectly generalized the notion of almost automorphy 
by studying of almost automorphic solutions of dynamic equations on time scales that are invariant under 
translation. In [15], S. Castillo and M. Pinto studied almost automorphic solutions of the system with 
constant coefficient matrix A



534 M. Adıvar, H.C. Koyuncuoğlu / J. Math. Anal. Appl. 435 (2016) 532–550
y (n + 1) = Ay (n) + f (n)

using (μ1, μ2)-exponential dichotomy. In [29] I. Mishra et al. investigated almost automorphic solutions to 
functional differential equation

d

dt
(x (t) − F1 (t, x (t− g (t)))) = A (t)x (t) + F2 (t, x (t) , x (t− g (t))) (1.1)

using the theory of evolution semigroup. Note that almost periodic solutions of Eq. (1.1) have also been 
studied in [1] by means of the theory of evolution semigroup.

In the present work, we propose some existence results for almost automorphic solutions of the discrete 
neutral delayed system

x(t + 1) = A(t)x(t) + ΔQ(t, x(t− g(t))) + G(t, x(t), x(t− g(t))) (1.2)

by using fixed point theory. The highlights of the paper can be summarized as follows:

• In our analysis, we prefer using exponential dichotomy instead of theory of evolution semigroup since 
the conditions required by theory of evolution are strict and not easy to check (for regarding discussion 
see [16]). We prove uniqueness of projector of discrete exponential dichotomy. This result has a wide 
application potential in theory of difference equations.

• In [27, Relations (3.10) and (3.11)], the authors obtain the limiting properties of exponential dichotomy 
by using the product integral on discrete domain (see [39, Section 4] and [26, Section 4]). This method 
requires boundedness of inverse matrix A(t)−1 as a compulsory condition. Different than [27], we obtain 
our limit results without assuming boundedness of the inverse matrix A(t)−1 (see Theorem 4).

• Using a different approach we improve the existence results [27, Theorem 3.1 and Theorem 4.3] (see 
Example 2) and extend the results of [15] to the systems with nonconstant coefficient matrix A (t). Two 
examples are given to illustrate the effectiveness of our results.

The latter part of the paper is organized as follows: In the next section, we give basic definitions and 
properties of discrete almost automorphic functions and prove our limit results regarding discrete exponential 
dichotomy. In the final section, we propose some sufficient conditions for the existence of almost automorphic 
and almost periodic solutions of the system (1.2) by means of Krasnoselskii’s fixed point theorem.

2. Almost automorphic functions and exponential dichotomy

Let X be a (real or complex) Banach space endowed with the norm ‖.‖X and B(X ) is a Banach space of 
all bounded linear operators from X to X with the norm ‖.‖B(X ) given by

‖L‖B(X ) := sup {‖Lx‖X : x ∈ X and ‖x‖X ≤ 1} .

Following definitions and results can be found in [4] and [27].

Definition 1. A function f : Z →X is said to be discrete almost automorphic if for every integer sequence 
{k′n}n∈Z+

there exists a subsequence {kn}n∈Z+
such that

lim
n→∞

f(t + kn) =: f̄(t) (2.1)

is well defined for each t ∈ Z and
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lim
n→∞

f̄(t− kn) = f(t) (2.2)

for each t ∈ Z.

Definition 2. A function g : Z×X→X of two variables is said to be discrete almost automorphic in t ∈ Z for 
each x ∈ X , if for every integer sequence {k′n}n∈Z+

, there exists a subsequence {kn}n∈Z+
such that

lim
n→∞

g(t + kn, x) =: ḡ(t, x)

is well defined for each t ∈ Z, x ∈ X and

lim
n→∞

ḡ(t− kn, x) =: g(t, x)

for each t ∈ Z and x ∈ X .

Throughout the paper, A(X ) represents the set of discrete almost automorphic functions taking values 
on X . Notice that A (X ) is a Banach space endowed by the norm

‖f‖A(X ) := sup
t∈Z

‖f(t)‖X .

Some properties of discrete almost automorphic functions are listed in the following theorems:

Theorem 1. (See [4].) Let f1, f2 : Z →X and g1, g2 : Z×X→X be discrete almost automorphic functions in 
t ∈ Z, then

i. f1 + f2 is discrete almost automorphic
ii. g1 + g2 is discrete almost automorphic in t for each x ∈ X
iii. cf1 is discrete almost automorphic for every scalar c
iv. For every scalar c, cg1 is discrete almost automorphic in t for each x ∈ X
v. For each fixed k ∈ Z, the function f1 (t + k) is discrete almost automorphic
vi. The function f̂1 : Z →X defined by f̂1(t) := f1(−t) is discrete almost automorphic
vii. supt∈Z

‖f1(t)‖X < ∞ for each t ∈ Z

viii. supt∈Z
‖g1(t, x)‖X < ∞ for each t ∈ Z and x ∈ X

ix. supt∈Z

∥∥f̄1(t)
∥∥
X ≤ supt∈Z

‖f1(t)‖X for all t ∈ Z where f̄1 is defined as in (2.1)
x. supt∈Z

‖ḡ1(t, x)‖X < ∞ for each t ∈ Z and x ∈ X .

Theorem 2. (See [4].) Let g : Z×X→X be discrete almost automorphic in t ∈ Z, for each x ∈ X satisfying 
Lipschitz condition in x uniformly in t, that is

‖g(t, x) − g(t, y)‖A(X ) ≤ L ‖x− y‖X , ∀x, y ∈ X .

Suppose ϕ : Z →X is discrete almost automorphic function, then the function g (t, ϕ (t)) is discrete almost 
automorphic.

Definition 3 (Discrete exponential dichotomy). Let X(t) be the principal fundamental matrix solution of the 
linear homogeneous system

x(t + 1) = A(t)x(t), x(t0) = x0. (2.3)
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Then (2.3) is said to admit an exponential dichotomy if there exist a projection P and positive constants 
α1, α2, β1 and β2 such that ∥∥X(t)PX−1(s)

∥∥
B(X ) ≤ β1 (1 + α1)s−t

, t ≥ s, (2.4)∥∥X(t) (I − P )X−1(s)
∥∥
B(X ) ≤ β2 (1 + α2)t−s

, s ≥ t. (2.5)

Remark 1. Notice that in [5] and [27], the discrete exponential dichotomy is defined by using the expo-
nential function exp (α (s− t)) instead of the discrete exponential function eα(t, s) = (1 + α)s−t (satisfying 
Δteα(t, s) = αeα(t, s)) in (2.4) and (2.5), respectively. For convenience we prefer using Definition 3 which 
is evidently equivalent to [27, Definition 2.11]. Notice that Definition 3 is also consistent with the unified 
version of exponential dichotomy (see [26, Definition 2.12]) which covers both the discrete and continuous 
cases. For more reading on exponential dichotomy we may refer to [17].

We prove the following lemmas for further use in our analysis:

Lemma 1. Let ϕ : Z → (0, ∞) and ψ : Z → (0, ∞) be two functions satisfying

ϕ(t)
t−1∑

j=−∞
ϕ(j)−1 ≤ μ, t ∈ Z, (2.6)

ψ(t)
∞∑
j=t

ψ(j)−1 ≤ γ, t ∈ Z, (2.7)

for some constants μ > 0 and γ > 0. Then for any t0 ∈ Z, there exist positive constants c and c̃ such that

ϕ(t) ≤ c
(
1 + μ−1)t0−t for t ≥ t0

and

ψ(t) ≤ c̃
(
1 + γ−1)t−t0 for t ≤ t0.

Proof. Define the function

u(t) :=
t−1∑

j=−∞
(ϕ(j))−1

with Δu(t) = (ϕ(t))−1, where Δ is the forward difference operator. By (2.6), we have

u(t) ≤ μΔu(t),

and hence,

u(t) ≥
(
1 + μ−1)t−t0

u (t0) , for t ≥ t0.

This implies

ϕ(t) ≤ μu(t)−1

≤ μu (t0)−1 (1 + μ−1)t0−t

≤ c
(
1 + μ−1)t0−t
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for c = μu (t0)−1 and t ≥ t0. Similarly, the function

v(t) :=
∞∑
j=t

ψ(j)−1,

with Δv(t) = −ψ(t)−1, satisfies

γΔv(t) ≤ −v(t + 1).

Solving the last inequality for t0 ≥ t, we get

v (t0) − v(t)
(
1 + γ−1)t−t0 ≤ 0.

By using (2.7), we obtain

ψ(t) ≤ γv(t)−1

≤ γv (t0)−1 (1 + γ−1)t−t0

≤ c̃
(
1 + γ−1)t−t0

for c̃ = γv (t0)−1 and t0 ≥ t. The proof is complete. �
Lemma 2. If the system (2.3) admits an exponential dichotomy, then x = 0 is the unique bounded solution 
of the system (2.3).

Proof. Let B0 be set of initial conditions ξ belonging to bounded solutions of (2.3). Assume (I − P ) ξ �= 0
and define φ(t)−1 := ‖X(t) (I − P ) ξ‖B(X ). Using the equality (I − P )2 = I − P we get

∞∑
j=t

X(t) (I − P ) ξφ(j) =
∞∑
j=t

X(t) (I − P )X−1 (j)X(j) (I − P ) ξφ(j).

Taking the norm of both sides, we obtain

φ(t)−1
∞∑
j=t

φ(j) ≤
∞∑
j=t

∥∥X(t) (I − P )X−1 (j)
∥∥
B(X ) φ

−1(j)φ(j)

≤
∞∑
j=t

β2 (1 + α2)t−j

=
∞∑
j=0

β2 (1 + α2)−j

= β2
1 + α2

α2
.

This yields

∞∑
j=t

φ(j) ≤ φ(t)β2
1 + α2

α2
,

uniformly in t. Hence, we get
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lim inf
j∈[t,∞)

φ(j) = 0,

which means that ‖X(t) (I − P ) ξ‖B(X ) have to be unbounded.
Similarly, if we assume that Pξ �= 0, define (θ (t))−1 = ‖X(t)Pξ‖B(X ), and repeat the above procedure, 

we get

t−1∑
j=−∞

θ(j)X(t)Pξ =
t−1∑

j=−∞
X(t)PX−1 (j)X(j)Pξθ(j)

since P 2 = P . Taking the norm of both sides we obtain

(θ (t))−1
t−1∑

j=−∞
θ(j) =

t−1∑
j=−∞

∥∥X(t)PX−1 (j)
∥∥
B(X ) θ

−1(j)θ(j)

≤
t−1∑

j=−∞
β1 (1 + α1)j−t

≤ β1

α1

and

t−1∑
j=−∞

θ(j) ≤ θ (t) β1

α1
.

This shows that

lim inf
j∈[−∞,t−1)

θ(j) = 0

and hence ‖X(t)Pξ‖B(X ) must be unbounded. Consequently, boundedness of a solution of the system (2.3)
is possible only if B0 = {0}, which means, if x (t) is a bounded solution of (2.3), then x(t) = 0. The proof 
is complete. �
Theorem 3. If the homogeneous system (2.3) admits an exponential dichotomy, then the projection P of the 
exponential dichotomy is unique.

Proof. Suppose that the system (2.3) admits an exponential dichotomy. At first, we need to show that 
‖X(t)P‖B(X ) is bounded for t ≥ t0 and ‖X(t) (I − P )‖B(X ) is bounded for t ≤ t0. Define the function 
ϕ(t) := ‖X(t)P‖B(X ) and consider the following equality

t−1∑
j=−∞

X(t)Pϕ(j)−1 =
t−1∑

j=−∞
X(t)PX−1(j)X(j)Pϕ(j)−1.

Taking the norm of both sides, we get

ϕ(t)
t−1∑

ϕ(j)−1 ≤ β1

α1
:= K.
j=−∞
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Employing Lemma 1, there exists a positive constant c such that

ϕ(t) ≤ c
(
1 + K−1)t0−t for t ≥ t0,

which means ‖X(t)P‖B(X ) is bounded for t ≥ t0.
Performing the similar procedure for the function ψ(t) := ‖X(t) (I − P )‖B(X ) we get

∞∑
j=t

X(t) (I − P ) (ψ(j))−1 =
∞∑
j=t

X(t) (I − P )X−1(j)X(j) (I − P ) (ψ(j))−1
,

which implies that

ψ(t)
∞∑
j=t

ψ(j)−1 ≤ β2
1 + α2

α2
:= K̂.

By Lemma 1, we can find a constant ĉ > 0 such that

ψ(t) ≤ ĉ
(
1 + K̂−1

)t−t0
for t0 ≥ t.

This shows that ‖X(t) (I − P )‖B(X ) is bounded for t0 ≥ t.
Suppose that there exists another projection P̃ �= P of exponential dichotomy of (2.3). Using the similar 

arguments we may find constants N and Ñ such that∥∥X(t)P̃
∥∥
B(X ) ≤ N for t ≥ t0,

and ∥∥X(t)
(
I − P̃

)∥∥
B(X ) ≤ Ñ for t0 ≥ t.

Using (2.4)–(2.5), for any arbitrary nonzero vector ξ, we get∥∥X(t)P
(
I − P̃

)
ξ
∥∥
B(X ) =

∥∥X(t)PX−1(t0)X(t0)
(
I − P̃

)
ξ
∥∥
B(X )

≤
∥∥X(t)PX−1(t0)

∥∥
B(X )

∥∥X(t0)
(
I − P̃

)
ξ
∥∥
B(X )

≤ β1
∥∥(I − P̃

)
ξ
∥∥
X for t ≥ t0

and ∥∥X(t)P
(
I − P̃

)
ξ
∥∥
B(X ) =

∥∥X(t)PX−1(t)X(t)
(
I − P̃

)
X−1(t0)X(t0)

(
I − P̃

)
ξ
∥∥
B(X )

≤
∥∥X(t)PX−1(t)

∥∥
B(X )

∥∥X(t)
(
I − P̃

)
X−1(t0)

∥∥
B(X )

∥∥X(t0)
(
I − P̃

)
ξ
∥∥
B(X )

≤ β1β2
∥∥(I − P̃

)
ξ
∥∥
X for t0 ≥ t

since X(t0) = I. Then x(t) = X(t)P (I − P̃ )ξ is bounded solution of (2.3). Observe that x(t) =
X(t) (I − P ) P̃ ξ is also a bounded solution of (2.3). Employing Lemma 2, we get x = 0, and hence, 
P = PP̃ = P̃ . The proof is complete. �
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Theorem 4. Suppose that the system (2.3) admits an exponential dichotomy with the projection P and the 
positive constants α1, α2, β1, and β2. Let the matrix valued function A(t) in (2.3) be almost automorphic. 
That is, for any sequence {θ̃k}k∈Z+ of integers there exists a subsequence {θk}k∈Z+ such that

lim
k→∞

A(t + θk) := Ā(t)

is well defined and

lim
k→∞

Ā(t− θk) = A(t)

for each t ∈ Z. Then

lim
k→∞

X(t + θk)PX−1(s + θk) := X̄(t)P̄ X̄−1(s) for s ∈ (−∞, t] ∩ Z (2.8)

and

lim
k→∞

X(t + θk) (I − P )X−1(s + θk) := X̄(t)
(
I − P̄

)
X̄−1(s) for s ∈ [t,∞) ∩ Z (2.9)

are well defined for each t ∈ Z and the limiting system

x(t + 1) = Ā(t)x(t), x(t0) = x0 (2.10)

admits an exponential dichotomy with the projection P̄ and the same constants. Furthermore, for each t ∈ Z

we have

lim
k→∞

X̄(t− θk)P̄ X̄−1(s− θk) = X(t)PX−1(s), s ∈ (−∞, t] ∩ Z (2.11)

and

lim
k→∞

X̄(t− θk)
(
I − P̄

)
X̄−1(s− θk) = X(t) (I − P )X−1(s), s ∈ [t,∞) ∩ Z. (2.12)

Proof. We first show that the sequence 
{
X(t0 + θk)PX−1(t0 + θk)

}
is convergent. Suppose the contrary, 

then there exist two subsequences{
X(t0 + θkm

)PX−1(t0 + θkm
)
}

and
{
X(t0 + θk′

m
)PX−1(t0 + θk′

m
)
}

converging two different numbers P and P , respectively. From (2.4) we have∥∥X(t + θkm
)PX−1(s + θkm

))
∥∥
B(X ) ≤ β1 (1 + α1)s−t

, t ≥ s, (2.13)

and ∥∥X(t + θk′
m

)PX−1(s + θk′
m

))
∥∥
B(X ) ≤ β1 (1 + α1)s−t

, t ≥ s. (2.14)

Let Xkm
(t) and Xk′

m
(t) denote the principal fundamental matrix solutions of the systems:

x(t + 1) = A(t + θkm
)x(t), x(t0) = x0, (2.15)

and
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x(t + 1) = A(t + θk′
m

)x(t), x(t0) = x0, (2.16)

respectively. Then we must have

X(t + θkm
) = Xkm

(t)X(t0 + θkm
), (2.17)

since

Δ
[
Xkm

(t)−1X(t + θkm
)
]

= 0.

Similarly, we get

X(t + θk′
m

) = Xk′
m

(t)X(t0 + θk′
m

). (2.18)

Since A(t + θkm
) → Ā(t), A(t + θk′

m
)x(t) → Ā(t)x(t) as m → ∞ for each t ∈ Z, we have

A(t + θkm
)x(t) → Ā(t)x(t),

and

A(t + θk′
m

)x(t) → Ā(t)x(t).

Thus, the sequences {Xkm
(t)} and 

{
Xk′

m
(t)
}

converge to X̄(t) as m → ∞ for each t ∈ Z. Now, the 
exponential dichotomy of the linear homogeneous system (2.3) plays a crucial role. Using (2.17) along with 
(2.13) and (2.14), we get∥∥Xkm

(t)X(t0 + θkm
)PX−1(t0 + θkm

)X−1
km

(s)
∥∥
B(X ) ≤ β1 (1 + α1)s−t

, t ≥ s

and ∥∥∥Xk′
m

(t)X(t0 + θk′
m

)PX−1(t0 + θk′
m

)X−1
k′
m

(s)
∥∥∥
B(X )

≤ β1 (1 + α1)s−t
, t ≥ s.

Taking the limit as m → ∞, we obtain∥∥X̄(t)PX̄−1(s)
∥∥
B(X ) ≤ β1 (1 + α1)s−t

, t ≥ s, (2.19)∥∥X̄(t)PX̄−1(s)
∥∥
B(X ) ≤ β1 (1 + α1)s−t

, t ≥ s. (2.20)

Applying the similar procedure we arrive at the following inequalities∥∥X̄(t)
(
I − P

)
X̄−1(s)

∥∥
B(X ) ≤ β2 (1 + α2)t−s

, s ≥ t, (2.21)∥∥X̄(t) (I − P ) X̄−1(s)
∥∥
B(X ) ≤ β2 (1 + α2)t−s

, s ≥ t. (2.22)

Inequalities (2.19)–(2.22) show that the limiting system (2.10) admits exponential dichotomy and 
both P and P are projections. By Theorem 4 we conclude that P = P . This means the sequence {
X(t0 + θk)PX−1(t0 + θk)

}
is convergent as desired. Assume that X(t0 + θk)PX−1(t0 + θk) → P and 

that Xk(t) is the principal fundamental matrix solution of the system

x(t + 1) = A(t + θk)x(t), x(t0) = x0.
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Then Xk(t) → X̄(t) and X−1
k (s) → X̄−1(s) as k → ∞ for each t, s ∈ Z. This means for each t ∈ Z

X(t + θk)PX−1(s + θk) → X̄(t)PX̄−1(s) for s ∈ (−∞, t] ∩ Z

and

X(t + θk) (I − P )X−1(s + θk) → X̄(t)
(
I − P

)
X̄−1(s) for s ∈ [t,∞) ∩ Z.

Hence, we prove (2.8) and (2.9). From (2.13) and (2.14) we also have∥∥X(t + θk)PX−1(s + θk))
∥∥
B(X ) ≤ β1 (1 + α1)s−t

, t ≥ s

and similarly, ∥∥X(t + θk) (I − P )X−1(s + θk)
∥∥
B(X ) ≤ β2 (1 + α2)s−t

, s ≥ t.

Taking limit as k → ∞ we get ∥∥X̄(t)PX̄−1(s)
∥∥
B(X ) ≤ β1 (1 + α1)s−t

, t ≥ s,∥∥X̄(t)
(
I − P

)
X̄−1(s)

∥∥
B(X ) ≤ β2 (1 + α2)s−t

, s ≥ t.

This shows that the limiting system (2.10) admits exponential dichotomy with the projection P and the 
positive constants α1, α2, β1, and β2. To prove (2.11) and (2.12), we can follow the similar procedure that 
we used to get (2.8) and (2.9). This completes the proof. �
3. Existence results

In this section, we propose some sufficient conditions for existence of almost automorphic solutions of 
the nonlinear neutral delay difference system

x(t + 1) = A(t)x(t) + ΔQ(t, x(t− g(t))) + G(t, x(t), x(t− g(t))), (3.1)

where A(t) is an n × n matrix function, g : Z → Z+ is scalar, and the functions Q : Z×X→X and G :
Z×X × X →X are continuous in x.

In our analysis, we use the following fixed point theorem:

Theorem 5 (Krasnoselskii). Let M be a closed, convex and nonempty subset of a Banach space (B, ‖.‖). 
Suppose that H1 and H2 map M into B such that

i. x, y ∈ M implies H1x + H2y ∈ M,
ii. H2 is continuous and H2M contained in a compact set,
iii. H1 is a contraction mapping.

Then there exists z ∈ M with z = H1z + H2z.

Hereafter, we suppose that the following conditions hold:

A1 Functions A(t), g(t), Q(t, u) and G(t, u, v) are almost automorphic in t.
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A2 For ζ, ψ ∈ A(X ), there exists a constant E1 > 0 such that

‖Q (t, ζ) −Q (t, ψ)‖X ≤ E1 ‖ζ − ψ‖A(X ) for all t ∈ Z.

A3 For ζ, ψ ∈ A(X ), there exists a constant E2 > 0 such that

‖G (t, u, ζ) −G (t, u, ψ)‖X ≤ E2

(
‖u− v‖X + ‖ζ − ψ‖A(X )

)
for all t ∈ Z

and for any vector valued functions u and v defined on X .
A4 The homogeneous system (2.3) admits an exponential dichotomy.

The following result can be proven similar to [16, Lemma 2.4], hence we omit it.

Lemma 3. If u, v : Z → X are almost automorphic functions, then u(t − v(t)) is also discrete almost 
automorphic.

We say that x : Z → X is a solution of

x(t + 1) = A(t)x(t) + f(t, x (t))

if it satisfies

x(t) =
t−1∑

j=−∞
X(t)PX−1(j + 1)f(j, x (j)) −

∞∑
j=t

X(t) (I − P )X−1(j + 1)f(j, x (j)),

where X(t) is principal fundamental matrix solution of system (2.3) (see [27, Definition 4.1]).
Now, define the mapping H by

(Hx)(t) := (H1x)(t) + (H2x)(t),

where

(H1x)(t) := Q(t, x(t− g(t))), (3.2)

and

(H2x)(t) :=
t−1∑

j=−∞
X(t)PX−1(j + 1)Λ(j, x) −

∞∑
j=t

X(t) (I − P )X−1(j + 1)Λ(j, x),

where Λ(j, x) is given by

Λ(j, x) := (A(j) − I)Q(j, x(j − g(j))) + G(j, x(j), x(j − g(j))). (3.3)

Lemma 4. The mapping H maps A(X ) into A(X ).

Proof. Suppose that x ∈ A(X ). First, we deduce by using (A1–A3) along with Theorem 2 that the functions 
Q and G are discrete almost automorphic. That is,

lim Q(t + kn, x(t + kn − g(t + kn))) := Q(t, x(t− g(t)))

n→∞
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and

lim
n→∞

G(t + kn, x (t + kn) , x(t + kn − g(t + kn))) := G(t, x(t), x(t− g(t)))

are well defined for each t ∈ Z and

lim
n→∞

Q(t− kn, x(t− kn − g(t− kn))) = Q(t, x(t− g(t)))

and

lim
n→∞

G(t− kn, x (t− kn) , x(t− kn − g(t− kn))) = G(t, x(t), x(t− g(t)))

for each t ∈ Z. Second, we have

(Hx)(t + kn) = Q(t + kn, x(t + kn − g(t + kn))) +
t−1∑

j=−∞
X(t + kn)PX−1(j + kn + 1)Λ(j + kn, x)

−
∞∑
j=t

X(t + kn) (I − P )X−1(j + kn + 1)Λ(j + kn, x).

Taking the limit n → ∞ and employing Lebesgue convergence theorem, we conclude that

(Hx)(t) := lim
n→∞

(Hx)(t + kn) = Q(t, x(t− g(t))) +
t−1∑

j=−∞
X(t)PX

−1(j + 1)Λ(j, x)

−
∞∑
j=t

X(t)
(
I − P

)
X

−1(j + 1)Λ(j, x),

is well defined for each t ∈ Z, where

Λ(j, x) :=
(
A(j) − I

)
Q(j, x(j − g(j))) + G(j, x(j), x(j − g(j))).

Applying similar procedure to the following

(Hx)(t− kn) = Q(t− kn, x(t− kn − g(t− kn))) +
t−1∑

j=−∞
X(t− kn)PX

−1(j − kn + 1)Λ(j − kn)

−
∞∑
j=t

X(t− kn)
(
I − P

)
X

−1(j − kn + 1)Λ(j − kn, x),

we get

lim
n→∞

(Hx)(t− kn) = (Hx)(t),

for each t ∈ Z. This means Hx ∈ A(X ). This completes the proof. �
The following result is a direct consequence of (A2) and (3.2).

Lemma 5. Assume (A2). If E1 < 1, then the operator H1 is a contraction.
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Lemma 6. Assume (A1–A4). Define the set

ΠM :=
{
x ∈ A(X ), ‖x‖A(X ) ≤ M

}
where M is a fixed constant. The operator H2 is continuous and the image H2 (ΠM ) is contained in a 
compact set.

Proof. By (A4), we have the following:

‖(H2x)‖A(X ) ≤ ‖f(., x(.)‖A(X )

[
β1

1 + α1

α1
+ β2

α2

]
, (3.4)

where f is defined by (3.3). To see that H2 is continuous, suppose ζ, ψ ∈ A(X ) and define the number 
δ(ε) > 0 by

δ := ε[
(‖A‖ + 1)E1 ‖ζ − ψ‖A(X ) + 2E2 ‖ζ − ψ‖A(X )

] (
β1

1+α1
α1

+ β2
α2

) ,
for any given ε > 0 where

‖A‖ = sup
t∈Z

|A (t)|

and

|A(t)| := max
1≤i≤n

n∑
j=1

|aij (t)| .

If ‖ζ − ψ‖A(X ) < δ, then we have

‖H2 (ζ) (t) −H2 (ψ) (t)‖X ≤
t−1∑

j=−∞

(∥∥X(t)PX−1 (j + 1)
∥∥
B(X )

×
[
(‖A‖ + 1) ‖Q (j, ζ (j − g(j))) −Q (s, ψ (j − g(j)))‖X

+ ‖G (j, ζ (j) , ζ (j − g(j))) −G (j, ψ (j) , ψ (j − g(j)))‖X
])

+
∞∑
j=t

(∥∥X(t) (I − P )X−1 (j + 1)
∥∥
B(X )

×
[
(‖A‖ + 1) ‖Q (j, ζ (j − g(j))) −Q (s, ψ (j − g(j)))‖X

+ ‖G (j, ζ (j) , ζ (j − g(j))) −G (j, ψ (j) , ψ (j − g(j)))‖X
])

.

By (vii) of Theorem 1 and (A2–A4), we get

‖H2 (ζ) (t) −H2 (ψ) (t)‖X ≤
t−1∑

j=−∞
β1 (1 + α1)j+1−t

[
(‖A‖ + 1)E1 ‖ζ − ψ‖A(X ) + 2E2 ‖ζ − ψ‖A(X )

]

+
∞∑

β2 (1 + α2)t−j−1
[
(‖A‖ + 1)E1 ‖ζ − ψ‖A(X ) + 2E2 ‖ζ − ψ‖A(X )

]

j=t
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≤
[
(‖A‖ + 1)E1 ‖ζ − ψ‖A(X ) + 2E2 ‖ζ − ψ‖A(X )

](
β1

1 + α1

α1
+ β2

α2

)
< ε,

which shows that H2 is continuous.
Now, we show that H2(ΠM ) is contained in a compact set. For any ζ, ψ ∈ ΠM we have

‖G(t, ζ(t), ψ (t− g(t)))‖X ≤ ‖G(t, ζ(t), ψ (t− g(t))) −G(t, 0, 0)‖X + ‖G(t, 0, 0)‖X

≤ E2

(
‖ζ‖A(X ) + ‖ψ‖A(X )

)
+ a

≤ 2ME2 + a,

and

‖Q (t, ζ (t− g(t)))‖X ≤ ‖Q (t, ζ (t− g(t))) −Q(t, 0)‖X + ‖Q(t, 0)‖X
≤ E1 ‖ζ‖A(X ) + b

≤ E1M + b

where a := ‖G(t, 0, 0)‖X and b := ‖Q(t, 0)‖X . This implies

‖H2 (ζn) (t)‖A(X ) ≤ [(‖A‖ + 1) (E1M + b) + 2E2M + a]
[
β1

1 + α1

α1
+ β2

α2

]
for any sequence {ζn} in ΠM . Moreover, from (A1), (A4) and (3.4), we deduce that Δ (H2(ζn(t))) is bounded. 
That means, H2(ζn) is uniformly bounded an equicontinuous. The proof follows from Arzela–Ascoli theo-
rem. �
Theorem 6. Assume (A1–A4). Let M0 be a constant satisfying the following inequality

E1M0 + b + [(‖A‖ + 1) (E1M0 + b) + 2E2M0 + a]
[
β1

1 + α1

α1
+ β2

α2

]
≤ M0,

where E1 ∈ (0, 1) and

a := ‖G(t, 0, 0)‖X , b := ‖Q(t, 0)‖X .

Then the equation (3.1) has an almost automorphic solution in ΠM0 .

Proof. For ψ ∈ ΠM0 , we have

‖H1(ψ(t)) + H2(ψ(t))‖X ≤ ‖Q (t, ψ (t− g(t))) −Q(t, 0)‖X + ‖Q(t, 0)‖X

+
t−1∑

j=−∞

{∥∥X(t)PX−1 (j + 1)
∥∥
B(X )

× ‖(A(j) − I)Q (j, x (j − g(j))) + G (j, ψ (j) , ψ (j − g(j)))‖X
}

+
∞∑
j=t

{∥∥X(t) (I − P )X−1 (j + 1)
∥∥
B(X )

× ‖(A(j) − I)Q (j, x (j − g(j))) + G (j, ψ (j) , ψ (j − g(j)))‖
}

X
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≤ E1M0 + b + [(‖A‖ + 1) (E1M0 + b) + 2E2M0 + a]
[
β1

1 + α1

α1
+ β2

α2

]
≤ M0

which means H1(ψ) +H2(ψ) ∈ ΠM0 . Then all conditions of fixed point theorem are satisfied and there exists 
a x ∈ ΠM0 such that x(t) = H1(x(t)) + H2(x(t)). The proof is complete. �
Example 1. Let the neutral delay discrete system be given by

x(t + 1) = 1
3sgn (cos 2πtθ)x(t)I + 1

10Δx (t− τ) +
[
sin
(
π
2 t
)

+ sin
(
π
2 t
√

2
)

cosπt + cosπt
√

2

]
+ 1

20x (t− τ) , (3.5)

where θ is an irrational number, τ is a positive integer with t > τ and Banach space X = R. In [41], it is 
shown that sgn (cos 2πtθ) is an almost automorphic function for t ∈ Z and θ is irrational. Therefore, the 
matrix function

A(t) =
[ 1

3sgn (cos 2πtθ) 0
0 1

3sgn (cos 2πtθ)

]
is discrete almost automorphic. Comparing (3.5) with (3.1), we have vector functions

Q(t, x(t− g(t)))) =
[

1
10x1 (t− τ)
1
10x2 (t− τ)

]

and

G(t, x(t), x(t− g(t))) =
[

sin
(
π
2 t
)

+ sin
(
π
2 t
√

2
)

+ 1
20x1 (t− τ)

cosπt + cosπt
√

2 + 1
20x2 (t− τ)

]
,

which are discrete almost automorphic. Then assumption (A1) is satisfied. For any ς, ψ ∈ ΠM0 , we have

|Q(t, ς(t− g(t))) −Q(t, ψ(t− g(t)))| ≤ 1
10 ‖ς − ψ‖A(R)

and

|G(t, ς(t), ς(t− g(t))) −G(t, ψ(t), ψ(t− g(t)))| ≤ 1
20 ‖ς − ψ‖A(R) .

Then (A2–A3) hold with E1 = 1
10 , E2 = 1

20 , a = 2 and b = 0.
By using Putzer algorithm (see [12, Theorem 5.35]) with P -matrices under the special case T = Z, we 

get P0 = I2×2 and P1 = 02×2. Then the principal fundamental matrix solution of the homogeneous system

x(t + 1) = 1
3sgn (cos 2πtθ)x(t)I

can be written as

X (t) =

⎡⎢⎢⎢⎢⎢⎢⎣
3−t

⎛⎝t−1∏
j=0

sgn (cos 2πjθ)

⎞⎠ 0

0 3−t

⎛⎝t−1∏
sgn (cos 2πjθ)

⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎦ .

j=0
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Since ∣∣∣∣∣∣3s−t

⎛⎝t−1∏
j=s

sgn (cos 2πjθ)

⎞⎠∣∣∣∣∣∣ = 3s−t ≤ β1 (1 + α1)s−t for t ≥ s

is satisfied for β1 = 1 and α1 = 1, the homogeneous system admits exponential dichotomy, as desired. 
Moreover, we may assume α1 = α2 and β1 = β2 since P1 = 02×2. That is, all assumptions of Theorem 6
hold. Hence, we conclude that the system (3.5) has an almost automorphic solution in ΠM0 whenever M0
satisfies the inequality

1
10M0 + 4

10M0 + 3
10M0 + 6 ≤ M0

or equivalently

30 ≤ M0.

The following existence result is given in [27]:

Theorem 7. (See [27, Theorem 4.3].) Suppose A (k) is discrete almost automorphic and a non-singular matrix
and the set 

{
A−1 (k)

}
k∈Z

is bounded. Also, assume the homogeneous system U(k+ 1) = A (k)U (k), k ∈ Z, 
admits an exponential dichotomy on Z with positive constants η, ν, β, α and the function f : Z ×En → En

is discrete almost automorphic in k for each u in En, satisfying the following condition:

1. There exists a constant 0 < L < (1−e−α)(eβ−1)
η(eβ−1)+ν(1−e−α) such that

‖f (k, u) − f (k, v)‖ ≤ L ‖u− v‖

for every u, v ∈ En and k ∈ Z. Then the system

U(k + 1) = A (k)U (k) + f (k, u (k)) , k ∈ Z

has a unique almost automorphic solution.

Example 2. The conditions of our existence result are weaker than the conditions of [27, Theorem 4.3]. In 
[27, Theorem 4.3], the authors require boundedness of the inverse matrix A−1 (t) to deduce existence of 
almost automorphic solutions of the system

x (t + 1) = A (t)x (t) + f (t, x) .

In particular, [27, Theorem 4.3] is invalid for the system

x(t + 1) =
[ 1

2 sin
(
π
2 t
)

0
0 1

2 sin
(
π
2 t
)]x (t) + f(t, x), t ∈ Z (3.6)

since the matrix

A (t) =
[ 1

2 sin
(
π
2 t
)

0
0 1

2 sin
(
π
2 t
)]

is singular for some integers. However, Theorem 6 implies the existence of discrete almost automorphic 
solution of the system (3.6) for an almost automorphic function f(t, x) satisfying (A1) and (A3).
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One may repeat the same procedure in the last section by replacing A (X ) with AP (X ), the space of all 
almost periodic functions on X , and the assumption (A1) with the following

A1′ Functions A(t), g(t), Q(t, u) and G(t, u, v) are almost periodic in t

to arrive at the following result:

Theorem 8 (Almost periodic solutions of the system (3.1)). Assume (A1′) and (A2–A4). Let M0 be a constant 
satisfying the following inequality

E1M0 + b + [(‖A‖ + 1) (E1M0 + b) + 2E2M0 + a]
[
β1

1 + α1

α1
+ β2

α2

]
≤ M0,

where E1 ∈ (0, 1) and

a := ‖G(t, 0, 0)‖X , b := ‖Q(t, 0)‖X .

Then the equation (3.1) has an almost periodic solution in Π̃M0 :=
{
x ∈ AP(X ), ‖x‖AP(X ) ≤ M0

}
.
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