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Abstract

For a sequence of independent and identically distributed random vectors Xi = (X1
i
, X2

i
, . . . , X

p
i
),

i = 1, 2, . . . , n, we consider the conditional ordering of these random vectors with respect to the
magnitudes of N(Xi ), i = 1, 2, . . . , n, where N is a p-variate continuous function defined on the
support set of X1 and satisfying certain regularity conditions. We also consider the Progressive Type
II right censoring for multivariate observations using conditional ordering. The need for the conditional
ordering of random vectors exists for example, in reliability analysis when a system has n independent
components each consisting of p arbitrarily dependent and parallel connected elements. Let the vector
of life lengths for the ith component of the system be Xi = (X1

i
, X2

i
, . . . , X

p
i
), i =1, 2, . . . , n, where

X
j
i

denotes the life length of the jth element of the ith component. Then the first failure in the system

occurs at time min
{

max(X1
1, X2

1, . . . , X
p
1 ), max(X1

2, X2
2, . . . , X

p
2 ), . . . , max(X1

n, X2
n, . . . , X

p
n )

}
,

and for this case N(Xi )=max(X1
i
, X2

i
, . . . , X

p
i
). In this paper we introduce the conditionally ordered

and Progressive Type II right-censored conditionally ordered statistics for multivariate observations
and to study their distributional properties.
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1. Introduction

Ordered random variables are widely used in statistical theory and its applications. The
details of the theory of univariate order statistics can be found in David [6] and Arnold et al.
[1]. Many papers and several monographs have appeared on the theory of record values since
Chandler [5] first introduced the concept. As noted by Kamps [8] there are several other mod-
els of ordered random variables with different interpretations and interesting applications
in many fields, for example, in reliability theory, survival analysis, financial economics, etc.
Kamps [8] described a natural modification of order statistics, the so-called sequential order
statistics that appear when some component of the system fails and this has an influence
on the life-length distributions of the remaining components. One of the interesting modi-
fications of order statistics is the concept of Progressive Type II censored-order statistics,
which is very useful in reliability and lifetime studies. Let X1, X2, . . . , Xn be a sequence of
independent and identically distributed (i.i.d.) random variables (r.v.s) representing failure
times of n identical units placed on a life test. Under the Progressive Type II right-censoring
scheme, at the time of the ith failure Ri (i = 1, 2, . . . , m and m�n) surviving items are re-
moved at random from the experiment, where m+∑m

i Ri = n. Let R = (R1, R2, . . . , Rm).

Denote the m ordered observed failure times by X
(R)
1:m:n, X

(R)
2:m:n, . . . , X

(R)
m:m:n. These ran-

dom variables are called Progressive Type II right-censored order statistics from a sample
X1, X2, . . . , Xn with the progressive censoring scheme (R = (R1, R2, . . . , Rm). A good
description of the theory, methods and applications of Progressive censoring can be found in
Balakrishnan and Aggarwala [3]. If the failure times of the n items originally on test are from
a continuous population with a cumulative distribution function (c.d.f.) F and a probability
density function (p.d.f.) f, then the joint p.d.f. of all m progressively Type II censored-order
statistics is

f1,2,...,m(x1, x2, . . . , xm) = c

m∏
i=1

f (xi) {1 − F(xi)}Ri , x1 < x2 < · · · < xm, (1)

where c = n(n − R1 − 1) · · · (n − R1 − R2 − · · · − Rm−1 − m + 1). Note that the concept
of generalized order statistics first proposed by Kamps [8] includes order statistics, records
and Progressive Type II censored-order statistics as special cases.

In applications there are situations when we need to order multivariate random variables
(or random vectors). For example, consider a model in reliability analysis when the sys-
tem has n independent components each consisting of p arbitrarily dependent elements
connected by using a parallel structure. Denote the life length of the ith component of the
system by Xi = (X1

i , X
2
i , . . . , X

p
i ), i = 1, 2, . . . , n, where X

j
i denote the life length of

the jth element of the ith component. Then the first failure in the system occurs at time

min
{

max(X1
1, X

2
1, . . . , X

p

1 ), max(X1
2, X

2
2, . . . , X

p

2 ), . . . , max(X1
n, X

2
n, . . . , X

p
n )

}
and the corresponding vector of the length is denoted by X(1). Similarly, the last failure
occurs at time

max
{

max(X1
1, X

2
1, . . . , X

p

1 ), max(X1
2, X

2
2, . . . , X

p

2 ), . . . , max(X1
n, X

2
n, . . . , X

p
n )

}
.
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and the corresponding vector of life length is denoted by X(n). It is clear that in the case
where the elements of a component are connected by using series structure, we have

min
{

min(X1
1, X

2
1, . . . , X

p

1 ), min(X1
2, X

2
2, . . . , X

p

2 ), . . . , min(X1
n, X

2
n, . . . , X

p
n )

}
as the first failure time. Therefore to know the time of the first failure (and consequently,
the time of the second failure, etc.) in such a system, we need to arrange random vectors
X1, X2, . . . , Xn by the magnitude of the function N(Xi ) = max(X1

i , X
2
i , . . . , X

p
i ), i =

1, 2, . . . , n (or N(Xi ) = min(X1
i , X

2
i , . . . , X

p
i ), etc.). The distributions of the norm-ordered

statistics, i.e. the random vectors ordered with respect to the norm function N(x) = ‖x‖,
x = (x1, x2, . . . , xp) in a linear normed space, are studied in Bairamov and Gebizlioglu [2].
Recently, Eryilmaz [7] has studied the distributional properties of multivariate exceedances
based on norm-ordered statistics.

2. Conditionally ordered random vectors

Let (�, �, P ) be a probability space, where � is a non-empty set of points �, � is a
�-field of subsets of � and P is a probability measure defined on {�, �}. Let us consider
the real Euclidean space Rp. Let �p, p�1 be the Borel �-algebra of subsets of Rp. Let
X(�), � ∈ �, be the r.v. mapping � into Rp, so X−1(B) ∈ � for any B ∈ �p. If � is
fixed, then X = X(�) is a point of Rp. If N(x) is a measurable function with respect to
the Borel �-algebra �p, then N(X)(�) is a random variable. (In fact, {� : N(X)(�)�x} =
{� : N(X)(�) ∈ S(0, x)} ∈ �, where S(0, x) = {y ∈ Rm : N(y)�x} ∈ �p.) Throughout
this paper we assume that N(x), x = (x1, x2, . . . , xp) is a continuous function of its ar-
guments satisfying N(x)�0, for all x ∈ Rp and N(x) = 0 if and only if x = 0, where
0 = (0, 0, . . . , 0).

Suppose X1, X2, . . . , Xn ∈ S ⊆ Rp are i.i.d. random variables (p�1 random vec-
tors) (r.v.’s) with p-variate c.d.f. F(x), and p.d.f. f (x), where x = (x1, x2, . . . , xp) and S
is the support of X. It is clear that N(X1), N(X2), . . . , N(Xn) are i.i.d. random variables
with c.d.f. P {N(Xi )�x} , x ∈ R. If F is assumed to be continuous, the probability of
any two or more of these r.v.’s assuming equal magnitudes is zero. Therefore, there ex-
ists a unique ordered arrangement within the r.v.’s N(Xi ), i = 1, 2, . . . , n. We say that
X1 precedes X2 (or that X1 is conditionally less than X2 ) if N(X1)�N(X2) and write
X1 ≺ X2. Suppose X(1) denotes the smallest of the set X1, X2, . . . , Xn; X(2) denotes the
second smallest, etc.; and X(n) denotes the largest in the sense of conditional ordering
with respect to a function N(.). We call X(1), X(2), . . . , X(n) the conditionally N-ordered
statistics. Note that throughout this paper we also use X(1:n), X(2:n), . . . , X(n:n) instead
of X(1), X(2), . . . , X(n).

Denote h(x) = P {N(X)�N(x)}, and x = (x1, x2, . . . , xp) ∈ S ⊆ Rp. The function
h(x) is called the structural function and plays an important role in our study.

Theorem 1. Let X1, X2, . . . , Xn ∈ S ⊆ Rp be i.i.d. continuous random vectors with p.d.f.
f (x), and X(1), X(2), . . . , X(n) be the conditionally N-ordered statistics. Then for 1�r �n
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the p.d.f. of X(r) is

fr(x) = n!
(r − 1)!(n − r)! [h(x)]r−1 [1 − h(x)]n−r f (x). (2)

In particular, the p.d.f.s of X(1) and X(n) are, respectively,

f1(x) = n[1 − h(x)]n−1f (x) and fn(x) = nhn−1(x)f (x), x ∈ Rp. (3)

Proof. For simplicity, consider the case p = 2. Suppose F has the probability density
function f, i.e. for Xi = (X1

i , X
2
i ) ∈ S ⊂ R2, i = 1, 2, . . . , n

F (x, y) = P
{
X1

i �x, X2
i �y

}
=

∫ x

−∞

∫ y

−∞
f (u, v) du dv.

The structural function of the sample X1, X2, . . . , Xn is h(x) = P {N(X1)�N(x)}, where
x = (x, y) ∈ R2. Consider X(1) ≺ X(2) ≺ · · · ≺ X(n). It is clear that the r.v.’s X(1), X(2), . . . ,

X(n) are not independent. Let us first derive the distribution of extreme vector X(n). For any
B ∈ �2 one can write

P
{

X(n) ∈ B
}

= nP {X1 ∈ B, N(X1)�N(Xi ), i = 1, 2, . . . , n; i 
= 1}

= n

∫ ∫
B

P {X1 ∈ B, N(X1)�N(Xi ), i = 1, 2, . . . , n; i 
= 1 |

X1
1 = x, X2

1 = y
}

dF(x, y)

= n

∫ ∫
B

P {X1 ∈ B, N(Xi )�N(x), i = 1, 2, . . . , n; i 
= 1} dF(x, y)

= n

∫ ∫
B

[P {N(X1)�N(x)}]n−1 dF(x, y)

= n

∫ ∫
B

[h(x, y)]n−1 dF(x, y).

Hence, the probability density function of X(n) is

fn(x, y) = n [h(x, y)]n−1 f (x, y),

where by fr(x, y) we denote the probability density function of r.v. X(r), r = 1, 2, . . . , n.
Similarly, one can write

f1(x, y) = n [1 − h(x, y)]n−1 f (x, y).
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In general, one has for B ∈ �2

P
{

X(r) ∈ B
}

=
n∑

k=1

P {Xk ∈ B, N(Xk) is the rth smallest among

N(X1), N(X2), . . . , N(Xn)}
=

n∑
k=1

(
n − 1
r − 1

)
P {Xk ∈ B, N(X1)�N(Xk), N(X2)�N(Xk), . . . ,

N(Xr−1)�N(Xk), N(Xr+1) > N(Xk), . . . , N(Xn) > N(Xk)}

=
n∑

k=1

(
n − 1
r − 1

) ∫ ∫
B

[P {N(X1)�N(x)}]r−1

×[1 − P {N(X1)�N(x)}]n−r dF (x, y)

= n!
(r − 1)!(n − r)!

∫ ∫
B

[h(x, y)]r−1 [1 − h(x, y)]n−r dF (x, y).

Therefore the probability density function of X(r), 1�r �n, is

fr(x, y) = n!
(r − 1)!(n − r)! [h(x, y)]r−1 [1 − h(x, y)]n−r f (x, y). � (4)

2.1. The joint distributions of two or more conditionally ordered statistics

Let 1�r < s�n, X(r) ≺ X(s). Consider B1, B2 ∈ �p, such that N(x1)�N(x2) for any
x1 ∈ B1, x2 ∈ B2, xk = (x1

k , x2
k , . . . , x

p
k ), k = 1, 2. Suppose F has the probability density

function f.

Theorem 2. Let X1, X2, . . . , Xn ∈ S ⊆ Rp be an i.i.d. continuous random vectors and
X(1), X(2), . . . , X(n) be the conditionally N-ordered statistics. Then, the joint probability
density function of X(r) and X(s) is

frs(x1, x2)

=

⎧⎪⎪⎨
⎪⎪⎩

n!
(r − 1)!(s − r − 1)!(n − s)! [h(x1)]r−1

× [h(x2) − h(x1)]s−r−1 [1 − h(x2)]n−s f (x1)f (x2) if N(x1)�N(x2),

0 otherwise.
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Proof. For simplicity, consider the case p = 2. For 1�r < s�n we have

P
{

X(r) ∈ B1, X(s) ∈ B2

}
=

∑
k 
=j

P
{

X(r) ∈ B1, X(s) ∈ B2, Xk is

the rth conditionally smallest (with respect to N(x)),

Xj is the sth conditionally smallest
}

=
∑
k 
=j

(
n − 2
r − 1

) (
n − 2 − (r − 1)

s − r − 1

)

×
∑
k 
=j

P
{
Xk ∈ B1, Xj ∈ B2, N(X1) < N(Xk), . . . ,

N(Xr−1) < N(Xk), N(Xk) < N(Xr+1) < N(Xj ), . . . ,

N(Xk) < N(Xs−1) < N(Xj ), N(Xj ) < N(Xs+1), . . . , N(Xj ) < N(Xn)
}

=
(

n − 2
r − 1

) (
n − r − 1)

s − r − 1

) ∑
k 
=j

∫ ∫ ∫ ∫
B1×B2

P
{
Xk ∈ B1, Xj ∈ B2, N(X1)

< N(Xk), . . . , N(Xr−1) < N(Xk), N(Xk) < N(Xr+1) < N(Xj ), . . . ,

N(Xk) < N(Xs−1) < N(Xj ), N(Xj ) < N(Xs+1), . . . , N(Xj ) < N(Xn) |
X1

k = x1, X
2
k = y1, X

1
j = x2, X

2
j = y2

}
dF(x1, y1) dF (x2, y2)

= n(n − 1)

(
n − 2
r − 1

) (
n − r − 1
s − r − 1

) ∫ ∫ ∫ ∫
B1×B2

[P {N(X1) < N(x1)}]r−1

× [P {N(X1) < N(x2)} − P {N(X1) < N(x1)}]s−r−1

× [1 − P {N(X1) < N(x2)}]s−r dF (x1, y1) dF (x2, y2)

= n!
(r − 1)!(s − r − 1)!(n − s)!
×

∫ ∫ ∫ ∫
B1×B2

[h(x1, y1)]
r−1 [h(x2, y2) − h(x1, y1)]

s−r−1

× [1 − h(x2, y2)]
n−s dF (x1, y1) dF (x2, y2).

= n!
(r − 1)!(s − r − 1)!(n − s)!
×

∫ ∫ ∫ ∫
B1×B2

[h(x1, y1)]
r−1 [h(x2, y2) − h(x1, y1)]

s−r−1

× [1 − h(x2, y2)]
n−s dF (x1, y1) dF (x2, y2).

Hence the proof. �

The following Theorem is an obvious extension of Theorem 2.
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Theorem 3. The joint p.d.f. of random vectors X(r1), X(r2), . . . , X(rk), 1�r1 < r2 < · · · <

rk �n is

fr1,r2,...,rk (x1, x2, . . . , xk)

= n!
(r1 − 1)!(r2 − r1 − 1)! · · · (n − rk)! [h(x1)]

r1−1

× [h(x2) − h(x1)]
r2−r1−1 · · · [h(xk) − h(xk−1)

]rk−rk−1−1
[1 − h(xk)]

n−rk

×f (x1)f (x2) · · · f (xk), if N(x1)�N(x2)� · · · �N(xk) (5)

and fr1,r2,...,rk (x1, x2, . . . , xk) = 0; otherwise, where xi = (x1
i , x2

i , . . . , x
p
i ), i = 1,

2, . . . , n.

Corollary 1. The joint p.d.f. of all conditionally N-ordered statistics X(1), X(2), . . . , X(n)

is

f1,2,...,n(x1, x2, . . . , xn) =
{

n!f (x1)f (x2) · · · f (xn) if N(x1)�N(x2)� · · · �N(xn),

0 otherwise.
(6)

Let us consider some examples:

Example 2.1. Let X1, X2, . . . , Xn be i.i.d. r.v.’s and X1 = (X1
1, X

2
1, . . . , Xk

1), k�1, where
X1

1, X
2
1, . . . , Xk

1 are i.i.d. normally distributed random variables with EX1
1 = 0, var(X1

1) =
1. The probability density function of X1 is

f (x1, x2, . . . , xk) = 1

(2�)
k
2

exp

{
−x2

1 + x2
2 + · · · + x2

k

2

}
.

Suppose for any x = (x1, x2, . . . , xk) ∈ Rk the function N(x) is defined as N(x) =
x2

1 + x2
2 + · · · + x2

k . Then (X1
1)

2 + (X2
1)2 + · · · + (Xk

1)
2 is distributed as a random variable

with �2 distribution with k degrees of freedom

P {N(X1)�x} = G 1
2 , k

2
(x),

where G�,�(x) denotes the c.d.f. of gamma distribution with the parameters (�, �). Then

h(x1, x2, . . . , xk) = G 1
2 , k

2
(x2

1 + x2
2 + · · · + x2

k ).

Example 2.2. Let (X1
1, X

2
1, . . . , Xk

1) have a probability density function

f (x1, x2, . . . , xk) =
{

�k exp {−�(x1 + x2 + · · · + xk)} if x1 �0, x2 �0, . . . , xk �0,

0 otherwise.
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Suppose for any x = (x1, x2, . . . , xk) ∈ Rk N(x) = ∑k
i=1 |xi |. One can write for

X1 = (X1
1, X

2
1, . . . , Xk

1)

h(x1, x2, . . . , xk) = P
{∣∣∣X1

1

∣∣∣ +
∣∣∣X2

1

∣∣∣ + · · · +
∣∣∣Xk

1

∣∣∣ � |x1| + |x2| + · · · + |xk|
}

= P
{
X1

1 + X2
1 + · · · + Xk

1 � |x1| + |x2| + · · · + |xk|
}

= Gk,�(|x1| + |x2| + · · · + |xk|),
since X1

1, X
2
1, . . . , Xk

1 are i.i.d. r.v.’s with c.d.f. F(u) = 1 − e−�u, u�0.

Example 2.3. Let (X1
1, X

2
1, . . . , Xk

1) have a probability density function

f (x1, x2, . . . , xk) =
⎧⎨
⎩

�1�2 · · · �k exp
× {−(�1x1+�2x2+ · · · +�kxk)} if x1 �0, x2 �0, . . . , xk �0,

0 otherwise.

Consider N(x) = max(x1, x2, . . . , xk), x = (x1, x2, . . . , xk). Then

h(x1, x2, . . . , xk) = P
{

max(X1
1, X

2
1, . . . , Xk

1)� max(x1, x2, . . . , xk)
}

=
k∏

i=1

[
1 − exp(−�i max(x1, x2, . . . , xk))

]
.

In the next section we investigate the distributional properties of the conditionally ordered
random vectors under a Progressive Type II censoring scheme. A motivation for this study
is the need for progressive censoring in many applications, for example, in the model of
reliability analysis when the system consists of n independent units each having p arbitrarily
dependent elements and if the progressive censoring of the life lengths of the elements is
required.

3. Progressive Type II censored conditionally ordered statistics

Let a system have n independent components (units) each consisting of p arbitrarily
dependent elements. Consider Xi = (X1

i , X
2
i , . . . , X

p
i ), i = 1, 2, . . . , n, where X

j
i denotes

the life length of the jth element of the ith unit. Let R = (R1, R2, . . . , Rm), where m +∑m
i Ri = n. Assume that Xi , i = 1, 2, . . . , n are continuous random vectors with the

p-variate c.d.f. F(x) and p.d.f f (x), x = (x1, x2, . . . , xp) ∈ Rp. Underly Progressive
Type II censoring scheme the n units are placed on the test at time zero. The life length
of the ith item is N(Xi ), i = 1, 2, . . . , n. Then, the first failure occurs at time N(X(1)) =
min {N(X1), N(X2), . . . , N(Xn)}. Let us denote the vector of the life length corresponding
to this time as X(1:m:n)

R . Immediately following the first failure, R1 surviving units are
removed from the test at random. The second failure in the system (or first failure among
the remaining n − R1 − 1 items) occurs at time N(X(2:m:n)

R ) and immediately R2 items are
randomly removed from the test. This process continues until, at the time of the mth observed
failure, the remaining Rm = n − R1 − R2 − · · · − Rm−1 − m units are all removed from
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the experiment. The times of failures are N(X(1:m:n)
R ), N(X(2:m:n)

R ), . . . , N(X(m:m:n)
R ) and the

random variables X(1:m:n)
R , X(2:m:n)

R , . . . , X(m:m:n)
R are called Multivariate Progressive Type

II censored conditionally N-ordered statistics.

Theorem 4. Let X1, X2, . . . , Xn be i.i.d. random vectors with c.d.f. F(x) and p.d.f. f (x),
x = (x1, x2, . . . , xp) ∈ Rp. Then the joint p.d.f. of the Progressive Type II conditionally

N-ordered statistics X(1:m:n)
R , X(2:m:n)

R , . . . , X(m:m:n)
R is

f (x1, x2, . . . , xm) =
⎧⎨
⎩ c

m∏
i=1

f (xi ) [1 − h(xi )]Ri if N(x1)�N(x2)� · · · �N(xm),

0 otherwise,

where, c = n(n − R1 − 1) · · · (n − R1 − R2 − · · · − Rm−1 − m + 1) and h(x) =
P {N(X)�N(x)}.

The proof is straightforward and follows from the definition of multivariate Progressive
Type II censored conditionally N-ordered statistics.

The following lemma will be useful for further developments.

Lemma 1. For any y ∈ Rp

∫
N(x)�N(y)

f (x) [1 − h(x)]k dx = 1

k + 1

[
1 − h(y)

]k+1 (7)

and ∫
N(x)�N(y)

f (x) [1 − h(x)]k dx = 1

k + 1

{
1 − [

1 − h(y)
]k+1

}
. (8)

Proof. Consider (7). The proof of (8) is similar. It is clear that∫
N(x)�N(y)

f (x) [1 − h(x)]k dx = 1

k + 1
P

{
N(X(1:k+1))�N(y)

}

= 1

k + 1
P {N(X1)�N(y), . . . , N(Xk+1)�N(y)}

= 1

k + 1

[
1 − h(y)

]k+1
,

where (k + 1) f (x) [1 − h(x)]k is the p.d.f. of X(1:k+1), i.e. the p.d.f. of the smallest of
X1, X2, . . . , Xk+1, in the sense of conditional ordering with respect to a function N. �

The following theorem shows that analogous to the usual Progressive Type II censored-
order statistics the joint distribution of the first r (1�r �m�n) conditionally N-ordered
Progressive Type II censored statistics does not depend on Rr+1, Rr+2, . . . , Rm.
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Theorem 5. The joint p.d.f of X(1:m:n)
R , X(2:m:n)

R , . . . , X(r:m:n)
R , (1�r �m�n) is

fX(1:m:n)
R ,X(2:m:n)

R ,...,X(r:m:n)
R

(x1, x2, . . . , xr )

= cr

r∏
i=1

f (xi )

r−1∏
i=1

[1 − h(xi )]
Ri [1 − h(xr )]

n−R1−R2−···−Rr−1−r , (9)

where cr = n(n − R1 − 1) · · · (n − R1 − R2 − · · · − Rr−1 − r + 1).

Proof. It is clear that

fX(1:m:n)
R ,X(2:m:n)

R ,...,X(r:m:n)
R

(x1, x2, . . . , xr )

= cf (x1)f (x2) · · · f (xr ) [1 − h(x1)]
R1 · · · [1 − h(xr )]

Rr

×
∫

· · ·
∫

N(xr )�N(xr+1)� ···�N(xm)

f (xr+1) · · · f (xm)
[
1 − h(xr+1)

]Rr+1 × · · ·
× [1 − h(xm)]Rm dxr+1 · · · dxm, (10)

where c = n(n − R1 − 1) · · · (n − R1 − R2 − · · · − Rm−1 − m + 1). From Lemma 1, using
(7), we have∫

N(xm−1)�N(xm)

f (xm) [1 − h(xm)]Rm dxm = 1

Rm + 1

[
1 − h(xm−1)

]Rm+1 ;

then,

1

Rm + 1

∫
N(xm−2)�N(xm−1)

f (xm−1)
[
1 − h(xm−1)

]Rm−1

× [
1 − h(xm−1)

]Rm+1
dxm−1

= 1

(Rm + 1)(Rm + Rm−1 + 2)

[
1 − h(xm−2)

]Rm+Rm−1+2
,

continuing this procedure and using (7) again we obtain∫
· · ·

∫
N(xr )�N(xr+1)� ···�N(xm)

f (xr+1) · · · f (xm) [1 − h(x1)]
Rr+1 × · · ·

× [1 − h(xm)]Rm dxr+1 · · · dxm

= 1

(Rm + 1)(Rm + Rm−1 + 2) · · · (Rm + Rm−1 + · · · + Rr+1 + m − r)

× [1 − h(xr )]
Rm+Rm−1+···+Rr+1+m−r . (11)

From (11) and (10) we have

fX(1:m:n)
R ,X(2:m:n)

R ,...,X(r:m:n)
R

(x1, x2, . . . , xr )

= n(n − R1 − 1) · · · (n − R1 − R2 − · · · − Rm−1 − m + 1).

(Rm + 1)(Rm + Rm−1 + 2) · · · (Rm + Rm−1 + · · · + Rr+1 + m − r)

×f (x1)f (x2) · · · f (xr ) [1 − h(x1)]
R1 · · · [1 − h(xr−1)

]Rr−1

× [1 − h(xr )]
Rm+Rm−1+···+Rr+m−r . (12)
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Since R1 + R2 + · · · + Rm + m = n, it is not difficult to observe that (12) is the same
as (9). �

To derive the explicit expression of the p.d.f. of the rth multivariate Progressive Type II
censored conditionally ordered statistic we need the following lemma which is a modifica-
tion of Lemma 1 by Balakrishnan et al. [4].

Lemma 2. Let f (x), x ∈ Rp be the p.d.f. of an absolutely continuous random vector
X = (X1

1, X
2
1, . . . , X

p

1 ), and h(x), x ∈ Rp be the structural function with respect to a
function N(x), x ∈ Rp. Then for r �1

∫
· · ·

∫
N(x1)�N(x2)� ···�N(xr−1)�N(xr )

r−1∏
i=1

f (xi ) [1 − h(xi )]
ai−1 dx1 · · · dxr−1

=
r−1∑
i=0

ci,r−1(ar−1) {1 − h(xr )}bi,r−1(ar−1) ,

where ar−1 = (a1, a2, . . . , ar−1),

ci,r−1(ar−1) = (−1)i{
i∏

j=1

r−1−i+j∑
k=r−i

ak

} {
r−1−i∏
j=1

r−1−i∑
k=j

ak

} , bi,r−1(ar−1) =
r−1∑

i=r−i

ai

and by convention
∏0

j=1 dj ≡ 1 and
∑i−1

j=i dj ≡ 0.

The proof is a modification of the proof of Lemma 1 in Balakrishnan et al. [4] and we
omit it.

The result given in the following lemma is obtained from straightforward integration by
repeated application of Lemma 1.

Lemma 3. Let f (x), x ∈ Rp be the p.d.f. of an absolutely continuous random vector
X = (X1

1, X
2
1, . . . , X

p

1 ), and h(x), x ∈ Rp be the structural function with respect to a
function N(x), x ∈ Rp. Then for r �1∫

· · ·
∫

N(xm)�N(xm−1)� ···�N(xr+1)�N(xr )

m∏
i=r+1

f (xi ) [1 − h(xi )]
Ri+1 dxr+1 · · · dxm

= Qm,r {1 − h(xr )}
r+1∑
i=m

Ri+m−r

,

where

Qm,r ≡ 1

Rm + 1

1

Rm + Rm−1 + 2
· · · 1

Rm + Rm−1 + · · · + Rr+1 + m − r − 1

× 1

Rm + Rm−1 + · · · + Rr+1 + m − r
.
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Lemmas 2 and 3 allow us to write the explicit distribution of the rth conditionally ordered
Progressive Type II order statistic.

Theorem 6. The p.d.f of p-variate random vector X(r:m:n)
R is

fr(xr ) = cQm,rf (xr )

r−1∑
i=0

ci,r−1(R1 + 1, R2 + 1, . . . , Rr−1 + 1)

×{1 − h(xr )}bi,r−1(R1+1,R2+1,...,Rr−1+1)+tm,r ,

xr = (x1
r , x2

r , . . . , x
p
r ) ∈ Rp, (13)

where

c = n(n − R1 − 1) · · · (n − R1 − R2 − · · · − Rm−1 − m + 1),

tm,r = Rm + Rm−1 + · · · + Rr + m − r,

Qm,r = 1

Rm + 1

1

Rm + Rm−1 + 2
· · · 1

Rm + Rm−1 + · · · + Rr+1 + m − r − 1

× 1

Rm + Rm−1 + · · · + Rr+1 + m − r
.

Proof. Using Lemmas 1 and 2 integrating the joint p.d.f. of X(1:m:n)
R , X(2:m:n)

R , . . . , X(m:m:n)
R

with respect to x1, x2, . . . , xr−1, xr+1, . . . , xm in

{(x1, x2, . . . , xm) : N(x1)�N(x2)� · · · �N(xm)}
we complete the proof.

Note. If R1 = R2 = · · · = Rm = 0 then we have the usual conditionally N-ordered
statistics. It would be interesting to obtain from (13) the p.d.f. of rth conditionally ordered
statistics X(r:n). For this let us write the expression for ci,r−1(R1 + 1, . . . , Rr−1 + 1) in the
form

ci,r−1(R1 + 1, . . . , Rr−1 + 1)

= (−1)i
1

ar−i (ar−i + ar−i+1) · · · (ar−i + ar−i+1 + · · · + ar−1)

× 1

ar−1−i (ar−1−i + ar−2−i ) · · · (ar−1−i + ar−2−i + · · · + a1)
.

Then we have

ci,r−1(1, 1, . . . , 1) = (−1)i

i!(r − 1 − i)! ,
bi,r−1(1, 1, . . . , 1) = i,

c = n!,
Qm,r = 1

(n − r)! ,
tm,r = n − r
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and

fr(xr ) = n!
(n − r)!f (xr )

r−1∑
i=0

(−1)i

i!(r − 1 − i)! {1 − h(xr )}i+n−r

= n!
(r − 1)!(n − r)! (1 − h(xr ))

n−rhr−1(xr )f (xr ),

which coincides with (2). �
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