
Journal of Multivariate Analysis 102 (2011) 908–917

Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Numbers of near bivariate record-concomitant observations
I. Bairamov ∗, A. Stepanov
Department of Mathematics, Izmir University of Economics, 35330, Balcova, Izmir, Turkey

a r t i c l e i n f o

Article history:
Received 22 February 2010
Available online 22 January 2011

AMS 2000 Subject Classification:
60G70
62G30

Keywords:
Records
Concomitants of records
Near bivariate record-concomitant
observations

Insurance claims
Limit theorems
Generating of records, bivariate
record-concomitants

a b s t r a c t

Let Z1 = (X1, Y1), Z2 = (X2, Y2), . . . be independent and identically distributed random
vectors with continuous distribution. Let L(n) and X(n) denote the nth record time and the
nth record value obtained from the sequence of Xs. Let Y (n) denote the concomitant of the
nth record value, which relates to the sequence of Y s.We call Z i a near bivariate nth record-
concomitant observation if Z i belongs to the open rectangle (X(n) − a, X(n)) × (Y (n) −

b1, Y (n) + b2), where a, b1, b2 > 0 and L(n) < i < L(n + 1). Asymptotic properties of the
numbers of near bivariate record-concomitant observations are discussed in the present
work. New techniques for generating bivariate record-concomitants, the numbers of near
record observations and the numbers of near bivariate record-concomitant observations
are also proposed.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Assume in the following, Z = (X, Y ), Z1 = (X1, Y1), Z2 = (X2, Y2), . . . are independent and identically distributed
random vectors with continuous distribution F(x, y) and marginal distributions H(x) = P{X ≤ x} and G(y) = P{Y ≤ y}. In
the case of existence, the corresponding densities will be denoted as f (x, y), h(x) and g(y), respectively. For the sequence of
X-s, let us define the sequences of record values X(n) and record times L(n):

L(1) = 1,
L(n + 1) = min{j : j > L(n), Xj > XL(n)},

X(n) = XL(n) (n ≥ 1).

The sequence of X-records X(n) induces the sequence of their concomitants Y (n), i.e. Y (n) = Yi if Xi = X(n). Let us also
denote bivariate record-concomitant observations as Z(n) = (X(n), Y (n)).

The univariate theory of records can be found among others in the books of [1,3,18]. Concomitants of records are studied
in [15,2,1,3,20].

Let in the following,

P(a1, a2, b1, b2) = P((X, Y ) ∈ (a1, a2) × (b1, b2)),

where (a1, a2) × (b1, b2) is an open rectangle and −∞ ≤ a1 < a2 ≤ ∞, −∞ ≤ b1 < b2 ≤ ∞. We further call Z j = (Xj, Yj)

a near nth bivariate record-concomitant observation if L(n) < j < L(n + 1) and Z j = (Xj, Yj) belongs to the rectangle

∗ Corresponding author.
E-mail addresses: ismihan.bayramoglu@ieu.edu.tr (I. Bairamov), alexeistep45@mail.ru, alexei.stepanov@ieu.edu.tr (A. Stepanov).

0047-259X/$ – see front matter© 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmva.2011.01.007

http://dx.doi.org/10.1016/j.jmva.2011.01.007
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
mailto:ismihan.bayramoglu@ieu.edu.tr
mailto:alexeistep45@mail.ru
mailto:alexei.stepanov@ieu.edu.tr
http://dx.doi.org/10.1016/j.jmva.2011.01.007


I. Bairamov, A. Stepanov / Journal of Multivariate Analysis 102 (2011) 908–917 909

(X(n) − a, X(n)) × (Y (n) − b1, Y (n) + b2), where a, b1, b2 > 0. We also define the number of near nth bivariate record-
concomitant observations by

ξn = ξn(a, b1, b2) = #{j : L(n) < j < L(n + 1), Z j ∈ (X(n) − a, X(n)) × (Y (n) − b1, Y (n) + b2)} (n ≥ 1).

In the present work we study the properties of ξn in the case of continuous F .
Our study is the first investigation on the numbers of near bivariate record-concomitant observations. Two close topics

such as the numbers of near bivariate maxima and the numbers of near univariate records are discussed in [11,12,9,4], and
in [5–8], respectively.

The rest of this paper is organized as follows. In Section 2, we study the limiting behavior of the concomitants of records
Y (n) (n → ∞). This is important, because knowing this behavior we are able to put proper conditions on F and derive
limit results for ξn. Distributions of the numbers of near bivariate record-concomitant observations are given in Section 3. In
Section 4, we obtain limit theorems for ξn. Some limit results for the sums of near bivariate record-concomitant observations
are derived in Section 5. Illustrative examples are given in Section 6. Section 7 of our work contains new simulation
techniques for record values and the numbers of near records and near bivariate record-concomitant observations.

In the following
d

→,
p

→,
a.s.
→ stand for convergence in distribution, convergence in probability, and almost sure

convergence, respectively.

2. Asymptotic behavior of Y (n)

The distributions of the bivariate record-concomitant observations Z(n) = (X(n), Y (n)) and the concomitants of record
values Y (n) are given for n ≥ 2 (see, for example, [20]) by

Fn(x, y) = P(X(n) ≤ x, Y (n) ≤ y) =
1

(n − 2)!

∫ x

−∞

F(x, y) − F(u, y)
1 − H(u)

[− log(1 − H(u))]n−2 dH(u), (2.1)

Gn(y) = P(Y (n) ≤ y) =
1

(n − 2)!

∫
R

G(y) − F(u, y)
1 − H(u)

[− log(1 − H(u))]n−2 dH(u), (2.2)

and for n = 1 by

F1(x, y) = F(x, y), G1(y) = G(y).

It is known that X(n)
a.s.
→ rH (n → ∞), where, in the following, we denote by rH = sup{x ∈ R : H(x) < 1} and lH =

inf{x ∈ R : H(x) > 0} the right and left extremities of H , respectively.
It is reasonable to expect that the limiting behavior of the concomitants of record values Y (n) is influenced by the type of

dependence between X and Y . The same remark is true for the limiting behavior of the concomitants of maxima. The latter
is discussed in the recent paper of [4], where a method for studying such behavior is proposed. However, that method
seems rather complicated. In our present work, we propose another method for investigating asymptotic properties of
the concomitants of records. This method, which makes use of the limit in (2.3) below, is much simpler than the method
proposed in [4]. This new method can also be applied for studying the limiting behavior of the concomitants of maxima.

Let us consider the following limit

lim
x→rH

G(y) − F(x, y)
1 − H(x)

= β(y) ∈ [0, 1]. (2.3)

Proposition 2.1 shows us that the function β in (2.3) is a limiting distribution for the concomitants of records.

Proposition 2.1. Let the limit in (2.3) exist. Then

Gn(y) → β(y) (n → ∞). (2.4)

Proof. Let us estimate the terms of Gn(y) = Fn(x0, y) + [Gn(y) − Fn(x0, y)], where x0 is some fixed positive number which
will be defined more precisely later. Since F(x0,y)−F(u,y)

1−H(u) ≤ 1, and [− log(1 − H(u))]n−2 is an increasing in u function,

Fn(x0, y) ≤ Qn(x0) =
[− log(1 − H(x0))]n−2

(n − 2)!
→ 0 (n → ∞).

We have Gn(y) − Fn(x0, y) = I1 + I2, where

I1 =
1

(n − 2)!

∫ x0

−∞

G(y) − F(x0, y)
1 − H(u)

[− log(1 − H(u))]n−2 dH(u)

and

I2 =
1

(n − 2)!

∫
∞

x0

G(y) − F(u, y)
1 − H(u)

[− log(1 − H(u))]n−2 dH(u).
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Observe that I1 = (G(y) − F(x0, y))Qn+1(x0) → 0. Let us now choose x0 such that

G(y) − F(u, y)
1 − H(u)

< β(y) + ε(y) (u > x0).

Then I2 < (β(y) + ε(y))(1 − Qn(x0)). Hence Gn(y) < o(1) + β(y) + ε(y).
In the same way Gn(y) can be estimated from below. The result readily follows. �

The functionβ defined by (2.3) and (2.4) is a limiting distribution for continuousGn (even if in (2.3) the functionβ is obtained
as left-continuous, it can be redefined as right-continuous). The distribution β can be continuous and can be degenerate. If
the limit in (2.3) does not exist, the limiting distribution for the sequence of Gn does not exist either. When the limit in (2.3)
exists we distinguish the following two cases.
(i) Suppose that for some c ∈ [−∞, ∞],

β(y) = 0 (y < c) and β(y) = 1 (y > c). (2.5)

This means that Y (n)
p

→ c. We then call F a c-stable record-concomitant distribution. Examples 6.1–6.5 illustrate this case.
(ii) If such c does not exist, then Y (n) does not converge in probability. In this case, we call F an unstable record-concomitant
distribution. For example, if F(x, y) = H(x)G(y), i.e. X and Y are independent, then Gn(y) = G(y) (n ≥ 1). Obviously, such c
does not exist here. See Example 6.6 in this respect.

If X and Y are independent, or ‘weakly’ dependent, then the limiting distribution β is not degenerate, and F is an unstable
record-concomitant distribution. If X and Y are ‘strongly’ dependent, i.e. the limiting distribution β is degenerate with atom
at c , then F is a c-stable record-concomitant distribution.

We have just introduced a new concept — the stable record-concomitant distribution. In our work, we analyze the limit
behavior of ξn in these terms.

3. Distributional results for the number of near bivariate record-concomitant observations

We start discussing the properties of the number of near bivariate record-concomitant observations by presenting the
probability mass function of ξn. The proof of Theorem 3.1 is based on Nevzorov’s [19] deletion argument.

Theorem 3.1. The probability mass function of ξn(a, b1, b2) (a, b1, b2 > 0, n ≥ 1) is given by

P(ξn(a, b1, b2) = k) =

∫
R2

[1 − γ (x, y, a, b1, b2)]γ (x, y, a, b1, b2)k Fn(dx, dy) (k ≥ 0), (3.1)

where Fn(x, y) is the distribution function of Z(n) determined by (2.1), and γ (x, y, a, b1, b2) ∈ [0, 1] is defined by

γ (x, y, a, b1, b2) =
P(x − a, x, y − b1, y + b2)

P(x − a, x, y − b1, y + b2) + P(x, ∞, −∞, ∞)
.

Proof. First, we have

P(ξn(a, b1, b2) = k) =

∫
R2

P(ξn(a, b1, b2) = k | X(n) = x, Y (n) = y) Fn(dx, dy).

Now, in order to estimate the conditional probability

P(ξn(a, b1, b2) = k | X(n) = x, Y (n) = y), (3.2)

we employ Nevzorov’s [19] deletion argument proposed for the univariate case. For more accessible reference on this
method one can refer to [25,5,24].

From the sequence of independent Z is (i > L(n))wedelete all those Z iswhich do not belong to the union of the rectangles

(x − a, x) × (y − b1, y + b2)


(x, ∞) × (−∞, ∞).

The remaining sequence of independent Z i1 , Z i2 , . . . is such that L(n) < i1 < i2 < · · ·. This deletion procedure does not
alter the number of near bivariate record-concomitant observations in the open rectangle (x − a, x) × (y − b1, y + b2). LetZj = (Xj,Yj) (j ≥ 1) denote random vectors which are conditionally independent given {X(n) = x, Y (n) = y}. For

(x,y) ∈ (x − a, x) × (y − b1, y + b2)


(x, ∞) × (−∞, ∞),

let

P(Xj ≤x,Yj ≤y) = P

Xij ≤x, Yij ≤y | Z ij ∈ (x − a, x) × (y − b1, y + b2)


(x, ∞) × (−∞, ∞)


.
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Then,

P(ξn(a, b1, b2) = k | X(n) = x, Y (n) = y) = P(Z1 ∈ (x − a, x) × (y − b1, y + b2), . . . ,Zk−1 ∈ (x − a, x) × (y − b1, y + b2),Zk ∈ (x, ∞) × (−∞, ∞)),

which readily yields (3.1). �

Remark 3.1. It should be mentioned that the analysis of the conditional probability in (3.2) could be done differently by
means of the method proposed in the proof of Theorem 2.1 of [21].

4. Limit results

For the rest of the paper we assume that rH = ∞. The following limit

lim
x→∞

1 − H(x + a)
1 − H(x)

= τ(a) ∈ [0, 1], (4.1)

proposed in [23], is used for distribution tail classification in the univariate theories of near-maxima and near-records. Let
the limit in (4.1) exist. The distribution tail 1 − H(x) is classified as ‘thin’ if τ(a) = 0, ‘medium’ if 0 < τ(a) < 1 and ‘thick’
if τ(a) = 1. Based on this classification different limit laws are obtained for the numbers of univariate near-maxima and
near-records. In particular, it is shown in [5] that if the tail 1−H(x) is ‘medium’, then the limiting distribution of the number
of near-records is geometric.

In the bivariate case a similar result holds true.

Theorem 4.1. Let F be a c-stable record-concomitant distribution, where −∞ < lG ≤ c ≤ rG < ∞, and suppose that the limit
in (4.1) exists with τ(a) ∈ (0, 1). Then

ξn(a, b1, b2)
d

→ Geo(τ (a)),

where Geo(p) is a geometrically distributed random variable with parameter p.

Proof. It follows from (2.5) that

P(ξn(a, b1, b2) = k) =

∫
∞

−∞

∫ c+b1

c−b2
(1 − γ (x, y, a, b1, b2))γ (x, y, a, b1, b2)k Fn(dx, dy) + o(1).

It should be noted that for any y ∈ (c − b2, c + b1),

γ (x, y, a, b1, b2) → 1 − τ(a) (x → ∞).

The result readily follows. �

Comment 4.1. Observe that the limiting distribution of ξn(a, b1, b2) is free of b1 and b2. Indeed, when F is a c-stable record-
concomitant distribution and x is large, the probability mass is concentrated near the line y = c. If n is large enough, Y (n) is close
to c with a probability arbitrarily near unity. The height of the rectangle (X(n)− a, X(n))× (c − b1, c + b2) is then unimportant
for counting near bivariate record-concomitant observations registered in this rectangle, because these observations are located
near the line y = c.

Using the argument proposed in the proof of Theorem 4.1, one can obtain the following.

Remark 4.1. Let F be a c-stable record-concomitant distribution with −∞ < lG ≤ c ≤ rG < ∞. Let the limit in (4.1) exist.
If τ(a) = 0, then ξn(a, b1, b2)

p
→ ∞; and if τ(a) = 1, then ξn(a, b1, b2)

p
→ 0.

The following asymptotic result is valid for ±∞-stable record-concomitant distributions.

Theorem 4.2. Let F be a ±∞-stable record-concomitant distribution. Then

ξn(a, b1, b2)
p

→ 0. (4.2)

Proof. We present the proof only for the case when F is an ∞-stable record-concomitant distribution. It follows from the
definition of the ∞-stable record-concomitant distribution that for any y0

P(ξn(a, b1, b2) = 0) =

∫
∞

−∞

∫
∞

y0

P(x, ∞, −∞, ∞)

P(x − a, x, y − b1, y + b2) + P(x, ∞, −∞, ∞)
Fn(dx, dy) + o(1).

When y0 increases to infinity, P(x − a, x, y − b1, y + b2) tends to zero and, correspondingly, P(ξn(a, b1, b2) = 0) tends to
one. The result follows. �

In Theorems 4.3 and 4.4, conditions for the strong convergence of ξn are found.
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Theorem 4.3. Let∫
R2

P(x − a, x, y − b1, y + b2)
(1 − H(x))2

F(dx, dy) < ∞. (4.3)

Then ξn(a, b1, b2)
a.s.
→ 0.

Proof. Indeed,
∞−
n=1

P{ξn(a, b1, b2) > 0} =

∞−
n=1

∫
R2

γ (x, y, a, b1, b2)Fn(dx, dy)

=

∫
R2

P(x − a, x, y − b1, y + b2)
(1 − H(x))(1 − H(x) + P(x − a, x, y − b1, y + b2))

F(dx, dy)

<

∫
R2

P(x − a, x, y − b1, y + b2)
(1 − H(x))2

F(dx, dy).

The result follows from the Borel–Cantelli lemma. �

Remark 4.2. Letξn(a) be the number of univariate near-records, defined byξn(a) = #{j : L(n) < j < L(n + 1), Xj ∈ (X(n) − a, X(n))} (n ≥ 1).

It should be noted thatξn(a) = ξn(a, ∞, ∞). The following limit result is obtained forξn(a) in [5]. If∫
R

H(x + a) − H(x)
(1 − H(x))2

dH(x) < ∞, (4.4)

thenξn(a) a.s.
→ 0. Observe that if condition (4.4) holds, then (4.3) also holds.

Theorem 4.4. Let∫
R2

F(dx, dy)
1 − H(x) + P(x − a, x, y − b1, y + b2)

< ∞. (4.5)

Then ξn(a, b1, b2)
a.s.
→ ∞.

Proof. Indeed, for any positive integer k
∞−
n=1

P{ξn(a, b1, b2) ≤ k} =

∞−
n=1

∫
R2

[1 − γ (x, y, a, b1, b2)k]Fn(dx, dy)

≤ k
∞−
n=1

∫
R2

(1 − γ (x, y, a, b1, b2))Fn(dx, dy)

< k
∫

R2

F(dx, dy)
1 − H(x) + P(x − a, x, y − b1, y + b2)

.

The result follows from the Borel–Cantelli lemma. �

5. Sums of near bivariate record-concomitant observations

Assume in this section that Xi, Yi (i ≥ 1) can take only positive values, and as was supposed before, rH = ∞. Let

Sn(a, b1, b2) = (SXn (a, b1, b2), SYn (a, b1, b2))

be the vector of sums of near nth bivariate record-concomitant observations, i.e.

SXn (a, b1, b2) =

L(n+1)−1−
i=L(n)+1

Ii,nXi and SYn (a, b1, b2) =

L(n+1)−1−
i=L(n)+1

Ii,nYi

where Ii,n is the indicator function of the event (Xi, Yi) ∈ (X(n) − a, X(n)) × (Y (n) − b1, Y (n) + b2).
These two sums, when Xi, Yi are positive, are quantities of interest, since they can be interpreted as the sums of insurance

claims falling in the random intervals (X(n) − a, X(n)) and (Y (n) − b1, Y (n) − b2). These claims are to be registered only
on receiving an outstanding X-claim. The registration of these claims is stopped at the next record time L(n + 1). When the
first sum consists of the claims registered near the record values, the second sum is the sum of near induced record values.
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Such a situation may happen when clients appeal to the insurance company to cover the damages obtained from serious
car incidents (claims in respect to the X-records). At the same time the clients wish the insurance company to cover their
medical expenses (claims in respect to the Y -concomitants).

Pakes [22], Li and Pakes [16], Hashorva [10], Hashorva and Hüsler [13,14], and Balakrishnan et al. [5] discussed sums of
near maxima and near records as well as applications to insurance in the univariate case.

The limiting behavior of SXn (a, b1, b2) can be easily obtained from the results of the previous section and the inequality

(X(n) − a)ξn(a, b1, b2) < SXn (a, b1, b2) ≤ X(n)ξn(a, b1, b2),

which holds on almost all sample paths for sufficiently large n. Since X(n)
a.s.
→ ∞, we get

SXn (a, b1, b2)
X(n)

∼ ξn(a, b1, b2) a.s..

Let us analyze the limit behavior of SYn . Let F be an ∞-stable record-concomitant distribution. It follows from (2.2) and the
Borel–Cantelli lemma that if for any ywe have∫

R

G(y) − F(x, y)
(1 − H(x))2

dH(x) < ∞, (5.1)

then Y (n)
a.s.
→ ∞. Hence

SYn (a, b1, b2)
Y (n)

∼ ξn(a, b1, b2) a.s..

The following theorem is a simple consequence of Theorem 4.2.

Theorem 5.1. Let F be an ∞-stable record-concomitant distribution and (5.1) hold. Then
SXn (a, b1, b2)

X(n)
,
SYn (a, b1, b2)

Y (n)


p

→ (0, 0).

Suppose now F is a c-stable record-concomitant distribution, where c is finite. For any ε > 0, let∫
R

G(c − ε) − F(x, c − ε)

(1 − H(x))2
dH(x) < ∞ (5.2)

and ∫
R

1 − H(x) − G(c + ε) − F(x, c + ε)

(1 − H(x))2
dH(x) < ∞. (5.3)

It follows from the Borel–Cantelli lemma that P(Y (n) < c − ε i.o.) = 0, P(Y (n) > c + ε i.o.) = 0, and, consequently,
Y (n)

a.s.
→ c . The next theorem results from Remark 4.1.

Theorem 5.2. Let (5.2) and (5.3) hold and τ(a) = 1. Then
SXn (a, b1, b2)

X(n)
,
SYn (a, b1, b2)

Y (n)


p

→ (0, 0).

6. Examples

Example 6.1. Let

F(x, y) =

∫ x

0

∫ y

0

1
u
e−u−v/udvdu (x > 0, y > 0)

with marginal distribution H(x) = 1 − e−x and F(dx, y) = e−x(1 − e−y/x)dx. It is clear that

lim
x→∞

F(dx, y)
h(x)dx

= lim
x→∞

(1 − e−y/x) = 0 (y ≥ 0),

i.e. β(y) = 0. So, we have an ∞-stable record-concomitant distribution and

(X(n), Y (n))
p

→ (∞, ∞). (6.1)
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One of the referees showed us how to obtain (6.1) differently. We are grateful to him/her for that. This different
approach is not associated with the concept of stable record-concomitant distributions. We apply this approach here and in
Examples 6.2, 6.3 and 6.5.

The random vector (X, Y ) given in this example can be presented as

(X, Y )
d
= (ϵ, ϵ′ϵ),

where ϵ, ϵ′ are independent standard exponential random variables. Since X(n) d
= ϵ(n), where the ϵ(n)s are the records in

the sequence of ϵ1, ϵ2, . . ., it follows that

(X(n), Y (n)) d
= (ϵ(n), ϵ′

nϵ(n)),

where the ϵ′
ns are standard exponential, mutually independent, and independent of the ϵ(n) variables. The convergence in

(6.1) follows since ϵ(n)
a.s.
→ ∞.

By Theorem 4.2, for any fixed a, b1, b2 > 0

ξn(a, b1, b2)
p

→ 0 (n → ∞).

However, condition (4.3) does not hold and Theorem 4.3 can not be applied here. Indeed, for large positive x0, y0 the integral∫
∞

x0

∫
∞

y0

P(x − a, x, y − b1, y + b2)
(1 − H(x))2

F(dx, dy)

behaves like the divergent integral∫
∞

x0

∫
∞

y0

e−
2y
x

x2
dxdy.

Example 6.2. Let

F(x, y) = 1 − e−x
−

1 − e−x(y+1)

y + 1
(x > 0, y > 0)

with marginal distributions H(x) = 1 − e−x (x > 0) and G(y) = 1 −
1

y+1 (y > 0). In this case, for any y > 0

β(y) = lim
x→∞


1 −

e−xy

y + 1


= 1.

We have a 0-stable record-concomitant distribution and

(X(n), Y (n))
p

→ (∞, 0). (6.2)

The convergence in (6.2) can be obtained as proposed by the referee.
As in Example 6.1, we have (X, Y )

d
= (ϵ, ϵ′/ϵ). The convergence in (6.2) follows since (ϵ(n), Y (n)) d

= (ϵ(n), ϵ′
n/ϵ(n)) and

ϵ(n)
a.s.
→ ∞.

Observe that τ(a) = e−a. By Theorem 4.1, for any fixed a, b2 > 0

ξn(a, 0, b2)
d

→ Geo(e−a).

Example 6.3. Let

F(x, y) = 1 − e−(y−1)
−

1 − e−(y−1)(x+1)

x + 1
(x > 0, y > 1)

with marginal distributions

H(x) = 1 −
1

x + 1
(x > 0) and G(y) = 1 − e−(y−1) (y > 1).

In this case, for y > 1

β(y) = lim
x→∞

(1 − e−(y−1)(x+1)) = 1. (6.3)

We have 1-stable record-concomitant distribution and (X(n), Y (n))
p

→ (∞, 1).
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The referee observes that (6.3) also follows from the [17] characterization of the gamma law (X, Y )
d
= (X, 1 +

ϵ+ϵ′

1+X ),
where independent ϵ, ϵ′ are introduced as above andX has the distribution H . It follows that

(X(n), Y (n)) d
=

X(n), 1 +
ϵ + ϵ′

1 +X(n)


p

→ (∞, 1).

It should be noted that τ(a) = 1. By Remark 4.1, ξn(a, 0, b2)
p

→ 0 for any fixed a, b2 > 0. Condition (4.4) holds true, and
by Remark 4.2, ξn(a, 0, b2)

a.s.
→ 0.

Now, we would like to show that Y (n)
a.s.
→ 1. Here, it is enough to show that (5.3) holds. We have∫

R

1 − H(x) − G(c + ε) − F(x, c + ε)

(1 − H(x))2
dH(x) =

∫
∞

0

e−ε(x+1)

x + 1
dx < ∞.

Then Y (n) converges to one with probability one and, by Theorem 5.2,
SXn (a, 0, b2)

X(n)
, SYn (a, 0, b2)


p

→ (0, 0).

Example 6.4. Let F be a bivariate normal distribution with σx = σy = 1, µx = µy = 0, the joint density

f (x, y) =
1

2π

1 − ρ2

exp
[
−

1
2(1 − ρ2)

(x2 + y2 − 2ρxy)
]

,

and marginal standard normal distributions.
If ρ = 0, then X and Y are independent, and F is an unstable record-concomitant distribution.
Let ρ ≠ 0. We have

F(dx, y) =
1

2π

1 − ρ2

∫ y

−∞

exp
[
−

1
2(1 − ρ2)

(x2 + v2
− 2ρxv)

]
dvdx.

Then
G(y) − F(x, y)

1 − H(x)
∼

F(dx, y)
h(x)dx

= Φ


y − ρx
1 − ρ2


→


0 if ρ > 0, x → ∞,
1 if ρ < 0, x → ∞,

where Φ is the standard normal distribution. Hence, if ρ > 0 the distribution F is an ∞-stable record-concomitant
distribution and (X(n), Y (n))

p
→ (∞, ∞). By Theorem 4.2, ξn(a, b1, b2)

p
→ 0. When ρ < 0, we have (X(n), Y (n))

p
→

(∞, −∞). Obviously, in this case F is a−∞-stable record-concomitant distribution, and by Theorem 4.2, ξn(a, b1, b2)
p

→ 0.
We now show that when ρ > 0 the sequence Y (n) tends with probability one to infinity. It is known that when H is a

standard normal distribution and h is its density, then

1 − H(x) ∼ h(x)/x (x → ∞).

The integrand in (5.1) can be estimated as

G(y) − F(x, y)
(1 − H(x))2

h(x) ∼
xF(dx, y)

h(x)
= xΦ


y − ρx
1 − ρ2


. (6.4)

Observe that for any large positive k,

xkΦ(c1 − c2x) → 0 (x → ∞),

where c1, c2 are constants and c2 is positive. Since the expression in (6.4) contains the estimate of the integrand in (5.1), it
follows that the integrand goes to zero quicker then 1/xk, where k is a large positive number. This implies the convergence
in (5.1). Hence (X(n), Y (n))

a.s.
→ (∞, ∞). It follows from Theorem 5.1 that

SXn (a, b1, b2)
X(n)

,
SYn (a, b1, b2)

Y (n)


p

→ (0, 0).

The same asymptotic result is valid when ρ < 0.
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Example 6.5. Let

F(x, y) = 1 − e−x2
−

1 − e−x2(y+1)

y + 1
(x > 0, y > 0)

with marginal distributions H(x) = 1 − e−x2 (x > 0) and G(y) = 1 −
1

y+1 (y > 0). In this case,

β(y) = lim
x→∞


1 −

e−x2y

y + 1


= 1.

We have a 0-stable record-concomitant distribution and

(X(n), Y (n))
p

→ (∞, 0). (6.5)

We again apply the method proposed by the referee to obtain (6.5). IfX d
=

√
ϵ, then (X, Y )

d
= (X, ϵ′/X2), where ϵ, ϵ′ are

the variables introduced above. Obviously, (X(n), ϵ′
n/
X2(n))

p
→ (∞, 0).

We have τ(a) = 0, i.e. ξn(a, 0, b2)
p

→ ∞. Furthermore, since (4.5) holds, we have ξn(a, 0, b2)
a.s.
→ ∞.

Example 6.6. Let

F(x, y) = xy[1 + α(1 − x)(1 − y)] (0 < x, y < 1, α ∈ [0, 1])

with marginal distributions H(x) = x (0 < x < 1) and G(y) = y (0 < y < 1). In this case,

β(y) = αy2 + (1 − α)y (0 < y < 1).

We have an unstable record-concomitant distribution.

7. Simulation results

In this section, we present new simulation techniques for generating bivariate record-concomitant observations,
numbers of near records and near bivariate record-concomitant observations. We also supplement Example 6.2 of the
previous section with simulation results.
(i) First, let us consider the univariate case, where independent identically distributed X1, X2, . . . are taken with continuous
H . The known method for generating the sequence of record values X(1), X(2), . . . makes use of Nevzorov’s deletion
argument (1986).

First, we generate X(1) = X1 with H(x). If n ≥ 2 and X(n − 1) = x(n − 1), then X(n) is obtained as a single observation
from the distribution function

H(x) − H(x(n − 1))
1 − H(x(n − 1))

(x > x(n − 1)).

With little modification this known method can be applied for generatingξn(a) — the numbers of near records in the
univariate case. On obtaining X(n) = x(n), we generateX1,X2, . . . with distribution

H(x) − H(x(n) − a)
1 − H(x(n) − a)

(x > x(n) − a).

Thenξn(a) = t − 1, where t is the least k such thatXk > x(n) (k ≥ 1).
(ii) In the bivariate case, as before Z1 = (X1, Y1), Z2 = (X2, Y2), . . . are independent and identically distributed random
vectors with continuous distribution function F(x, y) and marginal distribution functions H(x) = P{X ≤ x} and G(y) =

P{Y ≤ y}. For obtaining the bivariate record-concomitants Z(1), Z(2), . . ., we first generate Z(1) = Z1 with F(x, y). When
n ≥ 2 we obtain Z(n) as a single observation from the distribution function

F(x, y) − F(x(n − 1), y)
1 − H(x(n − 1))

(x > x(n − 1)).

For generating the numbers of near bivariate record-concomitants ξn, we make use of the arguments proposed above
in this section and the proof of Theorem 3.1. On obtaining Z(n) = (X(n), Y (n)) = (x(n), y(n)), we generate vectorsZ1 = (X1,Y1),Z2 = (X2,Y2), . . . with distributionF(x,y) = P

Xi ≤x,Yi ≤y |Zi ∈ (x(n) − a, x(n)) × (y(n) − b1, y(n) + b2)


(x(n), ∞) × (−∞, ∞)


,

where

(x,y) ∈ (x(n) − a, x(n)) × (y(n) − b1, y(n) + b2)


(x(n), ∞) × (−∞, ∞).
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The distributionF can be also written as

F(x,y) =



F(x,y) − F(x(n),y) + P(x(n) − a, x(n), y(n) − b1, y(n) + b2)
1 − H(x(n)) + P(x(n) − a, x(n), y(n) − b1, y(n) + b2)

ifx > x(n), y ∈ R

P(x(n) − a,x, y(n) − b1,y)
1 − H(x(n)) + P(x(n) − a, x(n), y(n) − b1, y(n) + b2)

if x(n) − a ≤x ≤ x(n),

y(n) − b1 ≤y ≤ y(n) + b2,
0, otherwise.

Then ξn(a, b1, b2) = t − 1, where t is the least k such thatZk ∈ (x(n), ∞) × (−∞, ∞) (k ≥ 1).
Let us apply the above generating techniques to Example 6.2. We put a = 1, b1 = 0, b2 = 1. On obtaining (x(n), y(n)),

we generate the sequence of random numbers U1,U2, . . . while

Ui ≤
P(x(n) − 1, x(n), y(n), y(n) + 1)

e−x(n) + P(x(n) − 1, x(n), y(n), y(n) + 1)
.

Then ξn(a, b1, b2) = t − 1, where t is the least i such that

Ui >
P(x(n) − 1, x(n), y(n), y(n) + 1)

e−x(n) + P(x(n) − 1, x(n), y(n), y(n) + 1)
.

Applying MATLAB and the above argument, we generated 500 sequences of 500 bivariate record-concomitants. On
obtaining each sequence of record-concomitants we found 500 times ξ500(1, 0, 1). The average value of (X(500), Y (500))
was about the point (500, 0.0002). The average value of ξ500(1, 0, 1) was located in the interval (1.2, 2.5). This agrees with
our theoretical results, where (X(n), Y (n))

p
→ (∞, 0) and ξn(1, 0, 1)

d
→ Geo(e−1) with EGeo(e−1) = 1.7183.
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