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A B S T R A C T   

While the whole genomic sequence of SARS-CoV-2 had been revealed, it was also demonstrated that the genome 
of SARS-CoV-2 exhibits identity with the genome of SARS-CoV and MERS-CoV with ratios of 80 % and 50 % 
respectively. In the light of SARS-CoV-2 infection and mortality data, diagnosis and treatment of COVID-19 came 
into prominence around the world. As such many RT-PCR kits have been developed by biotechnology scientists. 
However viruses are fast mutating organisms and in order to increase accuracy, feasibility in long term and avoid 
the off target results of RT-PCR assays, regions of viral genome with low mutation rate and designing of primers 
targeting these regions are quite important. In this scope, we are presenting a novel algorithm that could be used 
for finding low mutation rate regions of SARS-CoV-2 and primers that were designed according to findings from 
our algorithm in this study.   

1. Introduction 

Since recently, our world has been combating an outbreak initiated 
with the observation of a simple viral-pneumonia at Wuhan city of China 
in late December of 2019 (Peng et al., 2020). The analysis demonstrates 
that this outbreak is caused by a novel coronavirus (nCov) belonging to 
the Coronaviridae family (Kooraki et al., 2020). While the World Health 
Organization (WHO) named the disease caused by nCov as COVID-19, 
the International Committee on Taxonomy of Viruses (ICTV) named 
the nCov as Severe Acute Respiratory Syndrome Coronavirus 2 (SAR
S-CoV-2) (Ather et al., 2020; Wu et al., 2020). The previous outbreaks 
that are severe acute respiratory syndrome (SARS) and the Middle East 
respiratory syndrome (MERS) originated by coronaviruses were defined 
as great threats now that they exhibit high death rate (Xie and Chen, 
2020). During the writing of this paper, 5,807,015 coronavirus cases 
have been detected with 357,800 deaths around the world. This data 
indicates that SARS-CoV-2 is causing quite a large amount of death with 
a higher infection rate despite having a lower mortality rate which was 
discovered as 5 % according to SARS-CoV (Jiang et al., 2020). 

Coronaviruses are sort of RNA viruses that possess single stranded 
RNA molecules as the genetic material with a length of approximately 
26− 32 kb (Mousavizadeh and Ghasemi, 2020). There are four 

subgroups of the Coronaviridae that are alpha (α), beta (β), gamma (γ), 
and delta (δ) (Shereen et al., 2020). In the genomic scope, the structural 
proteins of viruses are encoded by four specific genes that are called 
spike (S), membrane (M), envelope (E), and nucleocapsid (N) (Grifoni 
et al., 2020). It is revealed that the receptor binding domain of spike of 
SARS-CoV-2 recognizes and uses angiotensin-converting enzyme 2 
(ACE2) in infecting host cells just as SARS-CoV (Q. Wang et al., 2020). 
Furthermore, it is also discovered that SARS-CoV-2 binds to ACE2 with 
more than 10 fold affinity according to SARS-CoV due to the homolo
gous recombination observed on spike glycoprotein (Y. Yang et al., 
2020). The SARS-CoV-2 shows higher infection rate in comparison to 
previous SARS-CoV and threatens human health around the world is 
highlighted by many researches. Under the light of this information the 
mutation analysis on coronavirus genomes has come into prominence in 
order to both detect SARS-CoV-2 infection and develop treatment ap
proaches targeting the genome of the virus. 

As the most widely used diagnostic approach, RT-PCR utilizes the 
RNA isolated from upper and lower respiratory specimens that is reverse 
transcribed to cDNA and subsequently amplified. During the amplifi
cation method, the primers amplify a target region and probe anneals to 
a selected target sequence located between the forward and reverse 
primers. Often the diagnostic kits are designed with an accompanying 
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probe which is degraded during the extension step of the PCR cycle, due 
to the 5’ nuclease activity of Taq polymerase, causing the reporter dye to 
separate from the quencher. A wide range of targets may be used for RT- 
PCR based diagnosis, but RdRp, E and N genes are the most common 
targets used in many diagnostic kits. However like the rest of the viral 
genome, these targets are also prone to mutations resulting in lower 
efficiency in primer binding and even complete fall of the primers and 
probes from respective target regions. 

Considering that the viruses are fast mutating organisms, the high 
mutation rate of viral genomes provides a high survival rate to viruses 
along various conditions (Sanjuán et al., 2010) along with a high chance 
of any PCR primer to lose their specificity. This represents an important 
problem for the scientists who work on designing detection methods for 
the viral genomes (Peck and Lauring, 2018). As such, the identification 
of conserved sequences is a significant approach to overcome this lim
itation. Many algorithms identifying conserved sequences of viral ge
nomes were developed and published in literature over the years. For 
instance, Sadeque and his colleagues developed an algorithm which is 
called as JaPaFi in 2010 in order to detect conserved regions of DNA 
molecules including poxvirus promoter elements (Sadeque et al., 2010). 
In addition, Upton and his colleagues developed another algorithm 
which is called as POCs, in order to detect conserved families of pox
viruses genes (Ehlers et al., 2002). However, all these algorithms require 
the existence of sequencing data to detect mutations that have occurred 
and do not make estimation of future possible mutations. Since the 
sequencing is not a routine work in many laboratories, novel mutations 
are often discovered too late and false negative results may be reported 
after PCR applications until the mutation is identified, often requiring 
complete redesign of the primer/probe sets. 

In this scope, the discovery of regions that did not only record less 
observed mutations, but also that are likely to resist potential new 
mutations which are yet to occur, is important, especially in pandemic 
situations. As such, we have developed an algorithm and a process to 
identify regions that are less likely to undergo mutations for viral ge
nomes, in particular, of the SARS-CoV-2. Briefly, a consensus sequence 
was generated using the SARS-CoV-2 genome and calculated a mutability 
score for each nucleotide depending on the impact of the change on the 
coded protein. The exchanging frequency of the nucleotides was 
revealed by the nucleotide substitution model using Mega X. Afterwards, 
using BLAST + and RefSeq databases, the open reading frames and 
coding sequences of consensus sequences have been identified. Using 
aforementioned data and the BLOSUM100 matrix we predicted the 
impact of all amino acid changes. Iterating through different possible 
mutations a mutability score was calculated for the protein-coding se
quences and filtered to yield a low mutable sequence. Using Primer3 
software, primers targeting the conserved regions were detected and the 
efficiency of the algorithm was analyzed statistically by comparing with 
new mutations. The results demonstrated that our developed algorithm 
provides conserved regions with low mutability, eliminating up to 78 % 
of new mutations, in order to guide design appropriate primers to utilize 
in PCR for detection of SARS-CoV-2. 

2. Algorithm 

The algorithm requires multiple sequence alignment of the available 
target genome or gene sequences as an input. In this study all multiple 
sequence alignments were performed by and downloaded from NCBI 
Virus (Virus Variation Resource - improved response to emergent viral 
outbreaks). 

The sequence alignment was used for establishing a nucleotide 
substitution model using MEGA X software and the default parameters 
(Kumar et al., 2018). The substitution model with the lowest BIC score 
was selected to be used for further analysis. For complete COVID-19 
sequences obtained until 14/04/2020, the general time-reversible 
model with a proportion of invariable sites and rate of variation across 
sites (GTR + G+I) showed the lowest BIC score (Miura, 1986; 

Shoemaker and Fitch, 1989; Z. Yang, 1994). 
In parallel, the multiple sequence alignment was used to generate a 

consensus sequence. Simply, any nucleotide where a substitution had 
occurred at least a given minimum percent identity was replaced by “N” 
to generate the consensus sequence. The purpose of creating a consensus 
sequence is to preliminarily eliminate any nucleotide position with an 
already recorded variation. In this study a minimum percent identity 
was chosen as 95 %. This is an arbitrarily chosen threshold and implies 
that any nucleotide would be replaced by “N” only if at least 5 % of the 
given sequences are different at that position. Otherwise, the most 
abundant nucleotide will remain in the consensus sequence. The users 
may alter this threshold depending on the requirements of the situation. 
However, behind the choice of this value lies that similarity between the 
homologous proteins of SARS-CoV-2 and SARS-CoV do not exceed ~96 
% while similarity varied dramatically between 32 % and 90 % for most 
homologous pairs (Cagliani et al., 2020). 

The open reading frames along the consensus sequence were found 
using the tblastn tool of BLAST + software (Camacho et al., 2009) and 
protein-coding sequences from RefSeq database (NC_045512.2). In 
order to take amino acid changes into account the BLOSUM100 matrix is 
chosen since it is a better representative for closely related proteins, and 
we are interested in immediate changes (Henikoff and Henikoff, 1992). 

For each nucleotide inside the open reading frames, its substitution 
may result in a change in amino acid sequence. Such a change can alter 
the structure and activity of the protein, and needs to be tolerated 
structurally and functionally for the virus to survive and proliferate. 
Thus the change in the nucleotide sequences may have varying amounts 
of impact on the protein. As protein substitution matrices, such as 
BLOSUM100, represent the recorded frequency of mutations of known 
proteins that survived evolutionary processes, it also implies how well 
an amino acid substitution may be tolerated. Thus there is a relation 
between the position and type of nucleotide substitutions and tolera
bility of the resulting amino acid changes. This can also be referred to as 
the mutability of the nucleotide. The algorithm assumes any deleterious 
mutations would not be tolerated and survive, thus these mutations are 
ignored. 

To quantify the mutability for each nucleotide of the consensus 
sequence, the frequency of a particular nucleotide substitution was 
multiplied by the corresponding value in the BLOSUM100 matrix that 
matches to the substitution from the wild type amino acid at the codon 
that the nucleotide is found in, into the amino acid resulting due to the 
nucleotide change. The products resulting from different substitutions 
from the same nucleotide were then summed and recorded into an array 
with a size of consensus sequence, the mutability profile. This profile 
contains a mutability score for each nucleotide, given that the nucleotide 
is inside an open reading frame and its codon does not already contain 
an observed mutation. Otherwise, any nucleotides outside the open 
reading frames or inside a codon with a known mutation do not receive a 
mutability score and corresponding position in the mutability profile was 
left empty. This profile represents how tolerable a mutation at such a 
position would be by its corresponding protein (Fig. 1). 

The Eq. (1) given below summarizes the calculation of mutability 
score (MS) at a given position i in the mutability profile. Unless the 
position is conserved (Con) and located inside a protein-coding sequence 
(CDS), the score is Null indicating there is no pressure against protein- 
level mutations. Otherwise, the mutability score is calculated by the 
sum of multiplication of nucleotide sequence frequency (F[n0,n]) be
tween the wild type nucleotide (n0) and a nucleotide from the nucleotide 
list N={A,T,C,G} (n), and amino acid substitution score (S[a0,a’]) be
tween the wild type amino acid coded by the codon corresponding to the 
nucleotide n0 at position i (a0) and the amino acid coded by n (a’) 
whether n equal to n0 or not. F is obtained from optimal the nucleotide 
substitution frequency model and S is an amino acid substitution score 
matrix, such as BLOSUM100. 
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MSi =

{∑

n∈N
F[n0 , n] × S[a0, a’] if i in CDS and Con

Null if i not in CDS and Con
(1) 

Briefly, MSi represents the possibility of mutation at a particular 
position. The rationale behind the equation is that, for each position this 
possibility is contributed by the chance of a mutation to occur in form of 
F[n0,n] and the chance of that mutation to be conserved as a codon S[a0, 
a’]. However, this predicts only evolutionary pressure on the protein, 
not any secondary nucleic acid topologies, thus we would have to ignore 
any mutation outside the CDS. 

Mutations inside codons, especially if located at the end of a codon, 
may be silent and do not impact the resulting protein. However, any 
mutation along a primer binding site may have varying degrees of 
impact on its ability to bind depending on its position. For that reason, 
the PCR primers should be chosen from low mutable regions. This will 
also lower the chance of the primers becoming ineffective due to novel 
mutations. While no region is completely resistant to mutations, low 
mutability regions can be extracted by determining a cut-off threshold. 
By replacing nucleotides above the cut-off with “N”, a new sequence is 
generated containing only less mutable non-N residues. The extracted 
sequence can then be used for primer design as the target sequence using 
different primer-design tools, ie. primer3 (Kõressaar et al., 2018). 

3. Materials and methods 

All sequences were downloaded from NCBI Virus that are released 
prior to April 14th and contain a complete genome. The list of all 
accession numbers are available in the supplementary info. Multiple 
sequence alignments were done by NCBI Virus Align tool and estimation 
of a nucleotide substitution model was performed by Mega X using 
Neighbor-joining method with maximum likelihood as statistical 
method and the substitution type set to nucleotide. The best substitution 
model was selected based on the lowest BIC score. The rest of the 
analysis was performed using Python code written in Python 3.8. All 
codes are available at https://github.com/odoluca/low_mutable_seque 
nce_extraction. For the discovery of open reading frames RefSeq pro
tein sequences were used with an accession number of NC_045512. 

3.1. Stretch analysis 

Stretch analysis simply looks for continuous stretches of non-N res
idues inside the low mutability regions for usable primer binding tar
gets. Since the low mutability regions are determined by both the 
mutability profile and cut-off, we have compared different cut-off 
thresholds to observe the change in the number of continuous non-N 
stretches with lengths between 18 and 24 nt versus cut-off threshold. 

Fig. 1. The flowchart for the primer selection process using BLOSUM100 amino acid substitution matrix.  
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3.2. Primer3 analysis 

Since there is more to primer design than only right length, we 
decided to use low mutability regions in primer picking by Primer3 
software. The change in statistical analysis obtained from online 
primer3 web server versus different cut-off thresholds were recorded. 
Default parameters set by the web server were used. 

3.3. Z score calculation 

To test the success of the predictions, we compared a set of newly 
observed mutations that were not included in the prediction dataset to 
randomly generated mutations. The testing procedure was as follows. 
Aligned sequences were separated into two groups according to a picked 
release date, which will be referred to as the date of prediction. The se
quences released prior to any chosen date of prediction were taken and 
used to generate a mutability profile as described above. The rest of the 
sequences released post-date, were used to obtain consensus sequence 
using a minimum percent identity of 100 % to identify any new muta
tion. The positions of mutations were recorded in a post-date mutation 
profile. Using the post-date mutation profile, 300 random mutation profiles 
were generated by shuffling mutations only between positions where a 
corresponding mutability score exists in the mutability profile. The purpose 
of using mutations with only a corresponding mutability score is to avoid 
a bias due to high mutation count in the sections of the sequence with 
already observed mutations. We also made sure the number of mutations 
post-date mutation profile and random mutation profiles remained equal 
(Fig. 2). 

A mutability score sum was obtained for each random mutation profile 
as well as the post-date mutation profile, by adding mutability scores of 
corresponding mutations in these profiles. A normal distribution was 
obtained using the mean and standard deviations of the mutability score 
sums of random mutation profiles. A z-score and a p-value was obtained 
for the post-date mutation profile with respect to the distribution using z 
test. 

4. Results 

A multiple sequence alignment of all complete nucleotide sequences 
available by 04.14.2020 at NCBI Virus belonging to Severe acute res
piratory syndrome coronavirus 2 (SARS-CoV-2, taxid: 2697049) was 
obtained using NCBI align tool. The multiple sequence alignment was 
then downloaded and used to extract a consensus sequence using custom 
python code and estimate a nucleotide substitution model using MEGA- 
X software as described in the algorithm section. 

The protein RefSeq sequence (NC_045512) was then aligned on the 
consensus sequence using the offline Blast tool to discover the open 
reading frames. Using the nucleotide substitution model, open reading 
frames, and BLOSUM100 amino acid substitution matrix, a mutability 
score was calculated for each nucleotide position and their distribution 
was plotted. (Fig. 3) 

It is important to note that the choice of the amino acid substitution 
matrix has a significant impact on the score. Positive mutabilities indi
cate a higher chance of mutation in the future, while lower scores 
indicate a higher chance of future conservation. The mutability scores are 
calculated only for nucleotides that are conserved and nucleotides inside 
an open reading frame. 

4.1. Stretch analysis 

A cut-off threshold was then selected within the range of the distri
bution. The purpose of the cut-off is to mark nucleotides that are likely to 
mutate in the future with “N” and to have these positions be disregarded 
by the primer design tools. However choosing a low threshold would 
eliminate continuous stretches of conserved sequences required for a 
primer binding site. Then we have analyzed the number of possible 
primer binding sites in comparison to varying cut-off threshold values. 
(Fig. 4) This analysis showed that no continuous stretch of low mutable 
nucleotides would be available below the cut-off of 0.6. The number of 
such putative primer targets rise with increasing cut-off. It is important 
to make the choice of the cut-off to be done in the light of the distri
bution or such stretch analysis. 

Similarly, the use of primer3 tool with low mutable sequences 

Fig. 2. Evaluation flowchart for evaluation of the algorithm.  

S.H. Portakal et al.                                                                                                                                                                                                                             



Journal of Virological Methods 293 (2021) 114146

5

obtained with varying cut-off thresholds resulted in putative primers in 
numbers that are correlated with stretch analysis. A cut-off threshold of 
at least 0.6 was required to obtain any putative primer binding site, 
eliminating the top 30.7 % of the mutable nucleotides. In addition the 
primer3 tool managed to pick a potential primer pair with a cut-off 
threshold as low as 0.9, indicating the applicability of the algorithm 
eliminating the top 22 % of mutable nucleotides. (Fig. 5) 

4.2. Z score calculation 

To test the success of the algorithm we decided to use it for a set of 
sequences made available by a previous date, also referred as the date of 
prediction. Conserved sequences and then the mutability profiles were 
determined for different dates of prediction. Comparing it to the se
quences made available after those dates, post-date observed mutations 
were determined. For all post-date mutations, the sum and the mean of 
mutability scores of corresponding mutation sites were calculated. 

Similarly mutability score sums were also calculated for randomly 
generated 300 consensus sequences with random mutations. A Z-score 
and a p-value were calculated using the mutability score sum obtained by 
the post-date observed mutations and the distribution of the sum of the 
mutability scores of the mutation sites of the randomly generated se
quences. It was assured that the number of random mutations were 
equal to post-date observed mutations. A Z-score above 3 indicates a 
mutability score sum above 99.7 % of the randomly generated mutations 
and any predicted mutability profile with a mutability score sum above 3 
indicates statistically significant difference. (Figure S2) 

Accordingly, starting from the sequences obtained at the first days of 
the pandemic, reliable mutability profiles were obtained. The gradual 
decrease through April is a result of a low number of samples after the 
date of prediction since the increasing p-value indicates a decreased 
significance of the Z-score as well. However, undeniably, the emergence 
of new epidemic centers also increases the variation in the Covid-19 
genome, and subsequently, results in a lower prediction power. The 

Fig. 3. Distribution of mutability scores calculated from COVID-19 sequences, using GTR + G+I and BLOSUM100 matrix.  

Fig. 4. Number of putative primer binding regions with varying sizes containing only non-N residues (solid grayscale lines) with varying cut-off threshold values.  
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analysis with newly generated sequence data should improve the pre
dictability (Fig. 6). 

A more tangible evaluation of the algorithms may be considered 
using the low mutable sequence. The number of new mutations that 
were predicted and the number of missed mutations were considered for 
a specific cut-off. When a cut-off score of 1.0 was used, throughout the 
pandemic, consistently around 60 % of new mutations were predicted 
and filtered out by the algorithm. More importantly, the prediction 
power rose to 78 % by the end of the tested period, indicating that more 
recent mutations are more likely to be predicted. (Fig. 7) 

Another test is also performed using a random number generator 
instead of BLOSUM100 matrix. The p-values showed no significant 
difference from the random mutability score sums. (Figure S1) The fact 
that a random matrix does not yield a statistically significant result, 
indicates that the substitution matrix in an important element of this 
algorithm. However, when it comes to choice of substitution matrix, one 
might argue that different viruses DNA or RNA may have different 
evolutionary speeds and the choice of matrix may have significant 
impact. In order to demonstrate this, we have repeated the Z-score 
calculations using various PAM and BLOSUM matrices. Despite the fact 
that a random matrix does not yield any significant difference, any of the 
PAM or BLOSUM matrices labels statistically significant number of 

putative mutations (Figure S3). This indicates that different viruses with 
different molecular clocks may be applied without overworking on the 
choice of a substitution matrix. 

To demonstrate how to evaluate already designed primers and 
probes we have chosen the primer probe pairs made available by the 
Central for Disease Control (CDC) for research purposes. (Table S1) 
These include four primers and two probes (excluding the chemically 
modified versions of the two probes). Then we have calculated the 
average mutability score for each primer or probe by finding the mean of 
the mutability scores of the nucleotides that these oligonucleotides are 
designed to bind on the viral genome. To compare, we have also 
calculated the average mutability score of all putative primers of same 
length that could bind to the viral genome. Any putative primer that 
contains a nucleotide position that does not have a mutability score due 
to absence of coding sequence or known mutations are discarded. It 
should be noted that these scores are obtained by averaging small sets of 
mutability scores of nucleotides found in Fig. 3. The average mutability 
scores for putative primers remained around 0.133 for BLOSUM100. 
When compared, it was apparent that N1-For and N2-Probe have an 
average mutability score above the average of the putative primers 
indicating that these sequences are relatively more prone to mutations, 
and there is space for improvement. It was encouraging that the rest 

Fig. 5. The number of putative forward (light gray), reverse (gray) primers and primer pairs discovered by primer3 tool for low mutable sequences obtained using 
different cut-off thresholds. 

Fig. 6. The Z-scores (solid line) and associated p-values 
(dashed line) of the sum of mutability scores of post-date mu
tations with respect to random mutations. The Z-scores indicate 
the prediction power, as the degree of the difference of the 
mutability score sum of post-date mutations, from a random 
pool of mutability score sums obtained from randomized mu
tations. The asterisk indicates when the sum of mutability 
scores of mutations observed after the corresponding date of 
prediction is significantly different from sequences with ran
domized mutations with a p-value below 0.01.   
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were above or equal in mutability to the average. Especially N1-Probe 
showed an average mutability score of 0.040 indicating a better 
design. However, it should be noted that there is more to primer design 
than only immutability, such as avoiding primer-dimer formation, op
timum GC content, specificity etc. 

5. Discussion 

Especially considering emerging pandemic situations, the ability to 
have high prediction power starting from the beginning of pandemic is 
extremely important to be able to avoid false positives due to unforeseen 
mutations. Here we introduce a process for the extraction of a low 
mutable sequence to be used in the design primer and probes for PCR 
applications. Our algorithm shines especially with its ability to filter out 
mutations that are yet to be observed even at early stages of the 
pandemic. When observed forthcoming mutations are compared to 
randomized mutations the mutability profiles showed significantly 

higher values throughout the tested period. (Fig. 6) Accordingly, the 
process showed that low mutable sequences obtained even at early 
stages of a pandemic may be adequate to avoid approximately 60 % of 
new mutations to be observed in the upcoming period. (Fig. 7B) 

It should be noted that this rate can be improved even more by using 
a lower cut-off threshold (ie. 0.8), however also decreasing the number 
of putative primer binding sites as well. The primer3 and stretch analysis 
showed that possible continuous non-N residues required for designing 
primers may be obtained with cut-off thresholds (as low as 0.6) while 
eliminating the nucleotides with the highest mutability scores (up to 
30.7 %). (Figs. 4 and 5) 

We hope that the algorithm introduced here, will not only help 
design improved primers and probes for SARS-CoV-2 but also prepare 
diagnostic kit manufacturers for future epidemics. Especially consid
ering the lack of sequencing data at the early stages of an epidemic, the 
detection primers may often be required to be modified due to novel 
mutations. Our algorithm may decrease the frequency of such 

Fig. 7. The number of sequences before and after any prediction date (A, dark and light dashed lines), the number of all and unpredicted mutations in the post-date 
sequences when a cut-off of 1.0 was used (B, dark and light solid lines) and the percentage of predicted mutations versus all new mutations (B, dotted line). 
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modifications as shown. Additionally, in the case of the already avail
able primers the algorithm also provides a method for mutation varia
tion analysis as part of the risk assessment for the manufactured kits. 
However, there is potential for further improvement. It might be 
possible to improve the output using alternative amino acid substitution 
matrices. Another possible route may be using algorithms that predict 
impact of mutations, such as I-Mutant, (Capriotti et al., 2005) instead of 
an amino acid substitution matrix. 
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Glossary 

GTR+G+I: a commonly used nucleotide substitution model that represents frequencies of 
mutations. 

non-N residue: nucleotides whose base is determined and conserved so that there is no 
ambiguity. 

Nucleotide substitution model: Substitution model describes the frequency of transitions in 
which a sequence of symbols changes into another set of traits or symbols. 

Mega X: The Molecular Evolutionary Genetics Analysis (MEGA) software may be a 
computing platform implementing many analytical methods and tools for phyloge
nomics and phylomedicine. 

BLOSUM100: In bioinformatics, the BLOSUM (BLOcks SUbstitution Matrix) matrix may be 
a substitution matrix used for sequence alignment of proteins. BLOSUM matrices are 
accustomed score alignments between evolutionarily divergent protein sequences. 

Primer3: It is a web tool that suggests primer and probes for a variety of PCR applications. 
BIC score: Bayesian information criterion (BIC) may be a criterion for model selection 

among a finite set of models. BIC has been widely used for model identification in 
statistics and regression toward the mean. 

tblastn tool: tblastn is an element of the new blast+ package from the NCBI. tblastn com
pares a protein query sequence against a nucleotide sequence database dynamically 
translated altogether six reading frames 
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