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a b s t r a c t

This paper aims to introduce Halanay type inequalities on time scales. By means of these
inequalities we derive new global stability conditions for nonlinear dynamic equations on
time scales. Giving several examples we show that besides generalization and extension to
q-difference case, our results also provide improvements for the existing theory regarding
differential and difference inequalities, which are the most important particular cases of
dynamic inequalities on time scales.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Stability analysis of dynamical systems using differential and difference inequalities attracted a prominent attention in
the existing literature (see [1–12] and references therein). For stability analysis of the delay differential equation

x′(t) = −px(t)+ qx(t − τ), τ > 0,

Halanay proved the following result.

Lemma 1 (Halanay [2]). If

f ′(t) ≤ −αf (t)+ β sup
s∈[t−τ ,t]

f (s) for t ≥ t0

and α > β > 0, then there exist γ > 0 and K > 0 such that

f (t) ≤ Ke−γ (t−t0) for t ≥ t0.

In 2000, Mohamad and Gopalsamy gave the next theorem:
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Theorem 1 ([12]). Let x be a nonnegative function satisfying

x′(t) ≤ −a(t)x(t)+ b(t)


sup
s∈[t−τ(t),t]

x(s)

, t ≥ t0

x(s) = |ϕ(s)| for s ∈

t0 − τ ∗, t0


,

where τ(t) denotes a nonnegative continuous and bounded function defined for t ∈ R and τ ∗
= supt∈R τ(t); ϕ(s) is continuous

and defined on [t0 − τ ∗, t0]; a(t) and b(t), t ∈ R, denote nonnegative, continuous and bounded functions. Suppose

a(t)− b(t) ≥ L, t ∈ R,

where L = inft∈R (a(t)− b(t)) > 0. Then there exists a positive number λ such that

x(t) ≤


sup

s∈[t0−τ∗,t0]
x(s)


e−λ(t−t0) for t > t0.

Afterwards, numerous variants of Halanay’s inequality have been treated in the literature. Stability analysis of differential
equations using Halanay type inequalities has been studied in [2,4,5]. For stability analysis of difference equations using
Halanay inequality one may consult with [6–9]. A comprehensive review on the recent developments in discrete and
continuous Halanay type inequalities can be found in [10,11]. A time scale is an arbitrary nonempty closed subset of reals.
Stability analysis of dynamics equations on time scales using Lyapunov functionals has been studied in [13–20]. To the best
of our knowledge, Halanay type inequalities on time scales and stability analysis using them have not been investigated
elsewhere before this study. One of the aims of this paper is to fill this gap and show how Halanay inequalities on time
scales can be used for the stability analysis of dynamic equations.

In this paper, we employ the shift operators δ± to construct delay dynamic inequalities on time scales. Using these
dynamic inequalities we derive Halanay type inequalities for dynamic equations on time scales. By means of Halanay
inequalities and the properties of exponential function on time scales (see Lemma 3) we propose new conditions that lead
to stability for nonlinear dynamic equations on time scales. Main contribution of this paper can be outlined as follows:
• Construction of Halanay type inequalities on time scales,
• Investigation of global stability of delay dynamic equations on time scales using Halanay inequality,
• Improvement of the existing results for differential and difference equations which are the most important particular

cases of our problem (we highlight this improvement by Remarks 2–4).

In [21], Halanay inequalities are used to derive sufficient conditions for the existence of periodic solutions of delayed
cellular neural networks with impulsive effects. Motivated by the study [21], we note that the results obtained in this paper
can also be employed in another research regarding the derivation of sufficient conditions for the existence of (uniformly
asymptotically stable) periodic solutions of some nonlinear scalar systems on time scales.

We organize the paper as follows: First and second sections are devoted to preliminary results of theory of time scales
and shift operators on time scales, respectively. In the third section, we use the shift operators on time scales to construct
delay functions and a general form of delay dynamic equations, and obtain some dynamic inequalities.We finalize our study
by providing sufficient conditions for stability of nonlinear dynamic equations on time scales.

Hereafter, we give some basic results that will be used in our further analysis.
To indicate a time scale (a nonempty closed subset of reals) we use the notation T. We classify the points of a time scale

T by using the forward jump and backward jump operators defined by

σ(t) := inf {s ∈ T : s > t} (1.1)

and

ρ(t) := sup {s ∈ T : s < t} ,

respectively. A point t in T is said to be right-scattered (right-dense) if σ(t) > t (σ (t) = t). We say t ∈ T is left-scattered
(left-dense) if ρ(t) < t (ρ(t) = t). If ρ(t) < t < σ(t), then t ∈ T is called isolated point. The set Tκ is derived from the
time scale T as follows: If T has a left-scattered maximum m, then Tκ = T − {m}. Otherwise Tκ = T. The delta derivative
of a function f : T → R, defined at a point t ∈ Tκ by

f ∆(t) := lim
s→t

s≠σ(t)

f (σ (t))− f (s)
σ (t)− s

, (1.2)

was first introduced by Hilger [22] to unify discrete and continuous analyses. It follows from the definition of the operator
σ that

σ(t) =


t if T = R
t + 1 if T = Z
qt if T = qZ

t + h if T = hZ,

(1.3)
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where qZ = {qk : k ∈ Z and q > 1} ∪ {0} and hZ = {hn : n ∈ Z and h > 0}. Hence, the delta derivative f ∆(t) turns into
ordinary derivative f ′(t) if T = R and it becomes the forward h-difference operator∆hf (t) :=

1
h [f (t + h)− f (t)] whenever

T = hZ (i.e. f ∆(t) = f (t + 1)− f (t) = 1f (t) if h = 1). For the time scale T = qZ we have f ∆(t) = Dqf (t), where

Dqf (t) =
f (qt)− f (t)
(q − 1)t

. (1.4)

It follows from (1.2) and (1.3) that dynamic equations on time scales turn into difference equations when the time scale
is chosen as the set of integers, and they become differential equations when the time scale coincides with the set of reals.
Moreover, q-difference, h-difference equations, used in the discretization of differential equations, are all particular cases
of dynamic equations on time scales. Since there are many time scales other than the sets of reals and integers, analysis on
time scales provides a more general theory which enables us to see similarities and differences between the analyses on
discrete and continuous time domains.

Throughout the paper, we denote by [a, b]T the closed time scale interval [a, b] ∩ T. The other time scale intervals
[a, b)T, (a, b]T, and (a, b)T are defined similarly. A function f : T → R is called rd-continuous if it is continuous at right
dense points and its left sided limits exists (finite) at left dense points. The set of rd-continuous functions f : T → R
is denoted by Crd = Crd(T). It is known by [23, Theorem 1.60] that the forward jump operator defined by (1.1) is an rd-
continuous. By [23, Theorem 1.65] it is concluded that every rd-continuous function is bounded on a compact interval. Note
that continuity implies rd-continuity. Every rd-continuous function f : T → R has an anti-derivative

F(t) =

∫ t

t0
f (t)1t.

That is, F∆(t) = f (t) for all t ∈ Tκ (see [24, Theorem1.74]). For an excellent review on∆-derivative and∆-Riemann integral
we refer the reader to [23].

Hereafter, we give some basic definitions and theorems that will be used in further sections.

Definition 1. A function h : T → R is said to be regressive provided 1 + µ(t)h(t) ≠ 0 for all t ∈ Tκ , where
µ(t) = σ(t) − t . The set of all regressive rd-continuous functions ϕ : T → R is denoted by R while the set R+ is
given by R+

= {h ∈ R : 1 + µ(t)ϕ(t) > 0 for all t ∈ T}.

Let ϕ ∈ R. The exponential function on T is defined by

eϕ(t, s) = exp
∫ t

s
ζµ(r)(ϕ(r))1r


(1.5)

where ζµ(s) is the cylinder transformation given by

ζµ(r)(ϕ(r)) :=


1
µ(r)

Log(1 + µ(r)ϕ(r)) if µ(r) > 0

ϕ(r) if µ(r) = 0.
(1.6)

It is well known that (see [25, Theorem 14]) if p ∈ R+, then ep(t, s) > 0 for all t ∈ T. Also, the exponential function
y(t) = ep(t, s) is the solution to the initial value problem y∆ = p(t)y, y(s) = 1. Other properties of the exponential
function are given in the following results:

Lemma 2 ([23, Theorem 2.36]). Let p, q ∈ R. Then
i. e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
ii. ep(σ (t), s) = (1 + µ(t)p(t))ep(t, s);
iii. 1

ep(t,s)
= e⊖p(t, s) where ⊖p(t) = −

p(t)
1+µ(t)p(t) ;

iv. ep(t, s) =
1

ep(s,t)
= e⊖p(s, t);

v. ep(t, s)ep(s, r) = ep(t, r);

vi.


1
ep(·,s)

∆
= −

p(t)
eσp (·,s)

.

Lemma 3 ([26]). For a nonnegative ϕ with −ϕ ∈ R+, we have the inequalities

1 −

∫ t

s
ϕ(u) ≤ e−ϕ(t, s) ≤ exp


−

∫ t

s
ϕ(u)


for all t ≥ s.

If ϕ is rd-continuous and nonnegative, then

1 +

∫ t

s
ϕ(u) ≤ eϕ(t, s) ≤ exp

∫ t

s
ϕ(u)


for all t ≥ s.
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Remark 1 ([27, Remark 2.12]). If λ ∈ R+ and λ(r) < 0 for all t ∈ [s, t)T, then

0 < eλ(t, s) ≤ exp
∫ t

s
λ(r)1r


< 1.

2. Shift operators and delay functions

2.1. Shift operators

First, we give a generalized version of shift operators (see [16,28]). A limited version of shift operators can be found
in [29].

Definition 2 (Shift Operators [16]). Let T∗ be a non-empty subset of the time scale T including a fixed number t0 ∈ T∗ such
that there exist operators δ± : [t0,∞)T × T∗

→ T∗ satisfying the following properties:

P.1 The functions δ± are strictly increasing with respect to their second arguments, i.e., if

(T0, t), (T0, u) ∈ D± :=

(s, t) ∈ [t0,∞)T × T∗

: δ±(s, t) ∈ T∗

,

then

T0 ≤ t < u implies δ±(T0, t) < δ±(T0, u),

P.2 If (T1, u), (T2, u) ∈ D− with T1 < T2, then

δ−(T1, u) > δ−(T2, u),

and if (T1, u), (T2, u) ∈ D+ with T1 < T2, then

δ+(T1, u) < δ+(T2, u),

P.3 If t ∈ [t0,∞)T, then (t, t0) ∈ D+ and δ+(t, t0) = t . Moreover, if t ∈ T∗, then (t0, t) ∈ D+ and δ+(t0, t) = t holds,
P.4 If (s, t) ∈ D±, then (s, δ±(s, t)) ∈ D∓ and δ∓(s, δ±(s, t)) = t ,
P.5 If (s, t) ∈ D± and (u, δ±(s, t)) ∈ D∓, then (s, δ∓(u, t)) ∈ D± and

δ∓(u, δ±(s, t)) = δ±(s, δ∓(u, t)).

Then the operators δ− and δ+ associated with t0 ∈ T∗ (called the initial point) are said to be backward and forward shift
operators on the set T∗, respectively. The variable s ∈ [t0,∞)T in δ±(s, t) is called the shift size. The values δ+(s, t) and
δ−(s, t) in T∗ indicate s units translation of the term t ∈ T∗ to the right and left, respectively. The sets D± are the domains
of the shift operators δ±, respectively.

Example 1 ([16]). Let T = R and t0 = 1. The operators

δ−(s, t) =


t/s if t ≥ 0
st if t < 0, for s ∈ [1,∞) (2.1)

and

δ+(s, t) =


st if t ≥ 0
t/s if t < 0, for s ∈ [1,∞) (2.2)

are backward and forward shift operators (on the set T∗
= R − {0}) associated with the initial point t0 = 1. In the table

below, we state different time scales with their corresponding shift operators.

T t0 T∗ δ−(s, t) δ+(s, t)
R 0 R t − s t + s
Z 0 Z t − s t + s
qZ

∪ {0} 1 qZ t
s st

N1/2 0 N1/2
√
t2 − s2

√
t2 + s2

The proof of the next lemma is a direct consequence of Definition 2.

Lemma 4 ([16]). Let δ− and δ+ be the shift operators associated with the initial point t0. We have

i. δ−(t, t) = t0 for all t ∈ [t0,∞)T,
ii. δ−(t0, t) = t for all t ∈ T∗,
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iii. If (s, t) ∈ D+, then δ+(s, t) = u implies δ−(s, u) = t. Conversely, if (s, u) ∈ D−, then δ−(s, u) = t implies δ+(s, t) = u.
iv. δ+(t, δ−(s, t0)) = δ−(s, t) for all (s, t) ∈ D(δ+) with t ≥ t0,
v. δ+(u, t) = δ+(t, u) for all (u, t) ∈ ([t0,∞)T × [t0,∞)T) ∩ D+,
vi. δ+(s, t) ∈ [t0,∞)T for all (s, t) ∈ D+ with t ≥ t0,
vii. δ−(s, t) ∈ [t0,∞)T for all (s, t) ∈ ([t0,∞)T × [s,∞)T) ∩ D−,
viii. If δ+(s, .) is∆-differentiable in its second variable, then δ∆t

+ (s, .) > 0,
ix. δ+(δ−(u, s), δ−(s, v)) = δ−(u, v) for all (s, v) ∈ ([t0,∞)T × [s,∞)T) ∩ D− and (u, s) ∈ ([t0,∞)T × [u,∞)T) ∩ D−,
x. If (s, t) ∈ D− and δ−(s, t) = t0, then s = t.

2.2. Delay functions generated by shift operators

Next,we define the delay function bymeans of shift operators on time scales. Delay functions generated by shift operators
were first introduced in [16] to construct delay equations on time scales.

Definition 3 (Delay Functions [16]). LetT be a time scale that is unbounded above andT∗ an unbounded subset ofT including
a fixed number t0 ∈ T∗ such that there exist shift operators δ± : [t0,∞)T × T∗

→ T∗ associated with t0. Suppose that
h ∈ (t0,∞)T is a constant such that (h, t) ∈ D± for all t ∈ [t0,∞)T, the function δ−(h, t) is differentiable with an rd-
continuous derivative δ∆t

− (h, t), and δ−(h, t) maps [t0,∞)T onto [δ−(h, t0),∞)T. Then the function δ−(h, t) is called the
delay function generated by the shift δ− on the time scale T.

It is obvious from P.2 in Definition 3 and (ii) of Lemma 4 that
δ−(h, t) < δ−(t0, t) = t for all t ∈ [t0,∞)T. (2.3)

Notice that δ−(h, .) is strictly increasing and it is invertible. Hence, by P. 4–5
δ−1
−
(h, t) = δ+(h, t).

Hereafter, we shall suppose that T is a time scale with the delay function δ−(h, .) : [t0,∞)T → [δ−(h, t0),∞)T, where
t0 ∈ T is fixed. Denote by T1 and T2 the sets

T1 = [t0,∞)T and T2 = δ−(h,T1). (2.4)
Evidently, T1 is closed in R. By definition we have T2 = [δ−(h, t0),∞)T. Hence, T1 and T2 are both time scales. Let σ1 and
σ2 denote the forward jumps on the time scales T1 and T2, respectively. By ((2.3)–(2.4))

T1 ⊂ T2 ⊂ T.
Thus,

σ(t) = σ2(t) for all t ∈ T2

and
σ(t) = σ1(t) = σ2(t) for all t ∈ T1.

That is, σ1 and σ2 are the restrictions of forward jump operator σ : T → T to the time scales T1 and T2, respectively, i.e.,
σ1 = σ |T1 and σ2 = σ |T2 .

Lemma 5 ([16]). The delay function δ−(h, t) preserves the structure of the points in T1. That is,

σ1(t) =t implies σ2(δ−(h,t)) = δ−(h,t)
σ1(t) >t implies σ2(δ−(h,t)) > δ−(h,t).

Using the preceding lemma and applying the fact that σ2(u) = σ(u) for all u ∈ T2 we arrive at the following result.

Corollary 1 ([16]). We have

δ−(h, σ1(t)) = σ2(δ−(h, t)) for all t ∈ T1.

Thus,

δ−(h, σ (t)) = σ(δ−(h, t)) for all t ∈ T1. (2.5)

By (2.5) we have
δ−(h, σ (s)) = σ(δ−(h, s)) for all s ∈ [t0,∞)T.

Substituting s = δ+(h, t)we obtain
δ−(h, σ (δ+(h, t))) = σ(δ−(h, δ+(h, t))) = σ(t).

This and (iv) of Lemma 4 imply
σ(δ+(h, t)) = δ+(h, σ (t)) for all t ∈ [δ−(h, t0),∞)T.
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Example 2. In the following, we give some time scales with their shift operators:

T h δ−(h, t) δ+(h, t)
R ∈ R+ t − h t + h
Z ∈ Z+ t − h t + h
qZ

∪ {0} ∈ qZ+ t
h ht

N1/2
∈ Z+

√
t2 − h2

√
t2 + h2

Example 3. There is no delay function δ−(h, .) : [0,∞)T → [δ−(h, 0),∞)T on the time scaleT = (−∞, 0] ∪ [1,∞).
Suppose contrary that there exists a such delay function on T. Then since 0 is right scattered in T1 := [0,∞)T the

point δ−(h, 0) must be right scattered inT2 = [δ−(h, 0),∞)T, i.e., σ2(δ−(h, 0)) > δ−(h, 0). Since σ2(t) = σ(t) for all
t ∈ [δ−(h, 0), 0)T, we have

σ(δ−(h, 0)) = σ2(δ−(h, 0)) > δ−(h, 0).

That is, δ−(h, 0)must be right scattered inT. However, inT we have δ−(h, 0) < 0, that is, δ−(h, 0) is right dense. This leads
to a contradiction.

3. Halanay type inequalities on time scales

Let T be a time scale that is unbounded above and t0 ∈ T∗ an element such that there exist the shift operators
δ± : [t0,∞)× T∗

→ T∗ associated with t0. Suppose that h1, h2, . . . , hr ∈ (t0,∞)T are the constants with

t0 = h0 < h1 < h2 < · · · < hr

and that there exist delay functions δ−(hi, t), i = 1, 2, . . . , r , on T.
We define lower∆-derivative ϕ∆−(t) of a function ϕ : T → R on time scales as follows:

ϕ∆−(t) = lim inf
s→t−

ϕ(s)− ϕ(σ(t))
s − σ(t)

. (3.1)

Notice that

ϕ∆−(t) = ϕ∆(t)

provided that ϕ is∆-differentiable at t ∈ Tκ .
Let f (t, u, v) be a continuous function for all (u, v) and t ∈ [t0, α)T. Hereafter, we suppose that f is monotone increasing

with respect to v and non-decreasing with respect to u.

Proposition 1. Let g(u1, u2, . . . , ur) be a continuous function that is monotone increasing with respect to each of its arguments.
If ϕ and ψ are continuous functions satisfying

ϕ∆−(t) < f (t, ϕ(t), g (ϕ(δ−(h1, t)), ϕ(δ−(h2, t)), . . . , ϕ(δ−(hr , t)))) ,
ψ∆−(t) ≥ f (t, ψ(t), g (ψ(δ−(h1, t)), ψ(δ−(h2, t)), . . . , ψ(δ−(hr , t)))) ,

for all t ∈ [t0, α)T and ϕ(s) < ψ(s) for all s ∈ [δ−(hr , t0), t0]T, then

ϕ(t) < ψ(t) for all t ∈ (t0, α)T, (3.2)

where α ∈ (t0,∞)T.

Proof. Suppose that (3.2) does not hold for some t ∈ (t0, α)T. Then the set

M := {t ∈ (t0, α)T : ϕ(t) ≥ ψ(t)}

is non-empty. Since M is bounded below we can let ξ := infM . If ξ is left scattered (i.e. σ(ρ(ξ)) = ξ ), then it follows from
the definition of ξ that

ϕ(ρ(ξ)) < ψ(ρ(ξ)),

ϕ(ξ) ≥ ψ(ξ).
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Since ρ(ξ) is right scattered, the functionϕ is∆-differentiable atρ(ξ) (see [23, Theorem1.16, (ii)]), and hence,ϕ∆−(ρ(ξ)) =

ϕ∆(ρ(ξ)). Similarly we obtain ψ∆−(ρ(ξ)) = ψ∆(ρ(ξ)). Thus,

ϕ(ξ) = ϕ(σ(ρ(ξ)))

= ϕ(ρ(ξ))+ µ(ρ(ξ))ϕ∆(ρ(ξ))

= ϕ(ρ(ξ))+ µ(ρ(ξ))ϕ∆−(ρ(ξ))

< ϕ(ρ(ξ))+ µ(ρ(ξ))f (ρ(ξ), ϕ(ρ(ξ)), g (ϕ(δ−(h1, ρ(ξ))), ϕ(δ−(h2, ρ(ξ))), . . . , ϕ(δ−(hr , ρ(ξ)))))

< ψ(ρ(ξ))+ µ(ρ(ξ))f (ρ(ξ), ψ(ρ(ξ)), g (ψ(δ−(h1, ρ(ξ))), ψ(δ−(h2, ρ(ξ))), . . . , ψ(δ−(hr , ρ(ξ)))))

≤ ψ(ρ(ξ))+ µ(ρ(ξ))ψ∆−(ρ(ξ))

= ψ(ρ(ξ))+ µ(ρ(ξ))ψ∆(ρ(ξ))

= ψ(σ(ρ(ξ)))

= ψ(ξ).

This leads to a contradiction. If ξ is left dense, then we have ξ > t0 and

ϕ(ξ) = ψ(ξ).

Since

δ−(hr , ξ) < ξ for all i = 1, 2, . . . , r

and

ϕ(s) < ψ(s) for all s ∈ [δ−(hr , ξ), ξ)T,

we obtain

g(ϕ(δ−(h1, ξ)), . . . , ϕ(δ−(hr , ξ))) ≤ g(ψ(δ−(h1, ξ)), . . . , ψ(δ−(hr , ξ))),

and therefore,

ϕ∆−(ξ) < f (ξ , ϕ(ξ), g (ϕ(δ−(h1, ξ)), ϕ(δ−(h2, ξ)), . . . , ϕ(δ−(hr , ξ))))

≤ f (ξ , ψ(ξ), g (ψ(δ−(h1, ξ)), ψ(δ−(h2, ξ)), . . . , ψ(δ−(hr , ξ))))

≤ ψ∆−(ξ).

On the other hand, since
ϕ(s)− ϕ(σ(ξ))

s − σ(ξ)
≥
ψ(s)− ψ(σ(ξ))

s − σ(ξ)

for all s ∈ [δ−(hr , ξ), ξ)T we get by (3.1) that

ϕ∆−(ξ) ≥ ψ∆−(ξ).

This also leads to a contradiction and so this completes the proof. �

Proposition 2. If

ω∆(t) ≤ f (t, ω(t), g (ω(δ−(h1, t)), ω(δ−(h2, t)), . . . , ω(δ−(hr , t))))

for t ∈ [s0, δ+(α, s0))T and y(t; s0, ω) is a solution of the equation

y∆(t) = f (t, y(t), g (y(δ−(h1, t)), y(δ−(h2, t)), . . . , y(δ−(hr , t)))) ,

which coincides with ω in [δ−(hr , s0), s0]T, then, supposing that this solution is defined in [s0, δ+(α, s0))T, it follows that
ω(t) ≤ y(t; s0, ω) for t ∈ [s0, δ+(α, s0))T.

Proof. Let εn be a sequence of positive numbers tending monotonically to zero, and yn be a solution of the equation

y∆(t) = f (t, y(t), g (y(δ−(h1, t)), y(δ−(h2, t)), . . . , y(δ−(hr , t))))+ εn,

which in [δ−(hr , s0), s0]T coincides with ω + εn. On the basis of the preceding proposition, we have

yn+1(t) < yn(t)

and

lim
n→∞

yn(t) = y(t; s0, ω)

for all t ∈ [s0, δ+(α, s0))T. On the basis of Proposition 1 we have ω(t) < yn(t) for t ∈ [s0, δ+(α, s0))T, and hence,
ω(t) ≤ y(t; s0, ω). The proof is complete. �
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Hereafter, we will denote byµ the function defined byµ(t) := sup
s∈[δ−(hr ,t0),t]T

µ(s) (3.3)

for t ∈ [t0,∞)T. It is obvious that the sets R,Z, qZ = {qn : n ∈ Z and q > 1} ∪ {0}, hZ = {hn : n ∈ Z and h > 0} are the
examples of time scales on whichµ = µ.

Theorem 2. Let x be a function satisfying the inequality

x∆(t) ≤ −p(t)x(t)+

r−
i=0

qi(t)xℓ(δ−(hi, t)), t ∈ [t0,∞)T, (3.4)

where ℓ ∈ (0, 1] is a constant, p and qi, i = 0, 1, . . . , r, are continuous and bounded functions satisfying 1 − µ(t)p(t) ≥ 0;
qi(t) ≥ 0, i = 0, 1, . . . , r − 1; qr(t) > 0 for all t ∈ [t0,∞)T. Suppose that

p(t)−

r−
i=0

qi(t) > 0 for all t ∈ [t0,∞)T. (3.5)

Then there exist a positively regressive function λ : [t0,∞)T → (−∞, 0) and K0 > 1 such that

x(t) ≤ K0eλ(t, t0) for t ∈ [t0,∞)T. (3.6)

Proof. Consider the delay dynamic equation

y∆(t) = −p(t)y(t)+

r−
i=0

qi(t)yℓ(δ−(hi, t)), t ∈ [t0,∞)T. (3.7)

We look for a solution of Eq. (3.7) in the form eλ(t, t0), whereλ : T → (−∞, 0) is positively regressive (i.e. 1+µ(t)λ(t) > 0)
and rd-continuous. First note that

e∆λ (t, t0) = λ(t)eλ(t, t0).

For a given K > 1, the function Keλ(t, t0) is a solution of (3.7) if and only if λ is a root of the characteristic polynomial P(t, λ)
defined by

P(t, λ) := (λ+ p(t)) eλ(t, δ−(hr , t))e1−ℓλ (δ−(hr , t), t0)− K ℓ−1
r−

i=0

qi(t)eℓλ(δ−(hi, t), δ−(hr , t)). (3.8)

For each fixed t ∈ [t0,∞)T define the set

S(t) := {k ∈ (−∞, 0) : 1 +µ(t)k > 0} . (3.9)

It follows from Lemma 3 that if k is a scalar in S(t), then 0 < 1 +µ(t)k ≤ 1 + µ(u)k for all u ∈ [δ−(hr , t0), t]T and

0 < ek(τ , s) ≤ exp(k(τ − s)), (3.10)

for all τ ∈ [δ−(hr , t0), t]T with τ ≥ s. It is obvious from (1.5) and (1.6) that for each fixed t ∈ [t0,∞)T the function P(t, k)
is continuous with respect to k in S(t). Since e0(t, t0) = 1 we have

P(t, 0) = p(t)− K ℓ−1
r−

i=0

qi(t) > 0. (3.11)

Let t ∈ [t0,∞)T be fixed. If the interval [δ−(hr , t0), t]T has no any right scattered points, then µ(t) = 0 and S(t) =

(−∞, 0). By (3.10), we get

lim
k→−∞

ek(t, s) = 0,

and hence,

lim
k→−∞

P(t, k) = −K ℓ−1qr(t) < 0.

If the interval [δ−(hr , t0), t]T has some right scattered points (i.e. if µ(t) > 0), then we have S(t) =


−

1µ(t) , 0

. For all
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k ∈


−

1µ(t) , 0

we have ek(t, s) > 0. Since 1 −µ(t)p(t) ≥ 0 for all t ∈ [t0,∞)T, we obtain

lim
k→−

1µ(t)+
P(t, k) =


−

1µ(t) + p(t)


lim
k→−

1µ(t)+

ek(t, δ−(hr , t))e1−ℓk (δ−(hr , t), t0)


− K ℓ−1

r−1−
i=0

qi(t) lim
k→−

1µ(t)+
eℓk(δ−(hi, t), δ−(hr , t))− K ℓ−1qr(t)

< −K ℓ−1qr(t) < 0.

Therefore, for each fixed t ∈ [t0,∞)T, we obtain

0 > −K ℓ−1qr(t) ≥


lim

k→−
1µ(t)+

P(t, k) ifµ(t) > 0

lim
k→−∞

P(t, k) ifµ(t) = 0.
(3.12)

It follows from the continuity of P in k and ((3.11)–(3.12)) that for each fixed t ∈ [t0,∞)T, there exists a largest element k0
of the set S(t) such that

P(t, k0) = 0.

Using all these largest elements we can construct a positively regressive function λ : [δ−(hr , t0),∞)T → (−∞, 0) by

λ(t) := max {k ∈ S(t) : P(t, k) = 0} (3.13)

so that for a given K > 1, y(t) = Keλ(t, t0) is a solution to (3.7).
If y(t) be a solution of (3.7), x(t) satisfies (3.4), and x(t) ≤ y(t) for all t ∈ [δ−(hr , t0), t0]T, then by Proposition 2 the

inequality x(t) ≤ y(t) holds for all t ∈ [t0,∞)T. For a given K > 1, we have

inf
t∈[δ−(hr ,t0),t0]T

Keλ(t, t0) = K ,

hence, by choosing a K0 > 1 with

K0 > sup
t∈[δ−(hr ,t0),t0]T

x(t),

we get

x(t) < K0eλ(t, t0) for all t ∈ [δ−(hr , t0), t0]T.

It follows on the basis of Proposition 2 that the inequality

x(t) ≤ K0eλ(t, t0)

holds for all t ∈ [t0,∞)T. This completes the proof. �

In next two examples, we apply Theorem 2 to the time scales T = Z and T = qN to derive some results for difference
and q-difference inequalities.

Example 4. Let T = Z; t0 = 0; δ−(hi, t) = t − hi, hi ∈ N, i = 1, 2, . . . , r − 1; hr ∈ Z+, and 0 = h0 < h1 < · · · < hr .
Assume that p and qi ≥ 0, i = 0, 1, 2, . . . , r , are the scalars satisfying qr > 0 and

r−
i=0

qi < p ≤ 1.

Then the Eq. (3.7) becomes

1y(t) = −py(t)+

r−
i=0

qiyℓ(t − hi), t ∈ {0, 1, . . .} . (3.14)

The characteristic polynomial and the set S(t) given by (3.8) and (3.9) turn into

P(t, λ) = (λ+ p)(1 + λ)hr (1 + λ)(1−ℓ)(t−hr ) − K ℓ−1
r−

i=0

qi(1 + λ)ℓ(hr−hi)

and

S(t) = (−1, 0) for all t ∈ {0, 1, . . .} ,
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respectively. Let {x(t)} , t ∈ [−hr ,∞)Z be a sequence satisfying the inequality

1x(t) ≤ −px(t)+

r−
i=0

qixℓ(t − hi), t ∈ {0, 1, . . .} .

Then by Theorem 2, we conclude that there exists a constant K0 > 1 such that

x(t) < K0

t−1∏
s=0

(1 + λ0(s)), t ∈ {0, 1, . . .} ,

where λ0 : Z → (−1, 0) is a positively regressive function defined by

λ0(t) = max


ν ∈ (−1, 0) : (ν + p) (1 + ν)hr (1 + ν)(1−ℓ)(t−hr ) − K ℓ−1

r−
i=0

qi(1 + ν)ℓ(hr−hi) = 0


.

Remark 2. Example 4 shows that the result in [8, Theorem 2.1] and [6, Theorem 2.1] are the particular cases of Theorem 2
when T = Z. Moreover, unlike the ones in [8, Theorem 2.1] and [6, Theorem 2.1], the coefficients p and qi, i = 0, 1, . . . , r ,
of the dynamic inequality considered in Theorem 2 are allowed to depend on the parameter t . Hence, even for the particular
case T = Z we have a more general result.

Example 5. Let T = qN
:= {qn : n ∈ N and q > 1} , t0 = 1, δ−(hi, t) = t/hi, where hi ∈ qN, 1 = h0 < h1 < · · · < hr . Let x

be a function satisfying the inequality

Dqx(t) ≤ −p(t)x(t)+

r−
i=0

ζi(t)xℓ


t
hi


, t ∈ qN,

where Dqx(t) is defined as in (1.4). Let

qZ
:=

qn : n ∈ Z and q > 1


.

Suppose that p and ζi, i = 0, 1, . . . , r , are continuous and bounded functions satisfying 1−p(t)(q−1)t ≥ 0; ζi(t) ≥ 0, i =

1, . . . , r − 1; ζr(t) > 0, and

p(t)−

r−
i=0

ζi(t) > 0

for all t ∈ [1,∞) ∩ qZ. Then there exists a constant K0 > 1 such that

x(t) ≤ K0

∏
s∈[1,t)∩qN

(1 + λ(s)(q − 1)s) for all t ∈ qN,

in which λ denotes the function defined by

λ(t) := max {k ∈ (−1/(q − 1)t, 0) : P(t, k) = 0} , t ∈ qN,

where

P(t, k) := (k + p(t))
∏

s∈


t
hr
,t

∩qZ

(1 + k(q − 1)s) A(t, k)− K ℓ−1
r−

i=0

ζi(t)
∏

s∈


t
hr
, t
hi


∩qZ

(1 + k(q − 1)s)ℓ ,

where

A(t, k) =



∏
s∈

1, t

hr


∩qZ

(1 + k(q − 1)s)1−ℓ if t > hr

∏
s∈


t
hr
,1

∩qZ

(1 + k(q − 1)s)ℓ−1 if t < hr .

Theorem 3. Let τ ∈ [t0,∞)T be a constant such that there exists a delay function δ−(τ , t) on T. Let x be a function satisfying
the inequality

x∆(t) ≤ −p(t)x(t)+ q(t) sup
s∈[δ−(τ ,t),t]

xℓ(s), t ∈ [t0,∞)T,

where ℓ ∈ (0, 1] is a constant. Suppose that p and q are the continuous and bounded functions satisfying p(t) > q(t) > 0 and
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1 −µ(t)p(t) ≥ 0 for all t ∈ [t0,∞)T. Then there exists a constant M0 > 0 such that every solution x to Eq. (4.1) satisfies

x(t) ≤ M0eλ(t, t0),
whereλ is a positively regressive function chosen as in (3.16).

Proof. We proceed as we did in the proof of Theorem 2. Consider the dynamic equation

y∆(t) = −py(t)+ q sup
s∈[δ−(τ ,t),t]

yℓ(s), t ∈ [t0,∞)T. (3.15)

For a given M > 1,Meλ(t, t0) is a solution of (3.7) if and only if λ is a root of the characteristic polynomialP(t, λ) defined
by P(t, λ) := (λ+ p(t)) eλ(t, t0)− Mℓq(t) sup

s∈[δ−(τ ,t),t]
eℓλ(s, t0).

For each fixed t ∈ [t0,∞)T define the set

S(t) := {k ∈ (−∞, 0) : 1 +µ(t)k > 0} .

It is obvious that for each fixed t ∈ [t0,∞)T and for all k ∈ S(t)we haveP(t, k) = (k + p(t)) ek(t, t0)− Mℓq(t)eℓk(δ−(τ , t), t0).

As we did in the proof of Theorem 2, one may easily show that for each t ∈ [t0,∞)T, there exists a largest element of S(t)
such that P(t, k) = 0. Using these largest elements we can define a positively regressive functionλ : [δ−(hr , t0),∞)T →

(−∞, 0) byλ(t) := max

k ∈ S(t) :P(t, k) = 0


(3.16)

so that for a given M > 1y(t) = Meλ(t, t0) is a solution to (3.15). The rest of the proof can be done similar to that of
Theorem 2. �

Remark 3. Notice that Theorem 3 gives Lemma 1 in the particular case when T = R and ℓ = 1. Moreover, since there is no
nonnegativity condition on the function x, Theorem 3 provides not only a generalization but also a relaxation of Theorem 1.
Similar, relaxation is valid also for the discrete case (see [9, Theorem 2.1]).

We finalize this section by giving a result for functions satisfying the dynamic inequality

x∆(t) ≤ −p(t)x(t)+

r∏
i=0

βi(t)xαi(δ−(hi, t)), (3.17)

where αi ∈ (0,∞), i = 0, 1, . . . , r , are the scalars with
∑r

i=0 αi = 1. Let the characteristic polynomial Q (t, k) and the set
S(t) be defined by

Q (t, k) := (λ+ p) eλ(t, t0)−

r∏
i=0

βie
αi
λ (δ−(hi, t), t0)

and (3.9), respectively. Applying the similar procedure to that used in the proof of Theorem 2 we arrive at the next result.

Theorem 4. Let x be a ∆-differentiable function satisfying (3.17), where αi ∈ (0,∞), i = 0, 1, . . . , r, are the scalars with∑r
i=0 αi = 1; p and βi, i = 0, 1, . . . , r, are continuous functions with the property that 1 − µ(t)p(t) ≥ 0; βi(t) > 0, i =

0, 1, . . . , r, for all t ∈ [t0,∞)T. Suppose that

p(t)−

r∏
i=0

βi(t) > 0

for all t ∈ [t0,∞)T. Then there exists a constant L0 > 0 such that

x(t) ≤ L0eγ (t, t0) for t ∈ [t0,∞)T,

where γ : [t0,∞)T → (−∞, 0) is a positively regressive function given by

γ (t) := max {k ∈ S(t) : Q (t, k) = 0} . (3.18)

Note that Theorem 4 gives [8, Theorem 2.2] in the particular case when T = Z, t0 = 0, δ−(hi, t) = t − hi, i =

0, 1, 2, . . . , r .
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4. Global stability of nonlinear dynamic equations

In this section, by means of Halanay type inequalities we gave in the previous section, we propose some sufficient
conditions guaranteeing global stability of nonlinear dynamic equations in the form

x∆(t) = −p(t)x(t)+ F(t, x(t), x(δ−(h1, t)), . . . , x(δ−(hr , t))) (4.1)

for t ∈ [t0,∞)T.

Theorem 5. Let p and qi, i = 0, 1, . . . , r, be continuous and bounded functions satisfying 1 −µ(t)p(t) > 0; qi(t) ≥ 0, i =

0, 1, . . . , r; qr(t) > 0 and

p(t)−

r−
i=0

qi(t) > 0

for all t ∈ [t0,∞)T. Let ℓ ∈ (0, 1] be a constant. Assume that there exist scalars hi ∈ [t0,∞)T, i = 0, 1, . . . , r, such that
h0 = t0, δ−(hi, t), i = 1, . . . , r, are delay functions on T, and

|F(t, x(t), x(δ−(h1, t)), . . . , x(δ−(hr , t)))| ≤

r−
i=0

qi(t) |x(δ−(hi, t))|ℓ (4.2)

for all (t, x(t), x(δ−(h1, t)), . . . , x(δ−(hr , t))) ∈ [t0,∞)T × Rr+1. Then there exists a constant M0 > 1 such that every solution
x to Eq. (4.1) satisfies

|x(t)| ≤ M0eλ(t, t0),

where λ is a positively regressive function chosen as in (3.13).

Proof. Let

ξ := ⊖(−p) =
p

1 − µp
.

Multiplying both sides of Eq. (4.1) by eξ (t, t0) and integrating the resulting equation from t0 to t we get that

x(t) = x0e⊖ξ (t, t0)+

∫ t

t0
F(s, x(s), x(δ−(h1, s)), . . . , x(δ−(hr , s)))e⊖ξ (t, σ (s))1s. (4.3)

It is straightforward to show that a solution x(t) to Eq. (4.3) satisfies (4.1). This means every solution of Eq. (4.1) can be
rewritten in the form of (4.3). By using (4.2) we obtain

|x(t)| ≤ |x0| e⊖ξ (t, t0)+

∫ t

t0

r−
i=0

qi(s) |x(δ−(hi, s))|ℓ e⊖ξ (t, σ (s))1s.

Let the function y be defined as follows:

y(t) = |x(t)| for t ∈ [δ−(hr , t0), t0]T

and

y(t) = |x0| e⊖ξ (t, t0)+

∫ t

t0

r−
i=0

qi(s) |x(δ−(hi, s))|ℓ e⊖ξ (t, σ (s))1s for [t0,∞)T.

Then we have |x(t)| ≤ y(t) for all t ∈ [δ−(hr , t0),∞)T. By [23, Theorem 1.117] we get that

y∆(t) = −p(t)


|x0| e⊖ξ (t, t0)+

∫ t

t0

r−
i=0

qi(s) |x(δ−(hi, s))|ℓ e⊖ξ (t, σ (s))1s


+

r−
i=0

qi(t) |x(δ−(hi, t))|ℓ

= −p(t)y(t)+

r−
i=0

qi(t) |x(δ−(hi, t))|ℓ

≤ −p(t)y(t)+

r−
i=0

qi(t)yℓ(δ−(hi, t))

for all [t0,∞)T. Therefore, it follows from Theorem 2 that there exists a constantM0 > 1 such that

|x(t)| ≤ M0eλ(t, t0) for t ∈ [t0,∞)T,

where λ : [t0,∞)T → (−∞, 0) is a positively regressive function defined by (3.13). The proof is complete. �
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Corollary 2. Let x be a function satisfying the inequality

x∆(t) ≤ −p(t)x(t)+ q(t) max
i=0,1,...,r


xℓ(δ−(hi, t))


, t ∈ [t0,∞)T, (4.4)

where ℓ ∈ (0, 1] is a constant. Suppose that p and q are continuous and bounded functions satisfying 1 − µ(t)p(t) > 0 and
p(t) > q(t) > 0 for all t ∈ [t0,∞)T. Then, there exists a constant M0 > 1 such that every solution x to Eq. (4.1) satisfies

|x(t)| ≤ M0eλ(t, t0),

where λ is a positively regressive function chosen as in (3.13).

Similar to that of Theorem 5 one may give a proof of the following result by using Theorem 4 instead of Theorem 2.

Theorem 6. Let p and βi, i = 0, 1, . . . , r, are continuous functions satisfying 1 −µ(t)p(t) > 0, βi(t) > 0, i = 0, 1, . . . , r,
for all t ∈ [t0,∞)T. Assume that αi ∈ (0,∞), hi ∈ [t0,∞)T, i = 0, 1, . . . , r, are the scalars such that

∑r
i=0 αi = 1, h0 =

t0, δ−(hi, t), i = 1, . . . , r, are the delay functions on T. If

p(t)−

r∏
i=0

βi(t) > 0

for all t ∈ [t0,∞)T and

|F(t, x(t), x(δ−(h1, t)), . . . , x(δ−(hr , t)))| ≤

r∏
i=0

βi |x(δ−(hi, t))|αi

for all (t, x(t), x(δ−(h1, t)), . . . , x(δ−(hr , t))) ∈ [t0,∞)T × Rr+1. Then there exists a constant N0 > 1 such that

x(t) ≤ N0eγ (t, t0) for t ∈ [t0,∞)T,

where γ : [t0,∞)T → (−∞, 0) is a positively regressive function given by (3.18).

Remark 4. In the case when T = Z, p(t) = p and q(t) = q, Theorems 5 and 6 gives [8, Theorem 3.1] and [8, Theorem 3.2],
respectively.
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