
Neural Networks 140 (2021) 294–308

v
t
‘
m
w
t
t
M
2
m
a
s
i

(
M

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Self-organized Operational Neural Networkswith Generative Neurons
Serkan Kiranyaz a,∗, Junaid Malik d, Habib Ben Abdallah a, Turker Ince b,
Alexandros Iosifidis c, Moncef Gabbouj d
a Electrical Engineering, College of Engineering, Qatar University, Qatar
b Department of Electrical and Electronics Engineering, Izmir University of Economics, Turkey
c Department of Electrical and Computer Engineering, Aarhus University, Denmark
d Department of Computing Sciences, Tampere University, Finland

a r t i c l e i n f o

Article history:
Received 9 October 2020
Received in revised form 23 February 2021
Accepted 25 February 2021
Available online 17 March 2021

Keywords:
Convolutional Neural Networks
Operational Neural Networks
Generative neurons
Heterogeneous networks

a b s t r a c t

Operational Neural Networks (ONNs) have recently been proposed to address the well-known lim-
itations and drawbacks of conventional Convolutional Neural Networks (CNNs) such as network
homogeneity with the sole linear neuron model. ONNs are heterogeneous networks with a generalized
neuron model. However the operator search method in ONNs is not only computationally demanding,
but the network heterogeneity is also limited since the same set of operators will then be used for
all neurons in each layer. Moreover, the performance of ONNs directly depends on the operator set
library used, which introduces a certain risk of performance degradation especially when the optimal
operator set required for a particular task is missing from the library. In order to address these issues
and achieve an ultimate heterogeneity level to boost the network diversity along with computational
efficiency, in this study we propose Self-organized ONNs (Self-ONNs) with generative neurons that can
adapt (optimize) the nodal operator of each connection during the training process. Moreover, this
ability voids the need of having a fixed operator set library and the prior operator search within the
library in order to find the best possible set of operators. We further formulate the training method to
back-propagate the error through the operational layers of Self-ONNs. Experimental results over four
challenging problems demonstrate the superior learning capability and computational efficiency of
Self-ONNs over conventional ONNs and CNNs.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Multi-Layer Perceptrons (MLPs), and their derivatives, Con-
olutional Neural Networks (CNNs) have a common drawback:
hey employ a homogeneous network structure with an identical
‘linear’’ neuron model. This naturally makes them only a crude
odel of the biological neurons or mammalian neural systems,
hich are heterogeneous and composed of highly diverse neuron
ypes with distinct biochemical and electrophysiological proper-
ies (Klausberger & Somogyi, 2008; Marder & Goaillard, 2006;
asland, 2001; Moore, Carlen, Knoblich, & Cardin, 2010; Nusser,
009; Soltesz, 2002). With such crude models, conventional ho-
ogeneous networks can learn sufficiently well problems with
monotonous, relatively simple, and linearly separable solution
pace but they fail to accomplish this whenever the solution space
s highly nonlinear and complex (Ince, Kiranyaz, & Gabbouj, 2009;

∗ Corresponding author.
E-mail addresses: mkiranyaz@qu.edu.qa (S. Kiranyaz), junaid.malik@tuni.fi

J. Malik), turker.ince@ieu.edu.tr (T. Ince), ai@ece.au.dk (A. Iosifidis),
oncef.gabbouj@tuni.fi (M. Gabbouj).
ttps://doi.org/10.1016/j.neunet.2021.02.028
893-6080/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access a
Kiranyaz, Ince, & Gabbouj, 2014; Kiranyaz, Ince, Iosifidis, & Gab-
bouj, 2017a, 2017b; Kiranyaz, Ince, Yildirim, & Gabbouj, 2009).
Despite many attempts to address this deficiency by search-
ing for good network architectures (Bengio, Lamblin, Popovici,
& Larochelle, 2007; Kulkarni & Karande, 2017) or by following
extremely laborious search strategies (Ince et al., 2009; Kiranyaz
et al., 2014, 2009; Pham et al., 2018; Zoph et al., 2018), or hybrid
network models (Isa & Mamat, 2011; Mashor, 2000; Rauber &
Berns, 2011), or new parameter update approaches (Karayiannis
& Randolph-Gips, 2003; Ruiwang & Binwang, 2002); no attempts
have been made to address the core problem, i.e., the network
homogeneity with only linear neurons coming from decades-old
McCulloch–Pitts model (McCulloch & Pitts, 1943).

To address this drawback, a heterogeneous and dense network
model, Generalized Operational Perceptrons (GOPs) has recently
been proposed (Kiranyaz et al., 2017a, 2017b; Tran, Kiranyaz,
Gabbouj, & Iosifidis, 2018, 2019, 2020). GOPs aim to model bi-
ological neurons with distinct synaptic connections. GOPs have
demonstrated a superior diversity, encountered in biological neu-
ral networks, which resulted in an elegant performance level
on numerous challenging problems where conventional MLPs
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.neunet.2021.02.028
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2021.02.028&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:mkiranyaz@qu.edu.qa
mailto:junaid.malik@tuni.fi
mailto:turker.ince@ieu.edu.tr
mailto:ai@ece.au.dk
mailto:Moncef.gabbouj@tuni.fi
https://doi.org/10.1016/j.neunet.2021.02.028
http://creativecommons.org/licenses/by/4.0/

S. Kiranyaz, J. Malik, H.B. Abdallah et al. Neural Networks 140 (2021) 294–308

e
2
G
c
p
o
l
m
t
(
o
m
‘
o
p
p
t
o
s
t
o
l

t
q
t
o
l
p
b
u
T
k
l
t
o
I
m
i
a
f
a
l
s
t
b

w
n
n
a
p
o
o
w
w
l
f
t
o
q
h
h
t
h
e

r
c

t
o
e
s
t
a
t
f
C
n

b
s
e
(
m
d
C
p
p
a

2

s
r
T
c
(
o
t
l
a
n
a
c
t
n
n
o
c

x

+

ntirely failed (Kiranyaz et al., 2017a, 2017b; Tran et al., 2018,
019, 2020) (e.g. Two-Spirals or N-bit parity problems). Following
OPs footsteps, a heterogeneous and non-linear network model,
alled Operational Neural Network (ONN), has recently been pro-
osed (Kiranyaz, Ince, Iosifidis and Gabbouj, 2020) as a superset
f CNNs. ONNs, like their predecessor GOPs, boost the diversity to
earn highly complex and multi-modal functions or spaces with
inimal network complexity and training data. More specifically,

he diverse set of neurochemical operations in biological neurons
the non-linear synaptic connections plus the integration process
ccurring in the soma of a biological neuron model) have been
odeled by the corresponding ‘‘Nodal’’ (synaptic connection) and

‘Pool’’ (integration in soma) operators whilst the ‘‘Activation’’
perator has directly been adopted. A particular set of the nodal,
ool and activation operator forms an ‘‘operator set’’ and all
otential operator sets are stored in an operator set library. Using
he so-called Greedy Iterative Search (GIS) method, an optimal
perator set per layer can iteratively be searched during several
hort Back-Propagation (BP) training sessions. The final ONN can
hen be configured by using the best operator sets found, each
f which is assigned to all neurons of the corresponding hidden
ayers.

The results over challenging learning problems demonstrate
hat (1) with the right operator set, ONNs can perform the re-
uired linear or non-linear transformation in each layer/neuron,
o maximize the learning performance, and, (2) ONNs not only
utperforms CNNs significantly, but they are also even able to
earn those problems where CNNs entirely fail. However, ONNs
roposed in Kiranyaz, Ince et al. (2020), too, exhibit certain draw-
acks. First and foremost is the limited heterogeneity due to the
sage of a single operator set for all neurons in a hidden layer.
his enforces the sole usage of a single nodal operator for all
ernel connections of each neuron to the neurons in the previous
ayer. A major limitation is that the learning performance of
he ONN directly depends on the operators (particularly nodal
perators) in the operator set library, which is fixed in advance.
n other words, if the right operator set for proper learning is
issing, the learning performance will deteriorate. Obviously, it

s not feasible to cover all possible nodal operators since they
re infinitely many. Furthermore, many operators cannot even be
ormulated with standard non-linear functions, yet, they can be
pproximated. Finally, the GIS is a computationally demanding
ocal search process that requires many BP runs. The best operator
ets found may not be optimal and especially for deep networks
hat are trained over large-scale datasets, GIS results in a real
ottleneck computational complexity.
To address these drawbacks and limitations, in this study

e propose Self-organized ONNs (Self-ONNs) with generative
eurons. Self-ONNs, as the name implies, can self-organize the
etwork operators during training. Therefore, they neither need
ny operator set library in advance nor require any prior search
rocess to find the optimal nodal operator. In fact, the limitation
f the usage of a single nodal operator for all kernel connections
f each neuron will be addressed by the ‘‘generative neurons’’
here each neuron can create any combination of nodal operators,
hich may not necessarily be a well-defined function such as

inear, sinusoids, hyperbolic, exponential or some other standard
unctions. The (weights) parameters of the kernel indeed change
he nodal operator output, e.g., for a ‘‘Sinusoid’’ nodal operator
f a particular neuron, the kernel parameters are distinct fre-
uencies. This allows the creation of ‘‘any’’ harmonic function;
owever, the final nodal operator function after training cannot
ave any other pattern or form besides a pure sine wave even
hough a ‘‘composite operator’’, e.g., the linear combination of
armonics, hyperbolic and polynomial, or an arbitrary nodal op-

rator function would perhaps be a better choice for this neuron h

295
than pure sinusoids. This is in fact the case for biological neurons
where the synaptic connections can exhibit any arbitrary form or
pattern. In brief, a generative-neuron is a neuron with a composite
nodal-operator that can be generated during training without any
restrictions. As a result, with such generative neurons, a Self-
ONN can self-organize its nodal operators during training, and
thus, it will have the nodal operator functions ‘‘optimized’’ by
the training process to maximize the learning performance. For
instance, in the sample illustration shown in Fig. 1, the CNN and
ONN neurons have static nodal operators (linear and harmonic,
espectively) for their 3 × 3 kernels, while the generative-neuron
an have any arbitrary nodal function, Ψ, (including possibly
standard types such as linear and harmonic functions) for each
kernel element of each connection. This is a great flexibility that
permits the formation of any nodal operator function. Finally,
he training method that back-propagates the error through the
perational layers of Self-ONNs is formulated in order to gen-
rate the right nodal functions of its neurons. Over the same
et of challenging problems in Kiranyaz, Ince et al. (2020) with
he same severe restrictions, we shall show that Self-ONNs can
chieve a comparable and usually better performance level than
he parameter-equivalent ONNs with superior computational ef-
iciency. The performance gap compared against the equivalent
NNs further widens even for Self-ONNs with significantly fewer
eurons and with a short training.1
The rest of the paper is organized as follows: Section 2 will

riefly present the conventional ONNs while the BP training is
ummarized in Appendix. Section 3 presents Self-ONNs and gen-
rative neurons in detail and formulates the forward-propagation
FP) and back-propagation (BP) training. It further discusses the
ajor features of Self-ONNs on a toy problem. Section 4 presents
etailed comparative evaluations among Self-ONNs, ONNs, and
NNs over four challenging problems. The computational com-
lexity analysis of these networks for both FP and BP is also
resented in this section. Finally, Section 5 concludes the paper
nd suggests topics for future research.

. Operational neural networks

Similar to MLPs, conventional CNNs make use of the clas-
ical ‘‘linear’’ neuron model; however, they further apply two
estrictions: kernel-wise limited connections and weight sharing.
hese restrictions turn the linear weighted sum for MLPs to the
onvolution formula used in CNNs. This is illustrated in Fig. 2
left) where the three consecutive convolutional layers with-
ut the sub-sampling (pooling) layers are shown. ONNs borrow
he essential idea of GOPs and thus extend the sole usage of
inear convolutions in the convolutional neurons by the nodal
nd pool operators. This constitutes the operational layers and
eurons while the two fundamental restrictions, weight sharing,
nd limited (kernel-wise) connectivity, are directly inherited from
onventional CNNs. This is also illustrated in Fig. 2 (right) where
hree operational layers and the kth neuron with 3 × 3 ker-
els belong to an ONN. As illustrated, the input map of the kth
euron at the current layer, xlk, is obtained by pooling the final
utput maps, yl−1i of the previous layer neurons operated with its
orresponding kernels, wl

ki, as follows:

l
k = blk +

Nl−1∑
i=1

oper2D(wl
ki, y

l−1
i ,′ NoZeroPad′)

xlk(m, n)
⏐⏐(M−1,N−1)
(0,0) = blk

Nl−1∑
i=1

(
P l
k

[
Ψ l

ki

(
wl

ki (0, 0) , yl−1i (m, n)
)
, . . . ,

Ψ l
ki

(
wl

ki(r, t), y
l−1
i (m+ r, n+ t), . . .

)
, . . .

]) (1)

1 The optimized PyTorch implementation of Self-ONNs is publically shared in
ttp://selfonn.net/.

http://selfonn.net/

S. Kiranyaz, J. Malik, H.B. Abdallah et al. Neural Networks 140 (2021) 294–308

A
i
Ψ

t
H
s

f
p
b
o
k
t
w
f
f

3

a
O
b
i
e

Fig. 1. An illustration of the nodal operations in the kernels of the kth CNN (left), ONN (middle), and Self-ONN (right) neurons at layer l.
Fig. 2. The illustration of the kth neuron of a CNN (left) and an ONN (right) along with the three consecutive convolutional (left) and operational (right) layers.
i

close look at Eq. (1) reveals the fact that when the pool operator
s ‘‘summation’’, P l

k = Σ , and the nodal operator is ‘‘linear’’,
l
ki

(
yl−1i (m, n) , wl

ki(r, t)
)
= wl

ki(r, t)y
l−1
i (m, n), for all neurons,

hen the resulting homogeneous ONN will be identical to a CNN.
ence, ONNs are indeed a superset of CNNs as the GOPs are a
uperset of MLPs.
For Back-Propagation (BP) training of an ONN, the following

our consecutive stages should be iteratively performed: (1) Com-
utation of the delta error, ∆L

1, at the output layer, (2) Inter-BP
etween two consecutive operational layers, (3) Intra-BP in an
perational neuron, and (4) Computation of the weight (operator
ernel) and bias sensitivities to update them at each BP itera-
ion. Stage-3 also takes care of sub-sampling (pooling) operations
henever they are applied in the neuron. BP training is briefly

ormulated in Appendix while further details can be obtained
rom Kiranyaz, Ince et al. (2020).

. Self-organized operational neural networks

In this section, first, the model of generative neurons which
re the main difference between conventional ONNs and Self-
NNs is presented. Then we shall formulate the forward- and
ack-propagation for Self-ONNs and finally, for the sake of clar-
ty we shall discuss its major characteristics and computational

fficiency over a toy problem.

296
3.1. Generative neurons

As discussed earlier, a generative-neuron is a neuron with a
‘‘composite nodal-operator’’ that is iteratively created during BP
training without any restrictions. In this way, each generative-
neuron in a Self-ONN can have the self-optimized nodal operators
by the BP training for each kernel element and for each connec-
tion (to each previous layer neuron) to maximize the learning
performance. In order to generate a composite nodal operator, a
straightforward choice would be the weighted sum of standard
functions. For example, a composite nodal function may have the
following expression:

Ψ (w, y) = w1Sin (w2y)+ w3exp (w4y)+ · · · + wQ y (2)

where w is a Q -dimensional parameter array that is composed of
weights (e.g. w1 and w3 in Eq. (2)) and internal parameters of the
ndividual functions, (e.g., w2 (frequency), w4 (power factor) and
wQ (slope) in Eq. (2)). However, such a straightforward formation
of the composite nodal functions would have severe stability
issues due to the different dynamic ranges of the individual
non-linear functions composed. Moreover, it requires too many
parameters to be tuned especially when the operator set library
contains many individual nodal operator functions. It is, as well,
equally redundant because one can form any arbitrary function

by other conventional methods such as Taylor Polynomials or

S. Kiranyaz, J. Malik, H.B. Abdallah et al. Neural Networks 140 (2021) 294–308

F
p
o

f

n
(
e
i
T
b
o
e
t
i
1
f
p
w
[
h
c
E

Ψ

D
b

3

f

e
m

W
t
s
u

w

ourier Series. The former is a better choice due to its lower com-
utational complexity than the latter. The Taylor approximation
f a function, f (x), near a point, x = a, can be expressed as,

(x) = f (a)+
f′ (a)
1!

(x− a)+
f′′ (a)
2!

(x− a)2

+
f′′′ (a)
3!

(x− a)3 + · · · (3)

where f′, f′′ and f′′′ are the first, second, and third derivatives,
respectively. Hence, one can form the composite nodal operator
function using the Q th order truncated Taylor approximation as
follows:

Ψ (w, y) = w0 + w1 (y− a)+ w2 (y− a)2 + · · ·

+ wQ (y− a)Q (4)

where wq =
f (q)(a)

q! is the qth parameter of the Q th order poly-
omial. The training process optimizes the parameters to form
approximate) the best-fitting nodal operator for each kernel el-
ment of each individual inter-neuron connection. An immediate
ssue arises, this approximation is only valid near the point, y= a.
he farther the points are from a, the coarser the approximation
ecomes. However, this does not affect Self-ONNs since the nodal
perators operate over the neuron outputs of the previous layer,
ach of which is bounded based on the generative range of the ac-
ivation operator function. If, for instance, the activation function
s a sigmoid, then the outputs, y, operates within the range of [0,
]. In this case, the nodal operator function can be approximated
or a = 0.5 (the mid-point) and a sufficiently higher-degree
olynomial can approximate any arbitrary function sufficiently
ell around the close vicinity of this point, i.e., in the range of
0, 1]. In this study, we are using the activation function tangent
yperbolic (tanh) that is bounded in the range of, [−1, 1]. In this
ase, naturally, a = 0 and the Q th order Taylor approximation in
q. (4) simplifies to the Maclaurin series as,

(w, y) = w0 + w1y+ w2y2 + · · · + wQ yQ (5)

Finally, the bias coefficient, w0, can be omitted since the overall
C bias will anyway be compensated by each neuron’s bias term,
l
i.

.2. Forward propagation in Self-ONNs

The forward propagation (FP) formula for Self-ONNs differs
rom FP for ONNs in Eq. (1) by the following two points:

(1) Each nodal operator function with the single kernel el-
ment, Ψ l+1

i

(
ylk(m+ r, n+ t), wl+1

ik (r, t)
)
, will now be approxi-

ated by the composite nodal operator, Ψ
(
ylk(m + r, n + t),

wl+1
ik (r, t)

)
, as expressed by the Maclaurin series in Eq. (5),

(2) The scalar kernel parameter, wl+1
ik (r, t), of the kernel of

an ONN neuron, is replaced by a Q -dimensional array, wl+1
ik (r, t),

and the Maclaurin series expression in Eq. (5) is the only com-
posite nodal operator function for all neurons in the network.
Thus, individual nodal operators, e.g., Ψ l+1

i , can now be expressed
simply as the composite nodal operator, Ψ. So, the composite
nodal function for the kernel element, wl+1

ik (r, t), can be expressed
as follows:

Ψ
(
ylk(m+ r, n+ t), wl+1

ik (r, t)
)

= wl+1
ik (r, t, 1) ylk (m+ r, n+ t) (6)

+ wl+1
ik (r, t, 2) ylk (m+ r, n+ t)2

+ · · ·

+ wl+1
ik (r, t,Q)ylk(m+ r, n+ t)Q
297
where the DC bias term, wl+1
ik (r, t, 0), is omitted due to the rea-

soning mentioned earlier. Therefore, a generative neuron of a
Self-ONN has a 3D kernel matrix where the qth weight of the
kernel element (r, t) is represented by wl+1

ik (r, t, q). As illustrated
in Fig. 1, for each neuron in a Self-ONN, any nodal function
can be generated (approximated) for each kernel element and
for each kernel connection. This results in enhanced flexibility
and diversity even over an ONN neuron where only a standard
nodal operator function has to be used for all kernels connected
to previous layer neurons. Finally, the generative neurons of a
Self-ONN can still have different pool and activation operators;
however, in this study we keep the choices fixed to ‘‘summation’’
for pool and ‘‘tanh’’ for activation.

3.3. Back propagation on Self-ONNs

For Self-ONNs, the contributions of each pixel in the M × N
output map, ylk(m, n) on the next layer input map, xl+1i (m, n), can
now be expressed as in Eq. (7). Using the chain rule, the delta
error of the output pixel, ylk(m, n), can therefore, be expressed
as in Eq. (8) in the generic form of pool, P l+1

i , and compos-
ite nodal operator function, Ψ, of each operational neuron i ∈
[1, . . . ,Nl+1] in the next layer. In Eq. (8), note that the first term,

∂xl+1ı (m−r,n−t)

∂P l+1i

[
..,Ψ

(
ylk(m,n),wl+1

ik (r,t)
)
,..

] = 1.

Let ∇ΨPl+1
i (m, n, r, t) =

∂P l+1i

[
..,Ψ

(
ylk(m,n),wl+1

ik (r,t)
)
,..

]
∂Ψ

(
ylk(m,n),wl+1

ik (r,t)
) and ∇y

Ψ(m, n, r, t) =
∂Ψ

(
ylk(m,n),wl+1

ik (r,t)
)

∂ylk(m,n)
. Then, Eq. (8) simplifies to

Eq. (9). Note further that ∆ylk, ∇ΨkiP
l+1
i and ∇yΨ have the same

size, M × N while the next layer delta error, ∆l+1
i , has the size,

(M − Kx + 1) ×
(
N − Ky + 1

)
, respectively. Therefore, to enable

this variable 2D convolution in this equation, the delta error, ∆l+1
i ,

is padded by zeros at all four boundaries (Kx−1 zeros on left and
right, Ky− 1 zeros on bottom and top). Thus, ∇yΨ (m, n, r, t) can
simply be expressed as in Eq. (10) (see Eqs. (7)–(10) in Box I).
Eq. (9) is similar to the corresponding one for ONNs in Eq. (26)
in the Appendix, except that there is no need to register a 4D
matrix for ∇yΨ since it can directly be computed by Eq. (10).
Moreover, when the pool operator is the sum, Pl+1

i = Σ , then
∇ΨPl+1

i (m, n, r, t) = 1 and thus, ∇yPl+1
i (m, n, r, t) = ∇yΨ

(m, n, r, t) which is expressed in Eq. (10).
Once the ∆ylk is computed, using the chain-rule, one can

express,

∆l
k =

∂E
∂xlk
=

∂E
∂ylk

∂ylk
∂xlk
=

∂E
∂ylk

f ′(xlk) = ∆ylkf
′(xlk) (11)

hen there is a down-sampling by factors, ssx, and ssy, then
he back-propagated delta-error by Eq. (26) should be first up-
ampled to compute the delta-error of the neuron. Let zero-order
p-sampled map be: uylk = upssx,ssy

(
ylk
)
. Then Eq. (11) can be

modified, as follows:

∆l
k =

∂E
∂xlk
=

∂E
∂ylk

∂ylk
∂xlk
=

∂E
∂ylk

∂ylk
∂uylk

∂uylk
∂xlk

= up
ssx,ssy

(∆ylk)βf
′(xlk)

(12)

here β = 1
ssx.ssy since each pixel of ylk is now obtained by

averaging (ssx.ssy) number of pixels of the intermediate output,
uylk. Finally, when there is an up-sampling by factors, usx, and
usy, then let the average-pooled map be: dylk = downusx,usy

(
ylk
)
.

Then Eq. (27) can be updated as follows:

∆l
k =

∂E
∂xlk
=

∂E
∂ylk

∂ylk
∂xlk
=

∂E
∂ylk

∂ylk
∂dylk

∂dylk
∂xlk

= down(∆ylk)β
−1f ′(xlk)

(13)
usx,usy

S. Kiranyaz, J. Malik, H.B. Abdallah et al. Neural Networks 140 (2021) 294–308

3

a
x

w
a
c
s

l

r
e
k
t
K
o
y
w

xl+1i (m− 1, n− 1) = · · · + P l+1
i

[
Ψ
(
ylk(m− 1, n− 1), wl+1

ik (0, 0)
)
, . . . ,Ψ

(
ylk(m, n), wl+1

ik (1, 1)
)]
+ · · ·

xl+1i (m− 1, n) = · · · + P l+1
i

[
Ψ
(
ylk(m− 1, n), wl+1

ik (0, 0)
)
, . . . ,Ψ

(
ylk(m, n), wl+1

ik (1, 0)
)
, . . .

]
+ · · ·

xl+1i (m, n) = · · · + P l+1
i

[
Ψ
(
ylk(m, n), wl+1

ik (0, 0)
)
, . . . ,Ψ

(
ylk(m+ r, n+ t), wl+1

ik (r, t),
)
. . .
]
+ · · ·

......

∴ xl+1i (m− r, n− t)
⏐⏐(M−1,N−1)
(1,1) = bl+1i +

N1∑
k=1

P l+1
i

[
. . . ,Ψ

(
ylk (m, n) , wl+1

ik (r, t)
)
, . . .

]
(7)

∴
∂E
∂ylk

(m, n)
⏐⏐⏐⏐(M−1,N−1)
(0,0)

= ∆ylk (m, n) =

Nl+1∑
i=1

⎛⎜⎜⎝Kx−1∑
r=0

Ky−1∑
t=0

=
∂E

∂xl+1i (m− r, n− t)
×

∂xl+1i (m− r, n− t)

∂P l+1
i

[
..,Ψ

(
ylk(m, n), wl+1

ik (r, t)
)
, ..
]

×
∂P l+1

i

[
..,Ψ

(
ylk(m, n), wl+1

ik (r, t)
)
, ..
]

∂Ψ
(
ylk(m, n), wl+1

ik (r, t)
) ×

∂Ψ
(
ylk(m, n), wl+1

ik (r, t)
)

∂ylk(m, n)

⎞⎟⎟⎠
(8)

∆ylk (m, n)
⏐⏐(M−1,N−1)
(0,0)

=

Nl+1∑
i=1

⎛⎝Kx−1∑
r=0

Ky−1∑
t=0

∆l+1
i (m− r, n− t)×∇ΨPl+1

i (m, n, r, t)×∇yΨ (m, n, r, t)

⎞⎠
Let∇yPl+1

i (m, n, r, t) = ∇ΨPl+1
i (m, n, r, t)×∇yΨ (m, n, r, t) , then

∆ylk =
Nl+1∑
i=1

Conv2Dvar
{
∆l+1

i ,∇yPl+1
i (m, n, r, t)

}
(9)

∇yΨ (m, n, r, t) = wl+1
ik (r, t, 1)+ 2wl+1

ik (r, t, 2)ylk(m, n)+ · · · + Qwl+1
ik (r, t,Q)ylk(m, n)Q−1 (10)

Box I.
s
f
F
O

c
a

b

.4. Computation of the weight (kernel) and bias sensitivities

Recall the expression between an individual kernel weight
rray, wl+1

ik (r, t), and the input map of the next layer,
l+1
i (m, n):

xl+1i (m, n)
⏐⏐(M−1,N−1)
(1,1) = bl+1i

+

Nl−1∑
i=1

P l+1
i

[
Ψ
(
ylk (m, n) , wl+1

ik (0, 0)
)
, . . . ,

Ψ
(
ylk(m+ r, n+ t), wl+1

ik (r, t)
)
. . .

]
(14)

here the qth element of the array, wl+1
ik (r, t), contributes to

ll the pixels of xl+1i (m, n) as expressed in Eq. (6). By using the
hain rule of partial derivatives, one can express the weight
ensitivities, ∂E

∂wl+1
ik

, in Eq. (15) which is given in Box II. A close

ook to Eq. (6) reveals that,
∂Ψ

(
ylk(m+r,n+t),w

l+1
ik (r,t)

)
∂wl+1

ik (r,t,q)
= ylk(m +

, n + t)q, which then simplifies to Eq. (16) Note that in this
quation, the first term, ∆l+1

ı (m, n), is independent from the
ernel indices, r and t. It will be element-wise multiplied by
he other two latter terms, each with the same dimension (M −
x + 1)x(N − Ky + 1), and created by derivative functions
f nodal and pool operators applied over the shifted pixels of
l
k (m+ r, n+ t) and the corresponding weight value, wl+1

ik (r, t).
here ∂xl+1ı (m,n)

∂P l+1i

[
Ψ
(
ylk(m,n),wl+1

ik (0,0)
)
,...,Ψ

(
ylk(m+r,n+t),w

l+1
ik (r,t)

)
...

] = 1 and

∂Ψ
(
ylk(m+r,n+t),w

l+1
ik (r,t)

)
∂wl+1

ik (r,t,q)
= ylk(m+ r, n+ t)q

∴
∂E

∂wl+1
ik

(r, t, q)

⏐⏐⏐⏐⏐
(Kx−1,Ky−1,Q)

(0,0,1)

=

M−Kx∑
m=0

N−Ky∑
n=0

∆l+1
ı (m, n)

×∇ΨPl+1
i (m+ r, n+ t, r, t)× ylk(m+ r, n+ t)q (16)
 A

298
If Pl+1
i = Σ , then

∂E
∂wl+1

ik

(r, t, q)

⏐⏐⏐⏐⏐
(Kx−1,Ky−1,Q)

(0,0,1)

=

M−Kx∑
m=0

N−Ky∑
n=0

∆l+1
ı (m, n)

×ylk (m+ r, n+ t)q

∴
∂E

∂wl+1
ik

⟨q⟩ = conv2D
(
∆l+1

i ,
(
ylk
)q

,′ NoZeroPad′
) (17)

∂E
∂blk
=

∑
m

∑
n

∂E
∂xk

l

(m, n)
∂xlk(m, n)

∂blk
=

∑
m

∑
n

∆l
k(m, n) (18)

Eq. (16) is somewhat similar to Eq. (33), the corresponding one
for conventional ONNs, except that there is no need to register
a 4D matrix for ∇wΨ = ylk(m + r, n + t)q since it can directly
be computed from the outputs of the neurons. Moreover, when
the pool operator is the sum, then ∇ΨPl+1

i (m, n, r, t) = 1 and
Eq. (16) will simplify to Eq. (17) where ∂E

∂wl+1
ik
⟨q⟩ is the qth 2D

ensitivity kernel, which contains the updates (SGD sensitivities)
or the weights of the qth order outputs in Maclaurin polynomial.
inally, the bias sensitivity expressed in Eq. (18) is the same for
NNs and CNNs since bias is the common additive term for all.
Let wl+1

ik ⟨q⟩ be the qth 2D sub-kernel where q = 1..Q and
omposed of kernel elements, wl+1

ik (r, t, q). During each BP iter-
tion, t , the kernel parameters (weights), wl+1

ik ⟨q⟩ (t), and biases,
bli (t), of each neuron in the Self-ONN are updated until a stopping
criterion is met. Let, ε(t), be the learning factor at iteration, t. One
can express the update for the weight kernel and bias at each
neuron, i, at layer, l as follows:

wl+1
ik ⟨q⟩ (t + 1) = wl+1

ik ⟨q⟩ (t)− ε(t)
∂E

∂wl+1
ik

⟨q⟩

l
i(t + 1) = bli(t)− ε(t)

∂E
∂bli

(19)

s a result, the pseudo-code for BP is presented in Alg. 1.

S. Kiranyaz, J. Malik, H.B. Abdallah et al. Neural Networks 140 (2021) 294–308

i
o
e
w

w

F

∂E
∂wl+1

ik

(r, t, q)

⏐⏐⏐⏐⏐
(Kx−1,Ky−1,Q)

(0,0,1)

×

M−Kx+1∑
m=0

N−Ky+1∑
n=0

=
∂E

∂xl+1ı (m, n)

×
∂xl+1ı (m, n)

∂P l+1
i

[
Ψ
(
ylk(m, n), wl+1

ik (0, 0)
)
, . . . ,Ψ

(
ylk(m+ r, n+ t), wl+1

ik (r, t)
)
. . .
]

∂P l+1
i

[
Ψ
(
ylk (m, n) , wl+1

ik (0, 0)
)
, . . . ,Ψ

(
ylk(m+ r, n+ t), wl+1

ik (r, t)
)
. . .
]

∂Ψ
(
ylk (m+ r, n+ t) , wl+1

ik (r, t)
)

×
∂Ψ

(
ylk(m+ r, n+ t), wl+1

ik (r, t)
)

∂wl+1
ik (r, t, q)

(15)

Box II.
3.5. Discussions

Recall that the main difference between ONNs and Self-ONNs
s the presence of generative neurons with the composite nodal
perator, which is a Q th order Maclaurin polynomial. As a result,
ach kernel element is a Q -dimensional array, and therefore, the
eight kernels, wl

ik, are 3D matrices that are equivalent to an
array of Q 2D matrices, wl+1

ik ⟨q⟩ , q = 1, . . . ,Q . Naturally, the
eight sensitivities, ∂E

∂wl+1
ik

, are 3D matrices too. To speed-up both

P and BP, the qth power of the neuron outputs, ylk(m, n)q, can be
computed only once (during FP) and stored in individual 3D ma-
trices to be used repeatedly during BP. This is a memory overhead
of Self-ONNs compared to ONNs. On the other hand, Self-ONNs do
not need the 4D matrices, ∇yΨ

l+1
ki , and ∇wΨ l+1

ki , both of which
can be computed directly. For visualization, a Self-ONN with a
single hidden layer and a single neuron is trained by BP over the
toy problem shown in Fig. 3. Input and output are both 3 × 3
images and the sample Self-ONN has a single input, hidden, and
output neuron with 2 × 2 kernels. The toy problem is to learn
(regress) to rotate 180◦ the input image. The final 13th order
nodal operators generated during BP are shown in Fig. 3, plotted
for each kernel element. It is interesting to see optimized nodal
operators resembling a sinusoid, exponential, and logarithm with
certain variations. This simple Self-ONN network can achieve∼30
times less MSE (or ∼14 dB higher SNR) than the equivalent CNN
trained under the same BP hyperparameters.
299
4. Experimental results

The comparative evaluations are performed with the same
experimental setup and over the same challenging problems in
Kiranyaz, Ince et al. (2020): (1) Image Synthesis, (2) Denoising,
(3) Face Segmentation, and (4) Image Transformation with the
same training constraints:

(i) Low Resolution: 60 × 60 pixels,
(ii) Compact/Shallow Models: In × 16 × 32 × Out (for CNN

and ONN) and In × 6 × 10 × Out for Self-ONNs,
(iii) Scarce Train Data: 10% of the dataset
(iv) Multiple Regressions per network,
(v) Shallow Training: 240 iterations.

For a fair evaluation, we have used a Self-ONN configuration,
In × 6 × 10 × Out with Q = 7 in all layers. In this way, all
networks have approximately the same number of network pa-
rameters. Note that this equivalence results in Self-ONNs having
three times less number of hidden neurons than CNNs and ONNs,
i.e., 16 vs. 48. Moreover, as in Kiranyaz, Ince et al. (2020) the first
hidden layer applies sub-sampling by ssx = ssy = 2, and the
second one applies up-sampling by usx = usy = 2. Self-ONNs
are trained using Stochastic Gradient Descent (SGD) without mo-
mentum but with a fixed learning parameter whereas adaptive
learning rate was applied for CNNs and ONNs in Kiranyaz, Ince
et al. (2020). Finally, three BP runs have also been performed for
Self-ONNs and the Self-ONN model that achieved the minimum
loss (MSE) during these runs is used for each problem.

4.1. Learning performance evaluations

For each problem, the results obtained by Self-ONNs are com-
pared against the best results obtained by the CNN and ONN. To
evaluate the learning performance for the regression problems,
image denoising, syntheses, and transformation, we used the
Signal-to-Noise Ratio (SNR) evaluation metric, which is defined
as the ratio of the signal power to the noise power, i.e., SNR =
10 log

(
σ 2
signal/σ

2
noise

)
. The ground-truth image is the original signal

and its difference from the actual output yields the ‘‘noise’’ image.
For the (face) segmentation problem we used the conventional
evaluation metrics such as classification error (CE) and F1-score.
For Image Synthesis and Denoising, the benchmark datasets are
partitioned into the train (10%) and test (90%) for 10-fold cross-
validation. So, for each fold, all network types are trained 10 times
by BP over the train partition and tested over the rest. The follow-
ing sub-sections will now present the results and comparative
evaluations of each problem by the proposed Self-ONNs, ONNs
and CNNs.

S. Kiranyaz, J. Malik, H.B. Abdallah et al. Neural Networks 140 (2021) 294–308

4

t
o
(
d
&
2
c
w
t
s
c

t
t
p
i
O
a
6
t

t
t
1
a
n
‘
f
t
a

(
o
r
w

4

n
(
w
i
r
r
a
t

a
p
T
a
O

Fig. 3. A sample 3-layer Self-ONN network trained for the toy problem, ‘‘rotate 180◦ ’’.
.1.1. Image denoising
As in Kiranyaz, Ince et al. (2020) gray-scale 1500 images from

he Pascal VOC database are down-sampled and used as the target
utputs while the images corrupted by and Gaussian White Noise
GWN) are the input with SNR = 0dB. Compared to earlier
enoising works using deep CNNs (Chen, Yu, & Pock, 2015; Jain
Seung, 2009; Kiranyaz, Ince et al., 2020; Kiranyaz, Malik et al.,
020; Lefkimmiatis, 2017; Yang & Sun, 2018), this task is far more
hallenging due to the severity of the noise level applied (0 dB)
hile all other studies the ‘‘noisy’’ images have SNR levels higher
han 15 dB. Moreover, the aforementioned restrictions enforce
evere training constraints, thus making the problem even more
hallenging for any machine learning approach.
Fig. 4 shows SNR plots of the best denoising results of the

hree networks for 10 folds and over both partitions. In both
rain and test partitions, Self-ONNs achieve significantly higher
erformance as compared to CNNs and ONNs. This is even though
t has three times fewer neurons. The average SNR levels of CNNs,
NNs and Self-ONNs denoising for the (train) and (test) partitions
re: (5.67 dB, 5.68 dB and 7.05 dB), and (5.61 dB, 5.46 dB and
.15 dB), respectively. Therefore, Self-ONNs can achieve a higher
han 0.5 dB SNR level on the average on the test partition.

Fig. 5 presents the SNR vs. iteration plots of all networks for
he 1st fold. The convergence speed of Self-ONN can easily be dis-
inguished here, i.e., in both train and test partitions, within only
1 iterations it can reach the maximum SNR levels of both CNNs
nd ONNs. This basically shows the crucial role of the optimized
odal operators of its generative neurons. In other words, those
‘custom-made’’ nodal operators can quickly be ‘‘tuned’’ within
ew BP iterations to achieve a superior generalization ability of
he network. In this problem, Self-ONN has already achieved
bove 6 dB SNR level on the test set in less than 50 iterations.
For a visual evaluation, Fig. 6 shows randomly selected original

target) and noisy (input) images and the corresponding outputs
f CNNs, ONNs, and Self-ONNs from the test partition. The supe-
ior denoising performance of Self-ONNs is clear when compared
ith both traditional networks.

.1.2. Image synthesis
Image synthesis is a typical regression problem where a single

etwork learns to synthesize a set of images from individual noise
WGN) images. As recommended in Kiranyaz, Ince et al. (2020)
e have trained a Self-ONN to (learn to) synthesize 8 (target)

mages from 8 WGN (input) images, as illustrated in Fig. 7. We
epeat the experiment 10 times (folds), so 8× 10= 80 images are
andomly selected from the Pascal VOC dataset. The gray-scaled
nd down-sampled original images are the target outputs while
he WGN images are the input.

Fig. 8 shows the SNR plots of CNNs, ONNs, and Self-ONNs
mong the 10 BP runs for each synthesis experiment (fold). In this
roblem, Self-ONNs surpassed ONNs only two folds out of ten.
he average SNR levels of CNNs, ONNs, and Self-ONNs synthesis
re 5.02 dB, 9.91 dB, and 8.73 dB respectively. The superiority of
NNs over Self-ONNs is due to two reasons: (1) The conventional
300
Fig. 4. Best denoising SNR levels for each fold achieved by Self-ONN (black),
CNNs (blue), and ONNs (red) in train (top) and test (bottom) partitions.

Fig. 5. The SNR vs. iteration plots for the CNN (blue), the ONN (red), and the
Self-ONN (black) trained in the 1st fold. The red circle shows the maximum SNR
level achieved by the competing networks.

S. Kiranyaz, J. Malik, H.B. Abdallah et al. Neural Networks 140 (2021) 294–308

o

n
l
c
n
f
3
t

Fig. 6. Some random original (target) and noisy (images) and the corresponding
utputs of the CNN, ONN, and Self-ONN from the test partition.

odal operators (exponential and chirp for the 1st and 2nd hidden
ayers and convolution for the output layer) are near-optimal
hoices whereas their Maclaurin approximation in Self-ONNs is
ot in general improving, rather deteriorating the learning per-
ormance, (2) conventional ONNs have the advantage of having
times more learning units (neurons) than Self-ONNs. Under

he equivalent configuration, 1 × 16 × 32 × 1, Self-ONNs still
surpasses ONNs achieving an average SNR level of 10.27 dB.
Against CNNs, Self-ONNs demonstrate a superior performance
with a significant average SNR gap over 3.5 dB. Finally, for a
visual comparative evaluation, Fig. 9 shows a random set of 14
synthesis outputs of all networks with the target image. The
performance gap is also clear here especially since some of the
CNN synthesis outputs have suffered from severe blurring and/or
textural artifacts.

4.1.3. Face segmentation
Deep CNNs have often been used in face and object seg-

mentation tasks (Kiranyaz, Waris, Ahmad, Hamila, & Gabbouj,
2016; Learned-Miller, Huang, RoyChowdhury, Li, & Hua, 2016;
Li, Qi, Dai, Ji, & Wei, 2017; Lin et al., 2014; Long, Shelhamer, &
Darrell, 2015a, 2015b; Luc, Couprie, Chintala, & Verbeek, 2016;

Ronneberger, Fischer, & Brox, 2015; Yu & Koltun, 2015; Zhu,

301
Fig. 7. The outputs of the BP-trained ONN with the corresponding input (WGN)
and target (original) images from the 2nd synthesis fold.

Fig. 8. Best SNR levels for each synthesis fold achieved by Self-ONN (black),
CNNs (blue), and ONNs (red).

Meng, Cai, & Lu, 2016). As in Kiranyaz, Ince et al. (2020), we
used the benchmark FDDB face detection dataset (Jain & Learned-
Miller, 2010), which contains 1000 images with one or many
human faces in each image.

S. Kiranyaz, J. Malik, H.B. Abdallah et al. Neural Networks 140 (2021) 294–308

i
t
c
o
b
v
(

a
D
E
e
(
t
t

Fig. 9. A random set of 14 synthesis outputs of the best networks with the
target images. The WGN input images are omitted.

Fig. 10 shows F1 plots of the best CNNs, ONNs, and Self-ONNs
at each fold over both partitions. ONN-3 is the ONN model that
got the highest test F1 scores in Kiranyaz, Ince et al. (2020). The
average F1 scores of CNN, ONN-3 and Self-ONN segmentation for
the (train) and (test) partitions are: (58.58%, 79.86%, and 96.6%)
and (56.74%, 59.61% and 62%), respectively. The first and the
foremost interesting observation is that Self-ONNs can achieve
significantly higher F1 levels in the train set even though both
ONNs and CNNs have three times more learning units than Self-
ONNs. In fact, such a train performance hints at a certain amount
of ‘‘over-fitting’’ which will be discussed next. Self-ONNs achieve
the highest average F1 score on the test set too; however, the
performance gap diminishes.

Fig. 11 presents the loss (MSE) vs. iteration curves of all
networks for the 1st fold. As in the denoising problem, the Self-
ONN shows a staggering convergence speed, i.e., on both train and
test sets, Self-ONN can achieve the minimum loss level of both
CNN and ONN only within 10 iterations whilst both competing
networks achieve their minimum loss almost at the end of the
training. Then it reaches the minimum loss (MSE = 0.324) at
teration 21 and thereafter, the loss gradually increases at the
est set, which indicates an over-fitting. This is not surprising
onsidering the scarcity of the train data and the lesser number
f learning units in SelfONNs. In practice, such overfitting can
e avoided with a standard ‘‘early-stopping’’ technique over a
alidation set, and this, in turn, allows a very brief BP training
e.g. <50 iterations) to achieve an elegant learning performance
on the test set.

4.1.4. Image transformation
In this task, a set of images is transformed into another by
network. In all earlier image transformation applications of
eep CNNs (Isola, Zhu, Zhou, & Efros, 2017; Zhu, Park, Isola, &
fros, 2017) the input and output images are strongly correlated,
.g., edge-to-image, gray-scale-to-color image, and day-to-night
or vice versa) photo translation, etc. In Kiranyaz, Ince et al. (2020)
his problem has become more challenging where each image is
ransformed into an entirely different image. Moreover, a single
302
Fig. 10. Best segmentation F1 levels for each fold achieved in train (top) and
test (bottom) partitions by Self-ONN (solid-black), ONN-3 (dashed-red), and CNN
(solid-blue).

Fig. 11. The network loss (MSE) vs. iteration plots for the CNN (blue), the ONN
(red), and the Self-ONN (black) trained in the 1st fold. The red circle shows the
minimum loss achieved on the test set.

network is trained to (learn to) transform 4 (target) images from 4
input images, as illustrated in Fig. 12 (left). In this fold, note that
two pairs of distinct images are used as both input and output
of each other; therefore, the capability of the networks to learn
both ‘‘forward’’ and ‘‘backward’’ problems at the same time and
for two image pairs is tested.

For this task, some images selected from the FDDB face de-
tection dataset (Jain & Learned-Miller, 2010) are used. For com-
parison, we used the results obtained from CNNx4 configuration
(1 × 32 × 64 × 1) since it achieved the best results reported
in Kiranyaz, Ince et al. (2020). For comparison, the best ONN
model recommended in Kiranyaz, Ince et al. (2020) is used with
the operator indices, 0 and 13 for the 1st and 2nd hidden layers
corresponding to the operator indices: 0:{0, 0, 0} for the pool

S. Kiranyaz, J. Malik, H.B. Abdallah et al. Neural Networks 140 (2021) 294–308

s
(

m
b
r
p
p
t
a
3
r
t
h
a
p
Q
a
d
O
p
o
h

+

Fig. 12. Image transformation of the 1st fold including two inverse problems
(left) and the outputs of the ONN and CNN with 4 times more parameters
(CNNx4).

Fig. 13. Best SNR levels for each image transformation fold achieved by the
corresponding Self-ONN (black), CNNx4 (blue), and ONN (red).

(summation = 0), activation (tanh = 0) and nodal (mul = 0), re-
pectively, and 13:{0,1,6} for the pool (summation= 0), activation
lin-cut = 1) and nodal (chirp = 6), respectively.

Fig. 13 presents the best SNR levels for each image transfor-
ation fold for all networks. The average SNR levels achieved
y CNNs, ONNs, and Self-ONNs are 0.5 dB, 9.5 dB, and 10 dB,
espectively. As this is the hardest learning problem among all the
roblems in this study, it is not surprising to observe the largest
erformance gap between CNN and both ONN models (higher
han 9 dB on average). The performances of ONNs and Self-ONNs
re within a narrow margin while ONNs surpassed Self-ONNs on
out of 10 transformations. A close look at the plots in Fig. 13

eveals the fact that in fold 9, the ONN has significantly surpassed
he Self-ONN (as in fold 10 in the image synthesis problem). This
appens when the nodal operator of each neuron fits very well,
nd thus its Q th order approximation cannot reach the same
erformance. Moreover, the Maclaurin approximation also costs
-times more parameters, and thus, the Self-ONN ends up with
significantly fewer number of neurons, which can potentially
eteriorate the learning performance. However, more often Self-
NNs can surpass ONNs when their nodal operators are not
roperly assigned, or more likely, no such ‘‘best-fitting’’ nodal
perator is available in the operator set library for the problem at
and. Obviously, in this case, the ‘‘custom-made’’ nodal operators
303
Fig. 14. The illustration of a Self-ONN equivalent to Fig. 2 (right) when the pool
operator is ‘‘sum’’, Pl

i = Σ , and the activation function is tanh.

by generative neurons can boost the learning performance that is
visible in the majority of the experiments performed in this study.

4.2. Computational complexity analysis

In this section, the computational complexity of the proposed
Self-ONNs is analyzed with respect to the parameter-equivalent
CNNs and ONNs. We shall begin with the complexity analysis of
the forward propagation (FP) and then focus on BP. For the sake
of simplicity, we shall ignore the up- and down-sampling and
assume the same input map sizes among the layers.

As assumed in this study, when the pool operator is ‘‘sum’’,
Pl
i = Σ , during FP in a Self-ONN, Eq. (1) can be expressed as

follows:

xlk = blk +
Nl−1∑
i=1

oper2D(wl
ki, y

l−1
i ,′ NoZeroPad′)

xlk(m, n)
⏐⏐(M−1,N−1)
(0,0) = blk

Nl−1∑
i=1

⎛⎝Kx−1∑
r=0

Ky−1∑
t=0

Ψ
(
wl

ki(r, t), y
l−1
i (m+ r, n+ t)

)⎞⎠
(20)

where Ψ is the (Maclaurin) composite nodal operator and wl
ki

(r, t) is a Q-dimensional array for the kernel element (r, t). Putting
the qth order 2D kernel, wl

ki ⟨q⟩ (q = 1..Q), which is composed of
the kernel elements, wl+1

ik (r, t, q), then Eq. (20) can be simplified
as,

xlk = blk

+

Q∑
q=1

⎧⎨⎩
Nl−1∑
i=1

conv2D
(
wl

ki ⟨q⟩ ,
(
yl−1i

)q
,′ NoZeroPad′

)⎫⎬⎭ (21)

This special-case Self-ONN configuration is illustrated in
Fig. 14 where it actually resembles a multi-output and multi-
kernel CNN. Once the power-outputs,

(
yl−1i

)q
, for q = 1..Q,

are computed for all hidden neurons in the network, Eq. (21)
is simply (Q × Nl−1) independent 2D convolutions, which can
be parallelized, and hence, will take the same time for a single
convolution. Therefore, in a parallelized implementation, a Self-
ONN and a CNN with the same configuration have approximately
the same computational complexity for FP. In this study, we

S. Kiranyaz, J. Malik, H.B. Abdallah et al. Neural Networks 140 (2021) 294–308

T
C
n

f

M

able 1
omparison of the total number of multiply-accumulate operations for the
etworks used in this study.

Network Layer 1
Neurons

Layer 2
Neurons

Trainable
parameters (k)

Total
MACs (M)

SelfONN 6 10 39.749 78.246

CNN 16 32 32.481 79.923

compute the total number of multiply-accumulate operations
(MACs) for CNNs and Self-ONNs used in this study. The number
of MACs for the lth layer of the network is calculated using the
ollowing formula:

ACs (l) = |Yl| ∗
(
(Nl−1 ∗ K l

x ∗ K
l
y ∗ Q

l)+ Nl
)

where Yl is the output of the current layer, Nl−1 is the number of
neurons in the previous layer, K l

x and K l
y are the kernel dimensions

for the current layer, Q l is the order of approximation and finally,
Nl is the number of neurons in the current layer. The last term can
be omitted for the special case where bias is not used. Table 1
provides the comparisons of the number of trainable parameters
and the total number of MACs, of the networks used in this study.
The number of neurons in the input and output is fixed to 1 for
both networks.

For computational complexity comparison in BP training, re-
call that when the pool operator is ‘‘sum’’, then ∇ΨkiP

l+1
i = 1.

Recall further that the power outputs,
(
yl−1i

)q
, are already com-

puted for each hidden neuron of the network during the prior FP
for each BP iteration. So, once the 4D matrix, ∇yΨ, is computed by
Eq. (11), then the error back-propagation computation in Eq. (10)
can be parallelized and will take the same time complexity with
an equivalent CNN. The computation of f ′

(
xlk
)
, and the delta

errors, ∆l
k, are also common with the conventional BP in CNNs.

This makes the identical computational complexity for bias sen-
sitivities by Eq. (19). Finally, for weight sensitivities, note that
Eq. (18) is simply Q independent convolutions of the delta error,
∆l+1

i , and power output,
(
ylk
)q, all of which can also be paral-

lelized to take the same time for a single convolution. As a result,
there is no significant difference between the BP computational
complexities of CNNs and Self-ONNs with the same configuration.
The time for computing the power outputs (only once in each
BP iteration) and the 4D matrices are the only overheads, which
are insignificant. In this study, the earlier analogy is also valid for
BP, i.e., since the network configuration for Self-ONN has three
times fewer neurons than ONNs and CNNs, BP for Self-ONNs
will take significantly less time than the BP for CNNs. The gap
further widens when compared to ONNs about 1.5 to 4.7 times
in practice (Kiranyaz, Ince et al., 2020).

5. Conclusions

In this study, Self-Organized ONN (Self-ONN) is proposed with
the generative neuron model, which allows customized (self-
optimized) nodal operator functions — not only for each neuron
but for each kernel connection to the previous layer neurons.
This is an ultimate heterogeneity level that allows creating (self-)
optimized nodal operators during BP training. This does not only
void the need for prior operator search runs but also optimizes
the nodal operator of the output layer neuron(s), which are the
most crucial neurons in the network in which the loss (fitness)
is computed. Like ONNs, Self-ONNs are also a superset of CNNs,
e.g., when the order of a Self-ONN for each layer is set to Q = 1, a
Self-ONN will become a CNN. Even when Q > 1, if a linear (con-
volutional) neuron is the optimal choice for a particular problem,
304
the ongoing BP can still converge all higher-order (q > 1) weights
to zero to turn the Self-ONN into a conventional CNN. Overall,
the generative neurons have the ability to form customized nodal
operators per kernel connection for the problem at hand. In this
way, traditional ‘‘weight optimization’’ of conventional CNNs is
now turned to be an ‘‘operator optimization’’ process.

The results on the four challenging problems proposed in
Kiranyaz, Ince et al. (2020) show that Self-ONNs with the same
number of parameters (but with a much less number of neurons)
can achieve a superior learning performance whilst the perfor-
mance gap over CNNs widens further. Self-ONNs usually obtain
comparable or better results than ONNs; however, some results
have highlighted a crucial fact: when a conventional nodal oper-
ator of an ONN is the ‘‘right choice’’ for a particular problem, the
parameter-equivalent Self-ONN cannot surpass the performance
with the Q -order Maclaurin approximation of the ‘‘near-optimal’’
nodal operators and of course, with less number of neurons.
However, this seems to be the minority case over the problems
tackled in this study. Above all, Self-ONNs, in a parallelized im-
plementation, have a superior computational efficiency especially
compared to ONNs.

This study has proposed a ‘‘baseline’’ version of Self-ONNs and
further performance boost can be expected with the following
improvements:

• instead of fixing to some practical value, (e.g. Q = 7 in this
study) optimizing the order of Maclaurin approximation, Q,
per layer and even per neuron,
• adapting a better optimization scheme for training, e.g., SGD

with momentum (Qian, 1999), AdaGrad (Duchi, Hazan, &
Singer, 2010), RMSProp (Tieleman & Hinton), Adam
(Diederik & Ba, 2014) and its variants (Ruder, 2016), all of
which should be modified for Self-ONNs for proper function-
ing,
• optimizing also the pool and activation operators during BP

training,
• and finally, performing non-localized kernel operations for

each kernel connection of each neuron for the operation
capability within a larger area without increasing the size
of the kernels.

These will be the topics for our future research. The optimized
PyTorch implementation of Self-ONNs is publically shared in (Sel-
fONN, 2021).

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was supported by the Qatar National Research Fund
103 (QNRF) through project Grant NPRP11S-0108- 104 180228
and Tampere University. Open Access funding provided by Tam-
pere University.

Appendix

A.1. BP training for operational neural networks

As mentioned earlier, conventional Back-Propagation (BP)
training consists of four consecutive stages: (1) Computation of

S. Kiranyaz, J. Malik, H.B. Abdallah et al. Neural Networks 140 (2021) 294–308

t
t
n
b
f
s
o
e

A

f
f

E

A

⏐(M−1,N−1)

I

1

∇

R
i
(
∇

a
f
o
c
o
t
a
t
v
t
t
l
r
t
w
r

L

∆

A

t

he delta error, ∆L
1, at the output layer, (2) Inter-BP between

wo consecutive operational layers, (3) Intra-BP in an operational
euron, and (4) Computation of the weight (operator kernel) and
ias sensitivities in order to update them at each BP iteration. The
ollowing sub-sections will explain each stage in detail. For the
ake of brevity, a Stochastic Gradient Descent-based minimization
f the L2-loss is assumed. In practice, any first order differentiable
rror function can be used.

.1.1. Computation of the delta error, ∆L
1, at the output layer

Typically, the L2-loss or the Mean-Square-Error (MSE) error
unction for an image I in the train dataset can be expressed as
ollows:

(I) =
∑
p

(
yL1(Ip)− T (Ip)

)2
(22)

where Ip is the pixel p of the image I , T is the target output and
yL1 is the predicted output. The delta sensitivity of the error can
then be computed as:

∆L
1 =

∂E
∂xL1
=

∂E
∂yL1

∂yL1
∂xL1
=

2
|I|

(
yL1(I)− T (I)

)
f ′(xL1(I)) (23)

.1.2. Inter-BP between two operational layers: ∆ylk

∑
← ∆l+1

i

We first focus on the contribution of a single output pixel,
ylk (m, n), to the pixels of the xl+1i . Assuming again a Kx×Ky = 3×3
kernel, Eq. (24) formulates the contribution of ylk(m, n) to the
9 neighboring pixels. According to the basic rule of BP one can
then formulate the delta of ylk(m, n) as in Eq. (25). Note that the
output pixel, ylk(m, n), and input pixel, xl+1i (m, n), are connected
through the first (top-left) element of the kernel, xl+1i (m, n) =
· · · + P l+1

i

[
Ψ l+1

i

(
ylk(m, n), wl+1

ik (0, 0)
)
, . . . , Ψ l+1

i

(
ylk(m+ r, n+ t),

wl
ik (r, t) , . . .

)]
. This means that the contribution of ylk(m, n), will

now only be on xl+1i (m−r, n−t) as expressed explicitly in Eq. (24).
The chain-rule of derivatives should now include the two oper-
ator functions, pool and nodal, which, in case of CNNs, are fixed
to summation and multiplication respectively. The delta error of
the output pixel can, therefore, be expressed as in Eq. (25) in the
generic form of pool, P l+1

i , and nodal, Ψ l+1
i , operator functions of

each operational neuron i ∈ [1, . . . ,Nl+1] in the next layer.

xl+1i (m− 1, n− 1) = · · · + P l+1
i

[
Ψ l+1

i

(
ylk(m− 1, n− 1), wl+1

ik (0, 0)
)
, . . . ,

Ψ l+1
i

(
ylk(m, n), wl+1

ik (1, 1)
)]
+ · · ·

xl+1i (m− 1, n) = · · · + P l+1
i

[
Ψ l+1

i

(
ylk(m− 1, n), wl+1

ik (0, 0)
)
, . . . ,

Ψ l+1
i

(
ylk(m, n), wl+1

ik (1, 0)
)
, . . .

]
+ · · ·

xl+1i (m, n) = · · · + P l+1
i

[
Ψ l+1

i

(
ylk(m, n), wl+1

ik (0, 0)
)
, . . . ,

Ψ l+1
i

(
ylk(m+ r, n+ t), wl+1

ik (r, t),
)
. . .
]
+ · · ·

......

xl+1i (m+ 1, n+ 1) = · · · + P l+1
i[

Ψ l+1
i

(
ylk(m+ 1, n+ 1), wl+1

ik (0, 0)
)
, . . .

]
+ · · ·

∴ xl+1i (m− r, n− t)
⏐⏐(M−1,N−1)
(1,1) = bl+1i

+

N1∑
k=1

P l+1
i

[
. . . , Ψ l+1

i

(
wl+1

ik (r, t), ylk(m, n)
)
, . . .

]

(24) t

305
∴
∂E
∂ylk

(m, n)
⏐⏐⏐
(0,0)

= ∆ylk (m, n)

=

Nl+1∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Kx−1∑
r=0

Ky−1∑
t=0

∂E

∂xl+1i (m− r, n− t)

×
∂xl+1i (m− r, n− t)

∂P l+1
i

[
.., Ψ l+1

i

(
ylk(m, n), wl+1

ik (r, t)
)
, ..
]

×
∂P l+1

i

[
.., Ψ l+1

i

(
ylk(m, n), wl+1

ik (r, t)
)
, ..
]

∂Ψ l+1
i

(
ylk(m, n), wl+1

ik (r, t)
)

×
∂Ψ l+1

i

(
ylk(m, n), wl+1

ik (r, t)
)

∂ylk(m, n)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(25)

n Eq. (25), note that the first term, ∂xl+1ı (m−r,n−t)

∂P l+1i

[
..,Ψ l+1

i

(
ylk(m,n),wl+1

ik (r,t)
)
,..

] =
. Let ∇ΨkiP

l+1
i (m, n, r, t) =

∂P l+1i

[
..,Ψ l+1

i

(
ylk(m,n),wl+1

ik (r,t)
)
,..

]
∂Ψ

l+1
i

(
ylk(m,n),wl+1

ik (r,t)
) and

yΨ
l+1
ki (m, n, r, t) =

∂Ψ
l+1
i

(
ylk(m,n),wl+1

ik (r,t)
)

∂ylk(m,n)
. First, it is obvious

that both derivatives, ∇ΨkiP
l+1
i , and ∇yΨ

l+1
ki , no longer require

the rotation of the kernel, wl+1
ik . The first derivative, ∇ΨkiP

l+1
i ,

depends on the role (contribution) of the particular nodal term,
Ψ l+1

i

(
ylk(m, n), wl+1

ik (r, t)
)
, within the pool function. The deriva-

tive, ∇ΨkiP
l+1
i (m, n, r, t) is computed while computing the pixels

xl+1i (m − r, n − t) for ∀r, t ∈ (Kx, Ky) that corresponds to
the particular output value, ylk (m, n), within each pool function.
ecall that this is the contribution of the ylk (m, n) alone for each
nput value at the next layer, xl+1i (m − r, n − t) for ∀r, t ∈
Kx, Ky). When the pool operator is summation, Pl+1

i = Σ , then
ΨkiP

l+1
i = 1, which is constant for any nodal term. For any other

lternative, the derivative ∇ΨkiP
l+1
i (m, n, r, t) will be a function of

our variables. The other derivative term, ∇yΨ
l+1
ki , is the derivative

f the nodal operator with respect to the output. For the simplest
ase of a linear neuron which has the ‘‘multiplication’’ nodal
perator, i.e., Ψ l+1

i

(
ylk(m, n), wl+1

ik (r, t)
)
= ylk (m, n) .wl+1

ik (r, t),
he derivative ∇yΨ

l+1
ki is simply the weight kernel, wl+1

ik (r, t).
nd is independent of the output, ylk (m, n). But as a general rule,
he derivative ∇yΨ

l+1
ki (m, n, r, t) will also be a function of four

ariables. By using these four variable derivatives or equivalently,
he two 4-D matrices, Eq. (25) can be simplified as Eq. (26). Note
hat ∆ylk, ∇ΨkiP

l+1
i and ∇yΨ

l+1
ki have the size, M×N while the next

ayer delta error, ∆l+1
i , has the size, (M − Kx + 1)×

(
N − Ky + 1

)
,

espectively. Therefore, to make the variable 2D convolution in
his equation valid, the delta error, ∆l+1

i , is symmetrically padded
ith Kx − 1 and Ky − 1 zeros across the width and height
espectively.

∆ylk (m, n)
⏐⏐(M−1,N−1)
(0,0) =

Nl+1∑
i=1

⎛⎝Kx−1∑
r=0

Ky−1∑
t=0

∆l+1
i (m− r, n− t)

×∇ΨkiP
l+1
i (m, n, r, t)×∇yΨ

l+1
ki (m, n, r, t)

⎞⎠
et ∇yPl+1

i (m, n, r, t) = ∇ΨkiP
l+1
i (m, n, r, t)

×∇yΨ
l+1
ki (m, n, r, t) , then

ylk =
Nl+1∑
i=1

Conv2Dvar
{
∆l+1

i ,∇yPl+1
i (m, n, r, t)

}
(26)

.1.3. Intra-BP in an operational neuron: ∆l
k

BP
← ∆ylk

If there is no subsampling performed within the neuron, once
he delta-errors are back-propagated from the next layer, l+1, to

he neuron in layer, l, then we can further back-propagate it to

S. Kiranyaz, J. Malik, H.B. Abdallah et al. Neural Networks 140 (2021) 294–308

t

∆

f

a
u
t
E

w

A

p

a
2
T
B
s

t
s
s

(
e
t
b
t
v

Fig. 15. Computation of the kernel sensitivities.

he input delta. This can be formulated as follows:

l
k =

∂E
∂xlk
=

∂E
∂ylk

∂ylk
∂xlk
=

∂E
∂ylk

f ′(xlk) = ∆ylkf
′(xlk) (27)

where ∆ylk is computed as in Eq. (26). On the other hand, if
there is a down-sampling by factors, ssx and ssy, then the back-
propagated delta-error by Eq. (26) should be first up-sampled to
compute the delta-error of the neuron. Let zero order up-sampled
map be: uylk = upssx,ssy

(
ylk
)
. Then Eq. (27) can be updated as

ollows:

∆l
k =

∂E
∂xlk
=

∂E
∂ylk

∂ylk
∂xlk
=

∂E
∂ylk

∂ylk
∂uylk

∂uylk
∂xlk

= up
ssx,ssy

(∆ylk)βf
′(xlk)

(28)

where β = 1
ssx.ssy since each pixel of ylk is now obtained by

veraging (ssx.ssy) number of pixels of the intermediate output,
ylk. Finally, if there is an up-sampling by factors, usx and usy,
hen let the average-pooled map be: dylk = downusx,usy

(
ylk
)
. Then

q. (27) can be updated as follows:

∆l
k =

∂E
∂xlk
=

∂E
∂ylk

∂ylk
∂xlk
=

∂E
∂ylk

∂ylk
∂dylk

∂dylk
∂xlk

= down
usx,usy

(∆ylk)β
−1f ′(xlk)

(29)

here β = usx.usy.

.1.4. Computation of the weight (kernel) and bias sensitivities
The first three BP stages are performed to compute and back-

ropagate the delta errors, ∆l
k =

∂E
∂xlk

, to each operational neuron

t each hidden layer. As illustrated in Fig. 2, a delta error is a
D map whose size is identical to the input map of the neuron.
he sole purpose of back-propagating the delta-errors at each
P iteration is to use them to compute the weight and bias
ensitivities.
First of all, the bias for the kth neuron in layer l, blk, contributes

o all pixels in the image (same bias shared among all pixels),
o its sensitivity will be the accumulation of individual pixel
ensitivities as expressed in Eq. (30):

∂E
∂blk
=

M−1∑
m=0

N−1∑
n=0

∂E
∂xlk(m, n)

∂xlk(m, n)
∂blk

=

M−1∑
m=0

N−1∑
n=0

∆l
k(m, n)

(30)

Eq. (31) shows the contribution of bias and weights to the next
level input map. xl+1i (m, n). In order to derive the expression
for the weight sensitivities we can follow the same approach as
before: since each kernel element, wl+1(r, t) affects all the pixels
ik

306
Fig. 16. The pixels of y10(m, n) that are operated with the weight elements of
the output neuron, w2

0(0, 0), and w2
0(1, 1).

of the input map, xl+1i , by using the chain rule, the weight sensi-
tivities can first be expressed as in Eq. (32) and then simplified
into the final form in Eq. (33). Eqs. (31) and (32) are given in
Box III. where

∂xl+1ı (m−r,n−t)

∂P l+1i

[
Ψ

l+1
i

(
ylk(m−r,n−t),w

l+1
ik (0,0)

)
,...,Ψ l+1

i

(
ylk(m,n),wl+1

ik (r,t),
)
...

] = 1.

Let ∇wΨ l+1
ki (m, n, r, t) =

∂Ψ
l+1
ik

(
ylk(m,n),wl+1

ik (r,t)
)

∂wl+1
ik (r,t)

, then it simpli-
fies to:

∂E
∂wl+1

ik

(r, t)

⏐⏐⏐⏐⏐
(2,2)

(0,0)

=

M+r−1∑
m0=r

N+t−1∑
n0=t

∆l+1
ı (m0 − r, n0 − t)

×∇ΨkiP
l+1
i (m0, n0, r, t)×∇wΨ l+1

ki (m0, n0, r, t)

Let∇wPl+1
i (m0, n0, r, t) = ∇ΨkiP

l+1
i

× (m0, n0, r, t)×∇wΨ l+1
ki (m0, n0, r, t) ,

∂E
∂wl+1

ik

(r, t)

⏐⏐⏐⏐⏐
(2,2)

(0,0)

=

M+r−1∑
m0=r

N+t−1∑
n0=t

∆l+1
ı (m0 − r,m0 − t)

×∇wPl+1
i (m0, n0, r, t) , or let m = m0 − r,

n = n0 − t
(33)

∂E
∂wl+1

ik

(r, t)

⏐⏐⏐⏐⏐
(2,2)

(0,0)

=

M−1∑
m=0

N−1∑
n=0

∆l+1
ı (m, n)

×∇wPl+1
i (m+ r, n+ t, r, t)

∴
∂E

∂wl+1
ik

= Conv2Dvar(∆l+1
i ,∇wPl+1

i)

Note that the first term, ∆l+1
ı (m, n), in Eq. (33) is a 2D map

matrix) independent of the kernel indices, r and t. It will be
lement-wise multiplied by the other two latter terms, each with
he same dimension, (i.e., M-2xN-2 for Kx = Ky = 3) and created
y derivative functions of nodal and pool operators applied over
he pixels of the MxN output, ylk, and the corresponding weight
alue, wl+1

ik (r, t). Note that although wl+1
ik (r, t); is fixed for each

shift value, r and t; the pixels ylk(m, n) are taken from different
(shifted) sections of ylk. This operation is illustrated in Fig. 15.

To accommodate the boundary conditions for Eq. (33), once
again consider the simple ONN in Fig. 16. The generic weight
sensitivity expression in Eq. (33) can accommodate the boundary
conditions by properly forming the 4D matrices, ∇ΨkiP

l+1
i and

∇wΨ l+1
ki . The former 4D matrix is already formed properly by

considering the boundary pixels of the output map, ylk(m, n).
Similarly, the latter 4D matrix, ∇wΨ l+1

ki , is now formed by con-
sidering the filter parameters, wl+1

ik (r, t) that operate with the
output map pixels. For the toy ONN, ∇wPl+1

i (m, n, r, t) = ylk(m, n)
1
whenever applicable, and Fig. 16 illustrates the pixels of y0 that

S. Kiranyaz, J. Malik, H.B. Abdallah et al. Neural Networks 140 (2021) 294–308
Recall: xl+1i (m− r, n− t)
⏐⏐(M−1,N−1)
(Kx,Ky) = bl+1i +

N1∑
k=1

P l+1
i

[
. . . , Ψ l+1

i

(
wl+1

ik (r, t), ylk(m, n)
)
, . . .

]
(31)

∴
∂E

∂wl+1
ik

(r, t)

⏐⏐⏐⏐⏐
(Kx−1,Ky−1)

(0,0)

=

M+r−Kx∑
m=r

N+t−Ky∑
n=t

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂E
∂xl+1ı (m− r, n− r)

×
∂xl+1ı (m− r, n− t)

∂P l+1
i

[
Ψ l+1

i

(
ylk(m− r, n− t), wl+1

ik (0, 0)
)
, . . . , Ψ l+1

i

(
ylk(m, n), wl+1

ik (r, t),
)
. . .
]

×
∂P l+1

i

[
Ψ l+1

i

(
ylk (m− r, n− t) , wl+1

ik (0, 0)
)
, . . . , Ψ l+1

i

(
ylk(m, n), wl+1

ik (r, t),
)
. . .
]

∂Ψ l+1
ik

(
ylk (m, n) , wl+1

ik (r, t)
)

×
∂Ψ l+1

ik

(
ylk(m, n), wl+1

ik (r, t)
)

∂wl+1
ik (r, t)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(32)

Box III.
K

L

L

L

L

L

L

L

M

M

M

M

M

N

P

Q

R

R

R
R

S
S

T

T

are operated with the weight elements, w2
0(0, 0), and w2

0(1, 1) of
the output neuron. It is obvious that the boundary pixels of y10 do
not operate with all the weight elements and naturally this will
yield ∇ΨkiP

2
0 (m, n, r, t) = 0 for those pixel elements, y10(m, n) that

do not operate with w2
0(r, t).

Further implementation details for BP training are in Kiranyaz,
Ince et al. (2020).

References

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layerwise
training of deep networks. In NIPS.

Chen, Y., Yu, W., & Pock, T. (2015). On learning optimized reaction diffusion
processes for effective image restoration. In Proc. IEEE Conf. Comput. Vis.
pattern recognit. (pp. 5261–5269).

Diederik, K., & Ba, J. L. (2014). ADAM: A method for stochastic optimization. AIP
Conference Proceedings, 1631, 58–62. http://dx.doi.org/10.1063/1.4902458.

Duchi, J., Hazan, E., & Singer, Y. (2010). Adaptive subgradient methods for online
learning and stochastic optimization. In COLT 2010-23rd Conf. Learn. theory
(pp. 257–269).

Ince, T., Kiranyaz, S., & Gabbouj, M. (2009). A generic and robust system for
automated patient-specific classification of electrocardiogram signals. IEEE
Transactions on Biomedical Engineering, 56(5), 1415–1426.

Isa, N. A. M., & Mamat, W. M. F. W. (2011). Clustered-hybrid multilayer per-
ceptron network for pattern recognition application. Applied Soft Computing,
11(1), 1457–1466.

Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation
with conditional adversarial networks. In Proc. of the IEEE Conf.on computer
vision and pattern recognition (CVPR).

Jain, V., & Learned-Miller, E. (2010). FDDB: A Benchmark for face detection in
unconstrained settings: Technical report UM-CS2010-009, Amherst: University
of Massachusetts.

Jain, V., & Seung, S. (2009). Natural image denoising with convolutional net-
works. Proceedings of the Advances in Neural Information Processing Systems,
769–776.

Karayiannis, N. B., & Randolph-Gips, M. M. (2003). The construction and training
of reformulated radial basis function. IEEE Transactions on Neural Networks.

Kiranyaz, S., Ince, T., & Gabbouj, M. (2014). Multi-dimensional particle swarm
optimization for machine learning and pattern recognition (p. 383). Book:
Springer.

Kiranyaz, S., Ince, T., Iosifidis, A., & Gabbouj, M. (2017a). Generalized model of
biological neural networks: progressive operational perceptrons. In IJCNN.

Kiranyaz, S., Ince, T., Iosifidis, A., & Gabbouj, M. (2017b). Progressive operational
perceptrons. Neurocomputing, 224, 142–154.

Kiranyaz, S., Ince, T., Iosifidis, A., & Gabbouj, M. (2020). Operational neural
networks. Neural Computing and Applications (Springer-Nature), http://dx.doi.
org/10.1007/s00521-020-04780-3.

Kiranyaz, S., Ince, T., Yildirim, A., & Gabbouj, M. (2009). Evolutionary artificial
neural networks by multi-dimensional particle swarm optimization. Neural
Networks, 22, 1448–1462.

Kiranyaz, S., Malik, J., Abdallah, H. B., Ince, T., Iosifidis, A., & Gabbouj, M.
(2020). Exploiting heterogeneity in operational neural networks by synaptic
plasticity. Neural Computing and Applications (Springer-Nature), (In Print).

Kiranyaz, S., Waris, M.-A., Ahmad, I., Hamila, R., & Gabbouj, M. (2016). Face seg-
mentation ın thumbnail images by data-adaptive convolutional segmentation
networks. In Int. Conf. on image processing, ICIP’16. Phoenix, Arizona, USA.
307
Klausberger, T., & Somogyi, P. (2008). Neuronal diversity and temporal gen-
eratives: the unity of hippocampal circuit operations. Science, 321(5885),
53–57.

ulkarni, M., & Karande, S. (2017). Layer-wise training of deep networks using
kernel similarity. arXiv preprint arXiv:1703.07115.

earned-Miller, E., Huang, G. B., RoyChowdhury, A., Li, H., & Hua, G. (2016).
Labeled faces in the wild: A survey. In Advances in face detection and facial
image analysis (pp. 189–248). Springer Nature.

efkimmiatis, S. (2017). Non-local color image denoising with convolutional
neural networks. In Proc. IEEE Conf. Comput. Vis. pattern recognit. (pp.
3587–3596).

i, Y., Qi, H., Dai, J., Ji, X., & Wei, Y. (2017). Fully convolutional instance aware
semantic segmentation. In Computer vision and pattern recognition (CVPR) (pp.
4438–4446).

in, T., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014).
Microsoft COCO: Common objects in context. In ECCV (pp. 740–755).

ong, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 3431–3440).

ong, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for
semantic segmentation. In 2015 IEEE conference on computer vision and
pattern recognition (CVPR) (pp. 3431–3440), Boston, MA. http://dx.doi.org/
10.1109/CVPR.2015.7298965.

uc, P., Couprie, C., Chintala, S., & Verbeek, J. (2016). Semantic segmentation
using adversarial networks. CoRR, abs/1611.08408.

arder, E., & Goaillard, J. M. (2006). Variability, compensation and homeostasisin
neuron and network function. Nature Reviews Neuroscience, 563–574.

ashor, M. Y. (2000). Hybrid multilayered perceptron networks. International
Journal of Systems Science, 31(6), 771–785.

asland, R. H. (2001). Neuronal diversity in the retina. Current Opinion in
Neurobiology, 431–436.

cCulloch, W., & Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133.

oore, C. I., Carlen, M., Knoblich, U., & Cardin, J. A. (2010). Neocortical
interneurons: from diversity, strength. Cell, 189–193.

usser, Z. (2009). Variability in the subcellular distribution of ion channels
increases neuronal diversity. Trends Neuroscience, 267–274.

ham, H., et al. (2018). Efficient neural architecture search via parameters
sharing. In ICML.

ian, N. (1999). On the momentum term in gradient descent learning al-
gorithms. Neural Networks, 12, 145–151. http://dx.doi.org/10.1016/S0893-
6080(98)00116-6.

auber, T. W., & Berns, K. (2011). Kernel multilayer perceptron, conference on
graphics, patterns and images.

onneberger, O., Fischer, P., & Brox, T. (2015). UNet: convolutional networks for
biomedical image segmentation. In International conference on medical image
computing and computer-assisted intervention (pp. 234–241).

uder, S. (2016). An overview of gradient descent optimization algorithms.
uiwang, H., & Binwang, H. (2002). A new algorithm of selection the radial basis

function networks center. In ICMLC.
elfONN (2021). http://selfonn.net/.
oltesz, I. (2002). Diversity in the neuronal machine: order and variability in

interneuronal microcircuits. USA: Oxford University Press.
ieleman, T., & Hinton, G. Lecture 6.5 - RMSProp. Neural Networks for Machine

Learning | Coursera, (n.d.).
ran, D. T., Kiranyaz, S., Gabbouj, M., & Iosifidis, A. (2018). Progressive operational

perceptron with memory. arXiv:1808.06377.

http://refhub.elsevier.com/S0893-6080(21)00078-2/sb1
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb1
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb1
http://dx.doi.org/10.1063/1.4902458
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb4
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb4
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb4
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb4
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb4
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb5
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb5
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb5
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb5
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb5
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb6
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb6
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb6
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb6
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb6
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb8
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb8
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb8
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb8
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb8
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb9
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb9
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb9
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb9
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb9
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb10
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb10
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb10
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb11
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb11
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb11
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb11
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb11
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb12
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb12
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb12
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb13
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb13
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb13
http://dx.doi.org/10.1007/s00521-020-04780-3
http://dx.doi.org/10.1007/s00521-020-04780-3
http://dx.doi.org/10.1007/s00521-020-04780-3
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb15
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb15
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb15
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb15
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb15
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb16
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb16
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb16
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb16
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb16
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb18
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb18
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb18
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb18
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb18
http://arxiv.org/abs/1703.07115
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb20
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb20
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb20
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb20
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb20
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb22
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb22
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb22
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb22
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb22
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb23
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb23
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb23
http://dx.doi.org/10.1109/CVPR.2015.7298965
http://dx.doi.org/10.1109/CVPR.2015.7298965
http://dx.doi.org/10.1109/CVPR.2015.7298965
http://arxiv.org/abs/1611.08408
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb27
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb27
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb27
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb28
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb28
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb28
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb29
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb29
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb29
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb30
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb30
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb30
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb31
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb31
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb31
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb32
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb32
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb32
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb33
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb33
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb33
http://dx.doi.org/10.1016/S0893-6080(98)00116-6
http://dx.doi.org/10.1016/S0893-6080(98)00116-6
http://dx.doi.org/10.1016/S0893-6080(98)00116-6
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb35
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb35
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb35
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb36
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb36
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb36
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb36
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb36
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb37
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb38
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb38
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb38
http://selfonn.net/
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb40
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb40
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb40
http://arxiv.org/abs/1808.06377

S. Kiranyaz, J. Malik, H.B. Abdallah et al. Neural Networks 140 (2021) 294–308

T

T

ran, D. T., Kiranyaz, S., Gabbouj, M., & Iosifidis, A. (2019). Knowledge transfer for
face verification using heterogeneous generalized operational perceptrons. In
IEEE Int. Conf. on image processing. Taipei, Taiwan.

ran, D., Kiranyaz, S., Gabbouj, M., & Iosifidis, A. (2020). Heterogeneous
multilayer generalized operational perceptron. IEEE Transactions on Neural
Networks and Learning Systems, 31(3), 710–724. http://dx.doi.org/10.1109/
TNNLS.2019.2914082.

Yang, D., & Sun, J. (2018). BM3D-Net: A convolutional neural network for
transform-domain collaborative filtering. IEEE Signal Processing Letters, 25(1),
55–59. http://dx.doi.org/10.1109/LSP.2017.2768660.
308
Yu, F., & Koltun, V. (2015). Multi-scale context aggregation by dilated
convolutions. CoRR, abs/1511.07122.

Zhu, H., Meng, F., Cai, J., & Lu, S. (2016). Beyond pixels: A comprehensive
survey from bottom-up to semantic image segmentation and cosegmen-
tation. Journal of Visual Communication and Image Representation, 34,
12–27.

Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Proc. of the IEEE
Conf.on computer vision and pattern recognition (CVPR).

Zoph, B., et al. (2018). Learning transferable architectures for scalable image
recognition. In IEEE CVPR.

http://refhub.elsevier.com/S0893-6080(21)00078-2/sb43
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb43
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb43
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb43
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb43
http://dx.doi.org/10.1109/TNNLS.2019.2914082
http://dx.doi.org/10.1109/TNNLS.2019.2914082
http://dx.doi.org/10.1109/TNNLS.2019.2914082
http://dx.doi.org/10.1109/LSP.2017.2768660
http://arxiv.org/abs/1511.07122
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb47
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb47
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb47
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb47
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb47
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb47
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb47
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb49
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb49
http://refhub.elsevier.com/S0893-6080(21)00078-2/sb49

	Self-organized Operational Neural Networks with Generative Neurons
	Introduction
	Operational neural networks
	Self-organized operational neural networks
	Generative neurons
	Forward propagation in Self-ONNs
	Back propagation on Self-ONNs
	Computation of the weight (kernel) and bias sensitivities
	Discussions

	Experimental results
	Learning performance evaluations
	Image denoising
	Image synthesis
	Face segmentation
	Image transformation

	Computational complexity analysis

	Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix
	BP training for operational neural networks
	Computation of the delta error, 1L, at the output layer
	Inter-BP between two operational layers: Δykl∑← Δil+1
	Intra-BP in an operational neuron: ΔklBP← Δykl
	Computation of the weight (kernel) and bias sensitivities

	References

