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a b s t r a c t 

Dictionary learning for sparse representations has been successful in many reconstruction tasks. Simpli- 

cial learning is an adaptation of dictionary learning, where subspaces become clipped and acquire arbi- 

trary offsets, taking the form of simplices. Such adaptation is achieved through additional constraints on 

sparse codes. Furthermore, an evolutionary approach can be chosen to determine the number and the 

dimensionality of simplices composing the simplicial, in which most generative and compact simplicials 

are favored. This paper proposes an evolutionary simplicial learning method as a generative and compact 

sparse framework for classification. The proposed approach is first applied on a one-class classification 

task and it appears as the most reliable method within the considered benchmark. Most surprising results 

are observed when evolutionary simplicial learning is considered within a multi-class classification task. 

Since sparse representations are generative in nature, they bear a fundamental problem of not being ca- 

pable of distinguishing two classes lying on the same subspace. This claim is validated through synthetic 

experiments and superiority of simplicial learning even as a generative-only approach is demonstrated. 

Simplicial learning loses its superiority over discriminative methods in high-dimensional cases but can 

further be modified with discriminative elements to achieve state-of-the-art performance in classification 

tasks. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Sparse representations have been proven to be very successful

t restoration and reconstruction tasks such as compression, de-

oising, deblurring, inpainting and superresolution [1] . In essence,

hey aim at modeling the data/signal through concise linear com-

inations attained from an overcomplete basis or set of elements.

his overcomplete set of elements is named as the dictionary and

t can either be carefully fixed (experimentally or analytically) or

e adapted to the data at hand through learning [2] . Conventional

onconvex optimization of dictionary learning for sparse represen-

ations is given in Eq. (1) as follows, 

rg min 

A , { x i } 

∑ 

i 

‖ y i − Ax i ‖ 

2 
2 subject to ‖ x i ‖ 0 ≤ q, ∀ i, (1)

here the matrix A is the designated overcomplete dictionary and

 i is the sparse representation vector of the data point y i , ∀ i .

hile minimizing the reconstruction error of y over the dictio-
i 
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ary A , each sparse vector x i can have a maximum q number of

onzero components due to the strict � 0 -norm constraint. In liter-

ture, there exist approximate iterative solutions (namely, sparse

oding and dictionary update ) to this highly nonconvex problem

nd its variants [3] . 

In addition to reconstructive signal processing tasks, dictionary

earning can also be employed in machine learning problems such

s classification and clustering [4–6] . At this point, it is proper

o introduce one-class classification, as the fundamental form of

he general classification problem, to bridge the gap between re-

onstructive signal processing and machine learning. Supervised

achine learning in the form of classification inherently suggests

he existence of more than one label. The concept of one-class

earning, also known as one-class or unitary classification, emerges

hen there only exists a single label within the dataset, and one

eeds to discriminate it against all possible unseen labels [7] . It

s actually a special case of binary classification where there is

he “in-class” label and also the “out-of-class”, but there is not

ny or enough number of “out-of-class” samples within the train-

ng dataset. Therefore, in the absence or weakness of the opposing

lass samples, conventional binary classification methods will have

ifficulties as they target the decision boundary in-between. 

https://doi.org/10.1016/j.sigpro.2020.107634
http://www.ScienceDirect.com
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Fig. 1. Conventional dictionary learning is incapable of distinguishing inten- 

sity/magnitude, or more technically two classes within the same subspace. 
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One-class learning methods can be categorized by the type of

the targeted classifier model. There exist decision-boundary ap-

proaches which seek enclosing hyperspheres, hyperplanes or hy-

persurfaces in general [8] . These methods can adjust the level-of-

detail through the usage of parametrized kernels to cope with the

over- or under-fitting problem. On the other hand, graph-based

methods try to fit a skeleton with-in data in a bottom-up man-

ner. As an example, a minimum spanning tree model can be uti-

lized as a one-class classifier [9] , in which the classification proce-

dure relies on the distance to the tree. A generalization of graph-

based approaches is attained through the concept of hypergraph,

in which a hyperedge can now connect more than two data points

or vertices. Hypergraph models not only allow custom but also

lead the way to heterogeneous dimensionality. Such models are in-

vestigated in Wei et al. [10] , Silva and Willett [11] . As detailed in

Section 2 , simplicial learning through an extension of dictionary

learning can be thought as the utmost generalization of the graph-

based domain, in which vertices of a hypergraph can now move

freely in space, taking the form of a simplicial. Note that in the

present formulation, the targeted model is not necessarily a sim-

plicial complex which is a much stricter construct that prohibits

self-intersections [12] . The term simplicial refers here to an arbi-

trary union of simplices in the most general sense. 

By definition, an inner-skeleton method seeks a low and pos-

sibly heterogeneous dimensional piecewise linear model that ex-

presses the data well in a compact manner. Most importantly, the

dictionary learning concept can be categorized as an inner-skeleton

method. However, the skeleton attained is not bounded in space

but rather an infinite one, where each infinite linear bone is con-

nected to all others at the origin. Technically speaking, a bone cor-

responds to a linear subspace of arbitrary dimensions. This con-

ception will be indeed helpful when dictionary learning is consid-

ered within a multi-class classification framework. In its traditional

multi-class formulations, the sparse representation based classifier

models a separate dictionary for each distinct class through a data

fidelity term together with an � p -norm regularization constraint on

sparse codes ( p = 0 or 1 in general). Later, the test data is encoded

sparsely and classified accordingly favoring the most reconstructive

or representative dictionary [13] . In the absence of other modifica-

tions, this form of sparse representation based classifier is known

to be generative-only. The generative type approaches can create

natural random instances of a class, in contrast to discriminative-

only methods which focus on decision boundaries between classes.

In a simplistic manner, one can draw parallels between inner-

skeleton and generative formulations which discard the exis-

tence of other classes; on the other hand, also between decision-

boundary and discriminative approaches which need the existence

of opposing classes. Not surprisingly, a method can be both gener-

ative and discriminative at the same time. Discrimination, in this

sense, rises from the fact that while learning a dictionary (or a

model) for a class, the data points from other classes are also taken

into consideration, i.e., distance to those other points are to be

maximized. Some examples of discriminative dictionary learning

methods can be given as [14,15] . 

There is a subtle but crucial point that goes unnoticed in

sparse representation based classifier applications and this forms

the backbone of the proposed study in this paper. Corresponding

to this upcoming point, XOr problem of neural networks dictates

that a single layer perceptron is not capable of separating XOr in-

puts as only a single linear decision boundary is at hand. This

has paved way to multilayer formulations that can solve linearly

non-separable cases. A similar problem haunts dictionary learning

methods silently. Consider the case as demonstrated in Fig. 1 , in

which there are two classes of digit 8. “Pale class” includes pale

images, while “Bright class” contains exactly the same images but

they are brightened up. In technical terms, there are two opposing
lasses lying on the same subspace in the eyes of linear dictio-

ary learning methods. No matter how much discriminative they

re, traditional techniques will be incapable of totally distinguish-

ng these two classes. In other words, dictionary learning in its

onventional form is insensitive to intensity/magnitude and it will

ever be able to solve problems requiring intensity/magnitude dis-

inction. 

This study proposes a new dictionary learning framework for

parse representations through simplicials. While adapting conven-

ional optimization constraints on sparse codes, the developed evo-

utionary simplicial learning algorithm leads to a strong generative

pproach. Experimental validation on different classification tasks

emonstrates that this generative-only structure can successfully

istinguish two different classes lying on the same subspace as

n advantage, while there exist some shortcomings when its dis-

riminative power is under consideration. Achieving state-of-the-

rt performance in most cases is highly possible through further

odifications with discriminative elements. The remaining part of

his paper is organized as follows. Section 2 introduces the basic

oncepts and mathematical foundations of simplicial learning as

n extension to classical dictionary learning for sparse representa-

ions. Then, Section 3 details the proposed simplicial learning algo-

ithm by adopting an evolutionary approach with the appropriate

tness function to the problem. Section 4 later reports experimen-

al simulations over several datasets and illustrates the obtained

esults in different classification tasks. Finally, Section 6 briefly

oncludes this study together with possible considerations which

an be adapted to strengthen both theoretical and application as-

ects of the proposed framework. 

. Simplicial learning: an extension of dictionary learning 

.1. Definitions 

Dictionary learning optimization in Eq. (1) basically tries to fit a

nion of subspaces to the data. Such subspaces are indeed infinite-

xtent and all crossing the origin without offsets, designated by the

ictionary elements usually referred to as atoms . Simplicial learn-

ng as an adaptation of dictionary learning aims instead at fit-

ing bounded generic piecewise linear objects to the data. Table 1

onsiders certain bounded generic piecewise linear objects. There

re many not-equivalent formal definitions of the first construct,

amely a polytope to be discussed. This study strictly sticks with

he definition that “a polytope is an intact object which admits a

implicial decomposition.” Hence, a polytope is made up of one or



Y. Oktar and M. Turkan / Signal Processing 174 (2020) 107634 3 

Table 1 

Distinctions between the terms for generic objects. 

May not be intact Piecewise linear Heterogeneous dimensionality Arbitrary intersections 

Polytope ✗ 
√ 

? 
√ 

Simplicial complex 
√ √ √ 

✗ 

Simplicial 
√ √ √ √ 

Fig. 2. A simple example of how additional constraints on sparse codes affect the solution of sparse representations. (a) The conventional sparsity constraint together with 

(b) sum-to-one ( t 1 + t 2 = 1 ) and (c) sum-to-one and non-negativity ( t 1 + t 2 = 1 and t 1 , t 2 ≥ 0) constraints. 
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ore simplices, whereas it is still in question that such simplices

an be of different dimensions. 

There are two possible ways to generalize the concept of poly-

ope. In the first generalization, connectedness can be discarded

eading to the fact that there is not a single object but multiple

bjects being considered at the same time. The second one al-

ows the building-blocks namely simplices to have different dimen-

ions, thus leading to heterogeneously dimensional objects. A for-

al name for such union of simplices is a simplicial complex , but

estricted self-intersections are imposed for a rigorous treatment.

y definition, a simplicial complex is a set of simplices satisfying

he following two conditions: ( i ) every face of a simplex from this

et is also in this set and ( ii ) the non-empty intersection of any two

implices is a face of these two simplices. Losing a bit of formal-

sm, utmost flexibility can be reached by allowing such objects to

ntersect each other and themselves in arbitrary ways, and such fi-

al construct is simply named as a simplicial in the remaining part

f this paper, to refer to an arbitrary union of simplices in the most

eneral sense. For a more rigorous treatment of these definitions

nd related concepts, readers might refer to [16] . 

.2. Related work 

Simplex and simplicial complex based data applications are be-

oming popular in literature as data analysis receives more and

ore topological considerations [17–21] . Moreover, utilizing sim-

lices for data applications is not a completely new idea from

he perspective of sparse representations [22,23] . Quite similarly,

n this study an adaptation of sparse representations framework is

hosen that casts a union of subspaces to a union of simplices. A

igorous mathematical formulation is detailed in the following. 

.3. Mathematical formulation 

There are three necessary modifications to make a successful

ransition from the traditional dictionary learning formulation to

implicial learning. First of all, an additional sum-to-one constraint

s needed on the sparse codes as noted in Eq. (2) as follows, 

rg min 

A , { x i } 

∑ 

i 

‖ y i − Ax i ‖ 

2 
2 subject to ‖ x i ‖ 0 ≤ q ∧ 1 

T x i = 1 , ∀ i, 

(2) 
here 1 denotes the column vector of ones, of appropriate size

ith the sparse vectors x i . Such modification casts q -dimensional

ubspaces into ( q − 1 )-dimensional flats, a flat being a ( q − 1 )-

ubspace with an arbitrary offset. A geometric explanation is il-

ustrated in Fig. 2 (a-b) for the case when q = 2 . In this example,

 subspace solution (i.e., an infinite-extent plane) of sparse repre-

entations is indeed reduced into a flat (i.e., an infinite-extent line)

ith an additional sum-to-one constraint on sparse codes. 

In addition to above constraint, the second necessary modifi-

ation is an additional non-negativity on sparse codes as noted in

q. (3) as follows, 

rg min 
A , { x i } 

∑ 

i 

‖ y i − Ax i ‖ 2 2 subject to ‖ x i ‖ 0 ≤ q ∧ 1 T x i = 1 ∧ 0 ≤ x i , ∀ i, 

(3) 

here 0 denotes the column vector of zeros, of appropriate size

ith the sparse vectors x i . Together with sum-to-one constraint,

parse codes are now restricted to [0 − 1] range in magnitude and

hus represented flat as an infinite-extent line turns into a simplex

i.e., a bounded line, line segment) as apparent in Fig. 2 (b-c) for

 = 2 . In the most generic sense, a simplex can be regarded as a

ounded flat. 

Note here that there is not any structural constraint on the

parse code patterns for the optimization problems in Eqs. (1) –

3) . In other words, all possible q -combinations of dictionary atoms

re available for a q -sparse vector solution x i . Since most of these

ombinations are unnecessary for a given overcomplete dictionary,

eeping a set of possible valid combinations (i.e., forcing certain

atterns in sparse codes) will provide a more efficient and more

ompact representation. This finally leads to the concept of struc-

ured sparsity , or group sparsity in exact terms [24,25] , as a last

odification on the road to simplicial learning. 

While referring back to Section 1 , when positional information

s removed from a simplicial, the structure left then corresponds

o a hypergraph, in which a hyperedge refers to a specific sim-

lex within the simplicial. In relation to group sparsity, a hyper-

dge exactly corresponds to a group of atoms, hence a valid pat-

ern of sparse codes. As a consequence, a set of groups/hyperedges,

r more technically a hypergraph data structure needs to be kept

o define the shape of the simplicial. This hypergraph structure will

e denoted as H = { h j } where h j designates the j th hyperedge re-

erring to j th simplex within the simplicial. In accordance with this
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definition, simplicial learning with a structure imposed by H can

be formulated in Eq. (4) as follows, 

arg min 

A , { x i } , { h j } 
∑ 

i ‖ y i − Ax i ‖ 

2 
2 subject to 

‖ x i ‖ 0 ≤ q ∗
j 

∧ 1 

T x i = 1 ∧ 0 ≤ x i ∧ 

(
k / ∈ h 

∗
j 
→ x 

k 
i 

= 0 , ∀ k 
)
, ∀ i, 

(4)

where h ∗
j 

is the hyperedge indexing the closest simplex for the

data point y i , q ∗
j 
= | h ∗

j 
| denotes the dimension of that simplex,

and the 

(
k / ∈ h ∗

j 
→ x k 

i 
= 0 , ∀ k 

)
constraint ensures the group spar-

sity such that only the optimal group (i.e., hyperedge referring to

the closest simplex) in x i is to be filled and other entries which

are represented as x k 
i 

shall all be zero. Note here that groups can

be not only overlapping but also of different sizes, hence leading

to heterogeneous dimensionality. In this final form, H needs to

be learned together with A but a further careful consideration is

needed over the compactness of the simplicial in return. 

In summary, as is, the optimization in Eq. (4) is highly ill-posed

since there is no restriction on the number of simplices to be used

or the dimensions of those simplices. One could even choose a

very high-dimensional simplicial construct and zero-out the ap-

proximation error easily. Therefore, additional penalty terms need

to be investigated based on the number and the dimensionality of

simplices for a compact solution. Such a challenge appears to be

highly combinatorial in nature and an evolutionary approach can

be adopted after a careful consideration of an appropriate fitness

function, as described and detailed in Section 3 . 

3. Evolutionary approach 

To obtain an optimal or a suitable simplicial in a heuristic man-

ner, certain number of simplicials are to compete against each

other on instances of the same dataset. Basically, an evolutionary

approach includes a suitable fitness function to guide this search

process, and sub-procedures such as mutations and breeding to per-

form the actual search. 

3.1. The fitness function 

There are certain critical points to be carefully considered be-

fore designating the fitness function for the defined problem in

this study. First of all, a straightforward optimization procedure

for the number and the dimensionality of simplices will not be

enough to attain a compact model. For example, consider that the

data is distributed in the shape of a triangle with certain area. In

this case, a triangle with the most compact area should be pre-

ferred as a targeted model. However, one could fit a triangle to

this data with correct angles but excessive area. In such a case the

dimensionality or the number of simplices indeed do not change.

In conclusion, one needs also to take the area (or volume), or more

technically the content of the simplices, besides considering the

number and the dimensionality of simplices. When the simplex is

of dimension 2 (namely a triangle), the content is called the area,

when the simplex is 3 dimensional (namely a tetrahedron), the

content refers to the volume. Therefore, the term “content” gen-

eralizes area and volume concepts to higher dimensions. 

The content of an arbitrary simplex can be calculated using

Cayley-Menger determinant [26] . Let K be a q -dimensional simplex

in R 

N , and B denote (q + 1) × (q + 1) distance matrix of vertices

{ v 1 , v 2 , . . . , v q +1 } such that B ik = ‖ v i − v k ‖ 2 2 
. Then the content C K of

K is given in a relation in Eq. (5) as follows, 

 

2 
K = 

(−1) q +1 

2 

q (q !) 2 
det( ̂  B ) , (5)
here ˆ B is (q + 2) × (q + 2) matrix obtained from B by bordering

t with a top row of (0 , 1 , . . . , 1) and a left column of (0 , 1 , . . . , 1) T .

Related with the content calculation here, another issue arises

ecause of the allowed heterogeneous dimensionality in the opti-

ization formula. The content of a line-segment (as an object) and

 triangle (as an object) are incomparable in a general continu-

us setting since a triangle contains infinitely-many line-segments

tself. To resolve this problem, an exponential term is introduced

hrough an approximated cumulative discrete content calculation of

 simplicial as given in Eq. (6) as follows, 

|H| 
 

j=1 

(1 + C j ) 
q j , (6)

here |H| denotes the number of hyperedges or equivalently the

umber of simplices, C j is the content of the j th simplex and q j is

he dimension of that simplex. As a content C j < 1 would com-

licate the exponentiation used, 
(
1 + C j 

)
is needed in the discrete

pproximation. 

Having pinned down the above term which will be a com-

onent in the fitness function driving the evolutionary process,

 fitness function candidate (in a minimization form) is given in

q. (7) as follows, 
 

i 

‖ y i − Ax i ‖ 

2 
2 + α

∑ 

j 

(1 + C j ) 
q j , (7)

here sum of squared error (SSE) used as the data fidelity term

nd approximated cumulative discrete content as to regulate the

ompactness of the representation. α denotes the regularization

arameter controlling the contribution of the compactness prior on

he solution. 

While initially experimenting with the above fitness function,

t is observed that the parameter α has a very broad optimality

ange, which changes drastically from dataset to dataset. This is

ue to the fact that there is a high dynamic range imbalance be-

ween two cumulative terms. Therefore, a variant of the defined

tness function is considered by transforming Eq. (7) into the log-

rithmic scale in order to compress the dynamic range, leading to

 more natural maximization setting formulated in Eq. (8) as fol-

ows, 

log 10 

(
m ∑ 

i ‖ y i −Ax i ‖ 2 2 

)
1 + β log 10 

(
γ + 

∑ 

j (1 + C j ) 
q j 
) , (8)

here m denotes the number of data points and the parameter β
egulates over- or under-fitting. When β = 0 , the fitness function

imply reduces to the data fidelity term favoring only for the re-

onstruction quality. Instead, a high β value forces the simplicial to

e compact. Empirical investigations suggest that a β value around

.05 could be a global setting as it provides excellent results over

ll datasets considered in this study. Note that there might be no

implices at certain times of the evolution process. This would er-

oneously lead the sum of content to be zero, thus logarithm to be

nfinity. The parameter γ eliminates this possibility by fixing its

alue to 10. Hence, this parameter forces the lower logarithm to

valuate at least to value 1. 

.2. Mutations and breeding 

First of all, it is important to note here that the hypergraph

is kept in the form of an incidence matrix of zeros and ones,

here the row count corresponds to the number of simplices and

he column count matches to the number of vertices or rather the

umber of atoms (columns) in the dictionary A . Mutations can be

asily applied on this binary matrix. In detail, there are four main
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Algorithm 2: Evolutionary simplicial learning (ESL) algorithm. 

1: pop ← init_pop (Y ) 

2: while not con v erged do 

3: pop ← mutations (pop) 

4: pop ← breeding (pop) 

5: for all S in pop do 

6: X ← sparse_coding (Y , S) 

7: A ← dictionary_update (Y , X ) 

8: F ← fitness (A , H) 

9: end for 

10: pop ← sort and choose based on F values 

11: end while 

12: S best ← pop(1) 

n  

m

 

{  

s  

e  

m  

e  

t  

t  

fi

 

s  

d
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t  

v  
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6  

c  

P  

r  

A  

T  

t

rocesses that provide the background for evolution: ( i ) increas-

ng/decreasing the dimension of a simplex, ( ii ) adding/removing a

implex to/from the hypergraph, ( iii ) subdividing a simplex and ( iv )

dding/removing a vertex to/from the dictionary. All of these mu-

ation operations are performed randomly without any optimality

onsideration. 

Algorithm 1: Breeding algorithm. 

1: ( H 1 , A 1 ) ← get_structure (S 1 ) 

2: ( H 2 , A 2 ) ← get_structure (S 2 ) 

3: H a ← a random submatrix of H 1 

4: A a ← the submatrix of A 1 corresponding to H a 

5: H b ← a random submatrix of H 2 

6: A b ← the submatrix of A 2 corresponding to H b 

7: A new 

← 

[
A a A b 

]

8: H new 

← 

[
H a 0 

0 H b 

]

9: S new 

← ( H new 

, A new 

) 

As an additional tool to assist the searching process, breeding

f two simplicials is also undertaken in which both dictionary ele-

ents and hypergraph structures of those two simplicials are split

nd then merged appropriately in order to create a new simpli-

ial representative of two parents up to certain extent. Details of

he breeding procedure are depicted in Algorithm 1 . At first, hy-

ergraph structures and the corresponding dictionary elements are

xtracted for these two simplicials S 1 = ( H 1 , A 1 ) and S 2 = ( H 2 , A 2 ) .

hen random submatrices H a ∈ H 1 and H b ∈ H 2 from each hyper-

raph are attained together with the corresponding columns of

hese dictionaries, contained in matrices A a ∈ A 1 and A b ∈ A 2 .

hile vertices (atoms) are directly concatenated in A new 

(line 7),

ypergraphs are concatenated in a disjoint manner in H new 

(line

). In short, two subsimplicials are extracted and then grouped to-

ether in a disjoint manner to form a new simplicial S new 

. Such

ool can be suitably employed to exploit the underlying dimen-

ionality of the dataset since these splitting and merging pro-

esses may lead child simplicials to acquire a properly represen-

ative data-dimensionality in a very fast manner, much faster than

utation processes to perform alone. Therefore, as a general ob-

ervation, breeding determines the core dimensionality of the sim-

licial and mutations fine-tune the simplicial to the data. However,

ufficiently high dimensional simplicials should be employed in the

nitialization stage for breeding to determine the core dimension-

lity. 

.3. Implementation details 

The algorithm to learn an evolutionary simplicial model on a

et of data points { y i } n i =1 stored in the columns of a data matrix

 is given in Algorithm 2 . At first, the initial simplicial is to be

enerated from the given data points (line 1). It is observed that

hoosing a single point (i.e., centroid of the dataset) as an ini-

ial simplicial is sufficient for low-dimensional problems. Through

utations and breeding processes, the initial simplicial takes an

ppropriate form in a fast manner since the search space is rel-

tively small. However, a procedure involving the k -means algo-

ithm [27] as a subroutine is employed to designate the initial sim-

licial for high-dimensional problems. In such cases, starting from

 single point greatly slows down the process of evolution since

he search space is quite large. Hence, an initialization based on

 -means ensures that the starting simplicial is already a relatively

t one. A last point worth mentioning related to initialization here

s that the initial simplicial S should satisfy the condition that the
umerator of Eq. (8) is positive, i.e., 
∑ 

i ‖ y i − Ax i ‖ 2 2 < m to lead a

eaningful evolution. 

On line 6, the algorithm performs the projection of data points

 y i } in Y onto each simplex of the simplicial S [28,29] which ba-

ically corresponds to the sparse coding optimization. The clos-

st simplex for the data point y i , ∀ i , is determined through the

inimum approximation error acquired after projecting y i onto

ach simplex. The positive barycentric coordinates of the projec-

ion points corresponding to the sparse codes are acquired, and

hen the necessary spots of the sparse representation matrix X is

lled accordingly. 

On line 7, dictionary matrix A is updated using a direct least-

quares solution. To optimize arg min A ‖ Y − AX ‖ 2 
F 

by forcing its

erivative to zero, the analytic solution is obtained with A = YX 

+ 

here X 

+ represents Moore-Penrose pseudo-inverse of X . Note

hat there is no evolutionary process for learning A , namely the

ertices of the simplicial S . Instead, vertices are updated once ex-

ctly on this line at each iteration of the algorithm. 

Finally, the surviving simplicials are determined based on the

tness scores they attain (line 10). Experimental trials suggest that

eeping the population size at 10 is an efficient strategy, while an

teration count of 5 is sufficient instead of a full convergence. No-

ice here that the parent simplicials are to be kept in the popula-

ion pool when their fitness scores are higher than their children’s.

. Experimental results 

The proposed method is tested in two phases of experiments

o evaluate its classification capabilities. In the first experimental

etup, the performance is evaluated in a one-class classification

ask for outlier detection. Datasets contain certain degree of out-

iers in such outlier detection problems, and methods learn models

agnostic of data labels– in an unsupervised manner. In the sec-

nd classification task, the performance of the proposed method

s evaluated in a multi-class setting. At this stage, seven synthetic

ulti-class datasets are generated in addition to two handwrit-

en digit recognition datasets. The synthetic datasets are special in

hat they contain cases which require intensity/magnitude distinc-

ion, especially very challenging for conventional dictionary learn-

ng methods. 

All experiments are performed on an Intel(R) Core(TM) i 7 −
700 HQ CPU @ 2 . 60 GHz 16 GB RAM machine running on Mi-

rosoft Windows 10. Benchmark of outlier detection dataset named

yOD [30] is run with Python 3.6 and the proposed ESL algo-

ithm is implemented using Matlab 2014a on the same machine.

ll multi-class experiments are carried out on Matlab 2014a. DIC-

OL as the part of LRSDL project [31] is utilized for the implemen-

ations of other dictionary learning methods. 
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Table 2 

Information regarding the datasets used in outlier detection ex- 

periments. 

Dataset #Samples #Dimensions Outlier ratio (%) 

arrhythmia 452 274 14.6018 

cardio 1831 21 9.6122 

glass 214 9 4.2056 

ionosphere 351 33 35.8974 

letter 1600 32 6.2500 

lympho 148 18 4.0541 

mnist 7603 100 9.2069 

musk 3062 166 3.1679 

optdigits 5216 64 2.8758 

pendigits 6870 16 2.2707 

pima 768 8 34.8958 

satellite 6435 36 31.6395 

satimage-2 5803 36 1.2235 

shuttle 49 , 097 9 7.1511 

vertebral 240 6 12.5000 

vowels 1456 12 3.4341 

wbc 378 30 5.5556 
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4.1. Outlier detection 

In total 17 benchmark datasets are taken from ODDS Li-

brary [32] for the one-class learning task. Information regarding

these datasets in terms of number of samples, sample dimension-

ality and outlier percentages is summarized in Table 2 and inter-

ested readers might refer to [32] for details about each individ-

ual dataset. Using these benchmark datasets, a random 60% to 40%

train-test set split is repeated for 10 independent simulations and

the mean Area Under The Curve (AUC) Receiver Operating Charac-

teristics (ROC) results are reported in Table 3 . 

The proposed Evolutionary Simplicial Learning (ESL) method is

evaluated against an extensive outlier detection benchmark named

as PyOD [30] . The competing methods include Angle-based Out-

lier Detector (ABOD) [33] , Clustering-based Local Outlier Factor

(CBLOF) [34] , Feature Bagging (FB) [35] , Histogram-based Outlier

Score (HBOS) [36] , Isolation Forest (IForest) [37] , K Nearest Neigh-

bors (KNN) [38] , Local Outlier Factor (LOF) [39] , Minimum Covari-

ance Determinant (MCD) [40] , One-class Support Vector Machine

(OCSVM) [41] and Principal Component Analysis (PCA) [42] and

one of the most recent results obtained in Weng et al. [43] on the

same benchmark (with an average of 20 runs for each dataset). 

Last two rows of Table 3 illustrate the mean AUC ROC re-

sults over all datasets and their standard deviations. ESL not only

presents the best average AUC ROC performance among all meth-

ods in the benchmark but also has the least standard deviation.

One can conclude that it is the most reliable methods among con-

sidered techniques for this performance measure. Moreover, ESL

shows top AUC ROC performance in three datasets. However, ad-

ditional tests show that it does not have a noticeable advantage in

Precision at n (P@n) performance. 

4.2. Multi-class classification 

For the multi-class classification task, six challenging syn-

thetic datasets are generated by following the procedures in noa

[44] and these datasets are depicted in Fig. 3 . Four of these

datasets (namely, Cluster-in-Cluster; Two-Spirals; Half-Kernel and

Crescent&Full-moon ) contain binary classification tasks while the

remaining two of them ( Corners and Outliers ) consist of four-class

classification problems. In addition, a synthetically altered dataset

(named as MNIST8) is included in the experimental setup, in which

all samples of the digit 8 from the original MNIST [45] are desig-

nated as the “Bright class” while a new “Pale class” is generated
rom all these original samples by dimming with a scale of 0.25

ccording to the previous discussion related to Fig. 1 . 

The proposed ESL algorithm in this setup is compared against

parse Representation-based Classification (SRC) [46] , Label Con-

istent K-SVD (LCKSVD1 and LCKSVD2) [15] , Dictionary Learning

ith Structured Incoherence (DLSI) [47] , Fisher Discrimination Dic-

ionary Learning (FDDL) [48] , Dictionary Learning for Commonality

nd Particularity (DLCOPAR) [49] and Low-rank Shared Dictionary

earning (LRSDL) [31,50] . Experimental results in terms of classifi-

ation success rates are presented in Table 4 . It is apparent that ESL

asily outperforms all considered dictionary learning methods over

ll cases. This should not be a surprising result since all utilized

ynthetic datasets require intensity/magnitude distinction to vari-

us extents. On the other hand, some discriminative methods such

s LCKSVD2, FDDL and LRSDL undergo meaningful learning (i.e.,

etter than random) over some datasets. This observation leads to

n important conclusion that discriminative modifications may al-

eviate insensitivity to intensity to a certain degree. 

Fig. 3 depicts examples of learned simplicial models on six

ynthetic datasets. As it can be observed clearly, simplicials are

ounded and they are composed of simplices (i.e., points and line-

egments in these cases) with arbitrary offsets, providing an ad-

antage over unbounded and without-offset dictionary learning

odels in all these classification tasks. 

Digit Classification : In most of the practical pattern recognition

pplications, the pattern or rather the direction of the feature vec-

or utilized plays an important role on the success rate. For in-

tance, a “star pattern” is a “star pattern” no matter how much

right or pale it is. Therefore, the advantage of simplicial learning

ver dictionary learning is expected to diminish in some real-world

pplications. This is observable in digit classification experiments

eaturing USPS [51] and MNIST datasets as reported in Table 5 .

n this set of experiments, ESL is compared to classification meth-

ds including Supervised Dictionary Learning [14] with generative

raining (SDL-G) and with discriminative learning (SDL-D), Task-

riven Dictionary Learning [52] : unsupervised (TDDL-G) and su-

ervised (TDDL-D), FDDL, KNN, Gaussian SVM, Locality-constrained

inear Coding (LLC) [53] and Locality-sensitive Dictionary Learning

LDL) [13] . LLC and LDL methods have the sum-to-one constraint

n sparse codes, therefore they learn spaces with arbitrary off-

ets but learned models are still not bounded (without the non-

egativity constraint). 

As apparent from Table 5 , ESL appears to be a successful

enerative-only method which performs nearly at the capacity of

aussian SVM (i.e., a well-known and widely used discriminative

lassifier). However, it cannot outperform discriminative dictionary

earning methods such as FDDL and TDDL-D in these datasets. A fi-

al note is that ESL can also be modified through discriminative el-

ments. Discriminative methods SDL-D and TDDL-D have a 1.5–2%

dvantage over their generative counterparts SDL-G and TDDL-G.

ence, a successful discriminative version of ESL can then be pro-

ected to reach state-of-the-art, an estimation open to discussion

r further investigation. 

. Computational complexity 

Let us first dissect the loop starting on line 5 and ending on

ine 9 in Algorithm 2 since this part mainly determines the time

omplexity. On line 6, each data point y i is projected onto each

implex within the simplicial S and then assigned to the closest

ne. There are |H| simplices within a simplicial, namely the num-

er of hyperedges in the corresponding hypergraph. An efficient

rojection onto a single simplex is claimed to have a time com-

lexity of O(n ) , n is the dimension of data space [54] . In a sensi-

le model, there must be at most one simplex for each data point,

esulting in a bound |H| ≤ m and m is the number of data points.
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Table 3 

Results from 10 independent simulations for outlier detection on various datasets. While the top value in each cell is the mean AUC ROC result, 

the bottom value is the computation time in seconds. 

Dataset ABOD CBLOF FB HBOS IForest KNN LOF MCD OCSVM PCA [43] ESL 

arrhythmia 0.769 0.784 0.778 0.822 0.801 0.786 0.779 0.779 0.781 0.782 0.801 0 . 826 

0.31s 0.34s 0.68s 0.29s 0.49s 0.11s 0.09s 3.82s 0.05s 0.14s – 8.51s 

cardio 0.569 0.928 0.587 0.835 0.921 0.724 0.574 0.814 0.935 0.950 0 . 969 0.884 

0.46s 0.16s 0.97s 0.01s 0.42s 0.19s 0.12s 1.61s 0.09s 0.01s – 36.19s 

glass 0.795 0.850 0.873 0.739 0.757 0.851 0.864 0.790 0.632 0.675 – 0 . 876 

0.04s 0.05s 0.04s 0.01s 0.31s 0.01s 0.01s 0.06s 0.01s 0.01s – 4.70s 

ionosphere 0.925 0.813 0.873 0.561 0.850 0.927 0.875 0 . 956 0.842 0.796 0.911 0.851 

0.07s 0.07s 0.08s 0.01s 0.33s 0.02s 0.01s 0.35s 0.01s 0.01s – 7.09s 

letter 0 . 878 0.507 0.866 0.593 0.642 0.877 0.859 0.807 0.612 0.528 – 0.776 

0.42s 0.14s 0.88s 0.01s 0.42s 0.16s 0.11s 5.77s 0.08s 0.01s – 22.63s 

lympho 0.911 0.973 0.975 0 . 996 0.994 0.975 0.977 0.900 0.976 0.985 0.987 0.984 

0.03s 0.05s 0.04s 0.01s 0.31s 0.01s 0.01s 0.11s 0.01s 0.01s – 2.72s 

mnist 0.782 0.801 0.721 0.574 0.816 0.848 0.716 0.867 0.853 0.853 0 . 929 0.803 

8.61s 1.50s 55.79s 0.08s 2.24s 7.79s 7.43s 14.14s 4.91s 0.20s – 171.54s 

musk 0.184 0.988 0.526 1 . 0 0 0 1 . 0 0 0 0.799 0.529 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 0.972 

2.61s 0.52s 14.49s 0.08s 1.52s 2.05s 1.93s 57.93s 1.27s 0.25s – 77.48s 

optdigits 0.467 0.509 0.443 0 . 873 0.725 0.371 0.450 0.398 0.500 0.509 – 0.746 

2.96s 0.61s 14.60s 0.04s 1.24s 2.11s 1.94s 6.94s 1.45s 0.08s – 103.72s 

pendigits 0.688 0.949 0.460 0.924 0.944 0.749 0.470 0.834 0.930 0.935 0.938 0 . 951 

1.71s 0.37s 4.44s 0.01s 0.72s 0.71s 0.66s 4.82s 0.99s 0.02s – 91.98s 

pima 0.679 0 . 735 0.624 0.700 0.681 0.708 0.627 0.675 0.622 0.648 – 0.626 

0.15s 0.09s 0.12s 0.01s 0.34s 0.04s 0.01s 0.09s 0.01s 0.01s – 13.19s 

satellite 0.571 0.669 0.557 0.758 0.702 0.684 0.557 0 . 803 0.662 0.599 0.750 0.705 

2.11s 0.63s 8.52s 0.03s 1.01s 1.23s 1.14s 9.13s 1.41s 0.04s – 105.03s 

satimage-2 0.819 0.992 0.457 0.980 0.995 0.954 0.458 0.996 0 . 998 0.982 0.976 0.995 

1.91s 0.52s 6.52s 0.02s 0.80s 0.99s 0.87s 8.94s 1.14s 0.04s – 83.80s 

shuttle 0.623 0.627 0.472 0.986 0 . 997 0.654 0.526 0.990 0.992 0.990 0.994 0.992 

17.36s 1.38s 70.16s 0.03s 3.07s 10.12s 13.85s 16.11s 50.88s 0.05s – 428.03s 

vertebral 0.426 0.349 0.417 0.326 0.391 0.382 0.408 0.391 0.443 0.403 0 . 580 0.413 

0.05s 0.06s 0.04s 0.01s 0.30s 0.01s 0.01s 0.06s 0.01s 0.01s – 4.96s 

vowels 0.961 0.586 0.943 0.673 0.759 0 . 968 0.941 0.808 0.780 0.603 – 0.881 

0.31s 0.11s 0.34s 0.01s 0.38s 0.09s 0.04s 1.40s 0.04s 0.01s – 21.31s 

wbc 0.905 0.923 0.933 0 . 952 0.931 0.937 0.935 0.921 0.932 0.916 – 0.924 

0.08s 0.08s 0.09s 0.01s 0.32s 0.02s 0.01s 0.33s 0.01s 0.01s – 6.03s 

MEAN 0.703 0.764 0.677 0.782 0.818 0.776 0.679 0.808 0.793 0.774 n/a 0 . 835 

STDEV 0.210 0.195 0.203 0.192 0.164 0.182 0.199 0.179 0.183 0.197 n/a 0 . 152 

Fig. 3. Examples of learned simplicial models on six synthetic datasets. Best visualized in color. 
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herefore, complexity of the sparse coding phase is O(m 

2 n ) . On

ine 7, dictionary update is performed by Moore-Penrose pseudo-

nverse, having a time complexity of O(m 

2 v ) where v denotes the

otal number of columns (atoms) in the dictionary A . Since over-

ompleteness implies n < v ≤ m , this phase arrives at a com-
lexity of O(m 

3 ) . Lastly, line 8 includes the content calculation

or each simplex. Since it involves calculating the determinant of a

(q + 2) × (q + 2) matrix and q is the dimension of the simplex, the

omplexity can be given as O( 
∑ 

j q 
3 
j 
) assuming that LU decompo-

ition is employed for the determinant. An important remark here
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Table 4 

Classification success rates (the top value) and computation time in seconds (the bottom value) of different dictionary 

learning methods for six synthetic datasets, and for the proposed binary MNIST8 problem (the last row). 

Dataset SRC LCKSVD1 LCKSVD2 DLSI FDDL DLCOPAR LRSDL ESL 

Cluster-in-Cluster 52.77% 50.99% 54.55% 43.68% 55.53% 67.98% 45.45% 88 . 14 % 

2.74s 0.24s 0.24s 3.79s 5.82s 2.07s 33.7s 17.01s 

Two-Spirals 49.30% 41.50% 71.30% 52.30% 53.70% 51.10% 59.70% 80 . 22 % 

13.26s 0.52s 0.49s 5.97s 6.01s 3.19s 34.84s 33.76s 

Half-Kernel 63.80% 64.40% 65.60% 51.60% 58.00% 62.80% 64.80% 93 . 65 % 

2.60s 0.25s 0.26s 3.96s 5.98s 2.14s 23.99s 17.32s 

Crescent&Full-moon 75.00% 82.60% 78.00% 55.60% 64.40% 64.20% 85.60% 99 . 80 % 

2.59s 0.26s 0.25s 3.23s 5.72s 2.04s 24.44s 15.07s 

Corners 91.00% 25.00% 44.80% 27.80% 29.60% 29.20% 27.80% 97 . 50 % 

2.60s 0.47s 0.39s 8.98s 5.82s 3.84s 37.31s 13.62s 

Outliers 51.33% 43.33% 80.00% 52.33% 75.67% 53.33% 99.27% 10 0 . 0 0 % 

0.59s 0.38s 0.33s 9.08s 5.84s 5.40s 30.78s 8.26s 

MNIST8 50.00 50.00% 50.00% 50.00% 75.45% 50.05% 63.24% 99 . 05 % 

1746.49s 81.25s 82.14s 61.92s 16.37s 42.31s 661.54s 604.91s 

Table 5 

Classification error rates of various methods on handwritten digit datasets, USPS and MNIST. ESL appears as a 

superior generative method, nearly performing at the capacity of discriminative Gaussian SVM on both datasets. 

Generative-only Discriminative 

Dataset SDL-G TDDL-G LLC LDL ESL KNN SVM-Gauss SDL-D FDDL TDDL-D 

USPS 6.67 4.58 4.48 3 . 79 4.31 5.2 4.2 3.54 3.69 2 . 84 

MNIST 3.56 2.36 – – 1 . 85 5.0 1.4 1.05 – 0 . 54 
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is that 
∑ 

j q 
3 
j 

is negligible compared to m 

3 and dictionary update is

still the most expensive step within the loop. However, having very

high dimensional simplices will slow down the algorithm. Note

also that sorting, applying mutations and breeding are not com-

putationally expensive when compared against operations within

the loop. 

Let us now discuss the sensitivity of the algorithm to the ra-

tio between actual dimension of the ambient space and actual in-

ner size of the data. As noted before, mutations alone increase or

decrease the dimensions of the model in a relatively slow man-

ner. This is the main reason of breeding which may speed up

the algorithm by creating children that are much less dimensional

than their parents. Assuming that the starting simplicials have high

enough dimensions, the breeding process uncovers the core di-

mensionality and then mutations will uncover local varieties. In

short, it would take a long amount of time to recover the actual

inner size of the data if only mutations were being used, but the

algorithm can cope with this issue via the breeding process in a

more effective way. 

As a final note, the complexity of the proposed evolutionary

approach is highly related to the population size. Therefore, the

population size can be adjusted accordingly to satisfy the com-

putational requirements versus the performance criteria. Moreover,

the implemented Matlab code in this study is experimental, hence

even larger population sizes can be manageable with more opti-

mized implementations. 

6. Discussion and conclusion 

Dictionary learning through simplicials is more flexible than

classical dictionary learning models since simplices are bounded

and freely positioned in space. The proposed sparsity based evolu-

tionary structure, called ESL is highly applicable if the characteris-

tics of the problem at hand requires such successful localized mod-

els. In this study, a global fitness function is employed and there is

no restriction on the local fitness of each individual simplex within

the simplicial. If the local fitness of each simplex is considered and

optimized individually, the resulting simplicial model might be in

a more compact form. For example, the unnecessary simplex of the
reen simplicial in Fig. 3 (c) would most probably be eliminated as

t does not have any local fitness, thus lead to an increased ac-

uracy of classification. Another point worth mentioning here is

hat the employed fitness function in Eq. (8) is reminiscent of Pois-

on distribution, in a multidimensional form [55,56] . Hence, other

robabilistic considerations and also discriminative elements can

e adapted to strengthen both theoretical and application aspects

f the proposed framework. 

As exemplified in this paper, simplicial learning can success-

ully address some weak points of conventional dictionary learning

or the considered machine learning problems; it is a promising

pproach inherently capable of performing signal processing tasks

nd can become a general machine learning tool with many appli-

ation domains. 
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