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a b s t r a c t 

The visual system enables humans to perceive all details of the real-world with vivid colors, while high 

dynamic range (HDR) technology aims at capturing natural scenes in a closer way to human perception 

through a large dynamic range of color gamut. Especially for traditional –low dynamic range (LDR)– de- 

vices, HDR-like image generation is an attractive research topic. Blending a stack of input LDR exposures 

is called multi-exposure image fusion (MEF). MEF is indeed a very challenging problem and it is highly 

prone to halo effects or ghosting and motion blur in the cases when there are spatial discontinuities 

in between input exposures. To overcome these artifacts, MEF keeps the “best” quality regions of each 

exposure via a weight characterization scheme. This paper proposes an effective weight map extraction 

framework which relies on principal component analysis, adaptive well-exposedness and saliency maps. 

The characterized maps are later refined by a guided filter and a blended output image is obtained via 

pyramidal decomposition. Comprehensive experiments and comparisons demonstrate that the developed 

algorithm generates very strong statistical and visual results for both static and dynamic scenes. In ad- 

dition, the designed method is successfully applied to the visible-infrared image fusion problem without 

any further optimization. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

The human visual system (HVS) can perceive thousands of col- 

rs and fine details present in natural scenes. On the other hand, 

rtificial vision systems which are developed based on the HVS 

ay have critical drawbacks. For instance, HDR compatible cam- 

ras and screens can be used to capture and display high contrast 

atural scenes in a closer way to human observers. However, HDR 

quipment has still a relative high-cost, hence it may currently 

e not affordable for many consumers. In order to lower the eco- 

omic burden, HDR cameras can be used to capture HDR content 

hich can then be mapped to conventional LDR screens via tone- 

apping operators. Yet, tone-mapping may produce undesired out- 

omes such as low-subjective contrast and color saturation [1,2] . 

lternatively, one can prefer to obtain high-quality LDR (HDR-like) 

mages through MEF approaches [3] , which is not only useful in 

DR imaging but also in applications such as haze removal [4,5] . 

MEF aims at keeping the ”best parts“ of each distinct expo- 

ure while blending an input stack into a single informative im- 

ge [6] . The fusion operation is guided by weight maps which 

ighlight the most detailed and informative parts of each LDR ex- 
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osure. The map extraction process is troublesome for both static 

nd dynamic scenes, and the faulty computed weights may cause 

ndesired sharp color changeovers, jitter effects, halos and ghost- 

ng artifacts [3] . Therefore, the main objective is to develop robust 

eight map extraction and/or characterization methods which will 

e consequently the novel parts of MEF techniques. To this end, 

his study introduces a novel MEF algorithm to fuse both static and 

ynamic scenes. The weight map characterization process relies 

n principal component analysis (PCA), adaptive well-exposedness 

nd saliency map features. These weights are subsequently refined 

y a guided filter and the fusion stage is conducted via pyrami- 

al decomposition. Note that an additional image alignment step 

s performed via histogram matching for dynamic contents. 

To the best of available knowledge, it is the first time that PCA 

s employed in this study to characterize weight maps in MEF. 

urthermore, well-exposedness, which is related to brightness, is 

odified to be fully adaptive, while existing MEF algorithms adopt 

 fixed parameter and/or constant for this feature. It is also im- 

ortant to note here that saliency maps are utilized in this study 

o mimic the HVS, to assign larger weights to the most informa- 

ive parts of input exposures as in the primary visual cortex. The 

roposed MEF technique, henceforth referred to as PAS-MEF, is 

ompared against several state-of-the-art methods and it presents 

trong statistical and visual outputs, while outperforming most of 

https://doi.org/10.1016/j.sigpro.2022.108774
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2022.108774&domain=pdf
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he well-known MEF algorithms. Additionally, PAS-MEF is success- 

ully applied to solve the visible-infrared image fusion problem 

hich further demonstrates its general usability and effectiveness. 

This paper is organized as follows. The related work from the 

iterature is presented in Section 2 . The proposed MEF technique is 

xplained in Section 3 . Experimental setup is detailed and results 

re discussed for both MEF and visible-infrared fusion in Section 4 . 

astly, a brief summary of this study and possible future directions 

re provided in Section 5 . 

. Related work 

A milestone MEF method is proposed by Mertens et al. [6] . 

n this pixel-based approach, contrast, saturation and well- 

xposedness features are extracted and employed as fusion maps. 

he fused output is then obtained through Gaussian pyramid 

f weight maps and Laplacian pyramid of input exposures. This 

ethod is designed only for static image stacks and it provides 

atisfying results both visually and statistically. In the study of 

u et al. [7] , an image alignment approach is developed to solve 

he ghosting problem in MEF. For a given input stack, the most 

ell-exposed exposure is selected as the reference image. A latent 

mage is then formed for each of the remaining exposures, which 

tructurally looks like the reference but is exposed like the source. 

he obtained new stack is finally fused similar to Mertens et al. [6] .

 successful image fusion algorithm is presented by Li et al. [8] . 

he algorithm is based on two-scale image decomposition in which 

usion is done in two different scales, namely base- and detail- 

ayer. The fusion is controlled with guided filtering-based weighted 

verage technique. This method produces state-of-the-art results 

or not only MEF purposes, but also multi-spectral, multi-focus, 

ulti-modal fusion applications. Another MEF algorithm, which 

epends on ghosting removal and selective detail enhancement, 

s introduced by Li et al. [9] . A bidirectional normalization-based 

ethod is used to detect inconsistent pixels, while a two-round 

ybrid technique is employed to correct these inconsistencies. 

oreover, a content adaptive bilateral filter is adopted to extract 

he fine details in the gradient domain. An intermediate image is 

hen reconstructed via a multi-scale fusion of all corrected images. 

astly, the selected fine details are added to this blended image. In 

he study of Qin et al. [10] , an iterative patch-based method, which 

elies on geometry and color information, is developed to match 

nd find corresponding image patches in different input exposures 

ontaining moving objects. In order to preserve these objects in 

he output, corresponding patches are simultaneously fused via the 

andom walker algorithm in accordance with the match and find 

rocedure. An approach for both static MEF and multi-focus image 

usion is introduced by Paul et al. [11] . This algorithm operates in 

he YCbCr color space and the fusion operation is performed for lu- 

inance and chrominance channels independently. The luminance 

hannels are blended through a wavelet-based fusion technique in 

he gradient domain, while the blending of chrominance channels 

s carried out by taking a weighted sum of chrominance values. 

n Nejati et al. [12] , a method based on two-scale image decom- 

osition is proposed to fuse static image sequences. For the base 

nd detail layers of the luminance components of input exposures, 

he exposedness features are extracted to form weight maps. Af- 

erwards, a weighted averaging is applied to the base and detail 

ayers separately. These two fusion results are finally combined to 

btain the blended output image. In another successful MEF al- 

orithm proposed by Kou et al. [13] , multi-scale image fusion is 

arried by an edge preserving smoothing pyramid in order to ob- 

ain more information from highlights and shadows, while preserv- 

ng the texture information in sequences. The method produces 

igh quality output images both qualitatively and quantitatively. 

n a recent study, a patch-based MEF for both static and dynamic 
2 
cenes is designed by Ma et al. [14] . The fusion weights are formed

y computing signal strength, signal structure and mean intensity. 

his algorithm outperforms several state-of-the-art methods and 

t produces very slight ghosting artifacts for dynamic scenes. In 

i et al. [15] , this study is later modified with recursive down- 

ampling and processing, which results in successfully reduced 

alo effects and execution times. An adaptive weight extraction 

cheme for static MEF is proposed by Lee et al. [16] . Two differ-

nt weight maps are extracted as follows: the gradient information 

f each exposure is used to form the first map and an adaptive 

ersion of well-exposedness in Mertens et al. [6] is employed to 

haracterize the second map. The fusion is performed via pyrami- 

al image decomposition. Yet a MEF technique for both static and 

ynamic scenes is developed by Hayat and Imran [17] . Three dis- 

inct weight maps, namely, local contrast, brightness and color dis- 

imilarity, are employed in this study. Histogram equalization and 

edian filtering are used to obtain the color dissimilarity, while 

he dense-SIFT descriptor is adopted to compute the local contrast 

eature. A guided filter is employed to eliminate noise and discon- 

inuities in these maps, and then the fusion is carried out via pyra- 

idal image decomposition. A very recent method based on neural 

etworks, so called GANFuse to preserve and fuse the informative 

arts of extreme exposure pairs (i.e., under- and over-exposed) is 

roposed by Yang et al. [18] . GANFuse is a generative adversarial 

etworks-based static MEF scheme relying on the increasing num- 

er of discriminators of FusionGAN [19] which is designed for the 

usion of visible and infrared images. GANFuse operates in the lu- 

inance channel only, while a weighted fusion is carried out for 

hrominance channels independently. A recent multi-exposure im- 

ge fusion study proposed by Qi et al. [20] is designed especially 

or the dynamic cases to overcome the ambiguities in fused im- 

ges for dynamic cases. The ghosting-free algorithm relies on the 

eature patches and guided filter decomposition for robust fusion. 

n another recent work, a static MEF approach based on linear em- 

eddings and watershed masking is introduced by Ulucan et al. [3] . 

hile the local geometry of the image manifold structure is pre- 

erved successfully, linear embeddings of exposure image patch 

paces are used to form weight maps. In order to highlight and 

reserve the most informative parts of each input exposure, these 

eight maps are then refined via watershed masking. The fusion 

s finally performed via weighted averaging. 

. The proposed method of exposure fusion 

This study develops a novel MEF framework which is based on 

CA, adaptive well-exposedness and saliency features for weight 

ap characterization. Each of these individual maps presents its 

ffectiveness by covering diverse information present in the in- 

ut stack. The proposed PAS-MEF scheme is illustrated in a sim- 

le flowchart in Fig. 1 . While the main algorithm begins to pro- 

ess input images with the weight map characterization block, an 

dditional branch leading to image alignment is followed in the 

ase of dynamic sequences. After all maps are extracted, the fused 

DR-like output is obtained via pyramidal decomposition. In the 

emainder of this section, the PAS-MEF algorithm is explained in 

etails. 

.1. Image alignment via histogram matching 

MEF algorithms generate HDR-like outputs from a set of LDR 

nputs. These methods can produce precise outputs for the input 

xposures which are perfectly aligned. However, in practice, there 

s no guarantee that all exposures in the bracket are well-aligned. 

herefore, one of the biggest challenges in MEF is to remove the 

otion blur or ghosting artifacts when there is local or global mo- 

ion in between input exposures [3] . 
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Fig. 1. Flowchart of PAS-MEF. 

Fig. 2. (Top) Input exposures and (bottom) aligned outputs. 
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The presence of motion is considered to disturb the photo- 

etric relation between pixels in the region of movement when 

EF operates in the spatial domain [21] . A common technique to 

vercome this problem is to employ image alignment methods. In 

hese approaches, a reference input image is determined and the 

ntensities of other input exposures are mapped onto those of ref- 

rence image. Consequently, dynamic scenes are transformed into 

tatic images, thus can be processed without any further consider- 

tion of motion. 

In PAS-MEF, image alignment is used as a pre-processing tech- 

ique for dynamic image sequences. For N exposures I n in the in- 

ut stack, the median image is selected as the reference I re f and 

he histograms of the remaining (N − 1) inputs are matched to this 

eference image as given in Eq. (1) , 

 n ← HistMatch (I n , I re f ) , n = 1 . . . N, (1) 

here HistMatch denotes the histogram matching operator. A 

imple example dynamic scene with three input exposures and the 

mage alignment results are illustrated in Fig. 2 . 

.2. Weight map characterization 

.2.1. Weight maps via PCA 

PCA reduces the dimensionality of large datasets by exploit- 

ng the underlying correlation between variables, while preserving 
3 
ost of the information efficiently. In order to obtain uncorrelated 

ariables from possibly correlated data, PCA carries out an orthog- 

nal transformation [22] . The eigenvectors of the covariance ma- 

rix are employed to project the correlated data onto PCA space. 

he representations of data in this space can be called as scores . To 

he best of available knowledge, PCA has not been utilized in MEF 

tudies, whereas it has already been adopted in the field of image 

usion [23] . 

In this study, PCA scores are extracted and employed as weight 

aps. Firstly, gray-scale versions of input images I n , n = 1 . . . N, are

ectorized into column vectors of the size (rc × 1) where r and 

are the number of rows and columns of each exposure, respec- 

ively. In order to compute the scores, all these column vectors 

re used to form an (rc × N) data matrix consisting of rc obser- 

ations with N variables each. After calculating PCA scores of all 

bservations, each variable-score vector is linearly normalized to 

he range [0,1] and this data is reshaped back to an (r × c) ma-

rix per exposure. These normalized-score matrices are then pro- 

essed by a Gaussian filter to eliminate possible noise and dis- 

ontinuities, while smoothing the sharp changeovers at transition 

egions. Lastly, a sum-to-one normalization is performed at each 

patial position (r, c) over all exposures and the final PCA weight 

ap P n , n = 1 . . . N, is obtained to be used in the fusion process. In

ig. 3 (top-row), the obtained P n are exemplified for the Lighthouse 

tack. 
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Fig. 3. (Top-row) PCA (P n ) , (second-row) adaptive well-exposedness (A n ) , (third- 

row) saliency (S n ) and (bottom-row) final fusion (W n ) maps for the Lighthouse 

stack. (Left-to-right) Under-exposure, normal-exposure, over-exposure. n = 1 , 2 , 3 . 
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.2.2. Weight maps via adaptive well-exposedness 

The well-exposedness feature is initially derived in Mertens 

t al. [6] in order to preserve the well-settled regions in the in- 

ut stack, i.e., to neglect under- and over-exposed pixel intensities. 

t is extracted from each normalized exposure I n via a Gaussian 

urve, such that exp 
(
−(I n − 0 . 5) 2 / 2 σ 2 

)
where σ = 0 . 2 . This weight 

ntends to keep pixels which are not too close to 0 or 1. In other

ords, it aims at preserving well-exposed pixels having intensity 

alues close to 0.5. However, the preservation of bright regions of 

hort-exposure images and dark regions of long-exposure images 

ight be troublesome with this formulation. Hence, areas contain- 

ng significant information can be missed, which will negatively 

mpact the quality of the fused output. To provide a solution to this 

roblem, an adaptive well-exposedness feature is developed in Lee 

t al. [16] . This scheme is based on the mean of pixel intensities

f neighboring exposures I n −1 and I n +1 of I n , in order to remove 

he constant parameters 0.5 and σ in Mertens et al. [6] . Neverthe- 

ess, the adaptive formulation here still requires a fixed parameter 

o compute σ . 

In this paper, a fully adaptive well-exposedness characterization 

s proposed to preserve bright areas in short-exposure images and 

ark areas in long-exposure images, as well as well-exposed areas 

n all exposures. The fully adaptive well-exposedness weight map 

 n , n = 1 . . . N, is computed on the luminance channel Y n of I n as

iven in Eq. (2) , 

 n = exp 
(
−( Y n − (1 − μY n ) ) 

2 
/ 2 σ 2 

Y n 

)
, (2) 

here μY n and σY n are the mean and the standard deviation of 

ixel intensities in Y n , respectively. As a result, the Gaussian curve 

arameters are computed by means of the self-statistical informa- 

ion contained in each input, and larger weights will be assigned 

o the best luminance intensities of each individual exposure. In 

ig. 3 (second-row), the calculated A n are presented for the Light- 

ouse stack. 
4 
.2.3. Weight maps via saliency 

The visual sampling process of the HVS has been intensively 

tudied to model its mechanism [24] . It is noticed that the atten- 

ion an object gathers (via the HVS processing) relies on the task 

t hand and stimulus-driven factors such as prominent colors [24] . 

n order to mimic the HVS, numerous computational models are 

ntroduced aiming at highlighting salient regions. In image pro- 

essing tasks, saliency maps [25] are widely used to increase the 

uality of images and present visually more appealing outputs. 

In this study, salient image regions (which are more attrac- 

ive to human observers) are assigned with larger weights through 

aliency maps. Since modeling a new saliency algorithm is out of 

ontext, the method of Hou et al. [26] is adopted into PAS-MEF. 

his method depends on the image signature descriptor , which is 

efined as the sign of the Discrete Cosine Transform (DCT) coef- 

cients. In simple terms, the DCT of an input exposure is calcu- 

ated and the inverse DCT of the sign of the DCT coefficients is 

omputed to perform image reconstruction. The saliency weight 

ap S n , n = 1 . . . N, is then extracted from the reconstructed im- 

ge. For more information, the reader may refer to Hou et al. [26] .

n Fig. 3 (third-row), the obtained S n are provided for the Light- 

ouse stack. 

.3. Weight map refinement and image fusion 

After three different weight maps are extracted for each distinct 

mage in the input stack, they are combined to form a single and 

efined map W n per exposure as given in Eq. (3) , 

 n = GuidFilt (P n × A n × S n ) , n = 1 . . . N, (3) 

here GuidFilt represents the guided filter [27] . This filter is an 

dge-preserving smoothing operator which eliminates possible dis- 

ontinuities and noise in the combined maps. The obtained maps 

 n are finally normalized to satisfy a sum-to-one constraint at 

ach spatial position (r, c) over all exposures in order to character- 

ze the final fusion weight maps. In Fig. 3 (bottom-row), the calcu- 

ated W n are illustrated for the Lighthouse stack. 

Since each input exposure has distinct local intensities, a direct 

eighted-blending strategy may produce artifacts and unsatisfac- 

ory outputs [6] . Therefore, a pyramidal fusion approach [6,28] is 

referred to avoid halo effects at sharp texture and color 

hangeovers. Each exposure image is decomposed into � -levels of 

istinct resolutions via the Laplacian pyramid ( L ), while a simi- 

ar process is performed for the final fusion weights through the 

aussian pyramid ( G ). Subsequently, the weighted blending proce- 

ure is applied at each pyramidal level to acquire a fused Laplacian 

yramid for the fused image in Eq. (4) as follows, 

 { F � } = 

N ∑ 

n =1 

G { W 

� 
n } × L { I � n } , (4)

here the fused pyramid L { F � } is finally collapsed to obtain the 

nal output image F . 

. Experimental setup and results 

The proposed PAS-MEF is compared with Mertens09 [6] , Li13 

8] , Paul16 [11] , Nejati17 [12] , Kou17 [13] , Ma17 [14] , Lee18 [16] ,

ayat19 [17] , Li20 [15] , Yang20 [18] and Ulucan21 [3] for static 

cenes, and it is compared against Hu13 [7] , Li14 [9] , Qin14 [10] ,

a17, Hayat19, Li20 and Qi20 [20] for dynamic image stacks. 

Detailed information about the used image datasets is provided 

n Tables 1 and 2 for static and dynamic stacks, respectively. Sev- 

ral of these test images are adopted from the studies in Ma et al. 

29] , Merianos and Mitianoudis [30] , Fang et al. [31] . Further, Izmir- 

ordon and IzmirFair are courtesy of Erdem Okur of Izmir Uni- 
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Table 1 

Static image stacks used in the experiments. 

Name Size Name Size 

Arno 339 × 512 × 3 Lighthouse 340 × 512 × 3 

Chinese Garden 340 × 512 × 3 Mask 341 × 512 × 3 

Church 512 × 335 × 3 Office 340 × 512 × 6 

Farmhouse 341 × 512 × 3 Oldhouse 720 × 1080 × 3 

Flowers 720 × 1080 × 3 Ostrow 341 × 512 × 3 

IzmirCordon 518 × 690 × 3 Set 341 × 512 × 3 

IzmirFair 456 × 342 × 3 Tower 512 × 341 × 3 

Kluki 341 × 512 × 3 Treeunil 600 × 808 × 7 

Landscape 341 × 512 × 3 Venice 341 × 512 × 3 

Laurenziana 512 × 356 × 3 Window 384 × 512 × 3 

YellowHall 339 × 512 × 3 

Table 2 

Dynamic image stacks used in the experiments. 

Name Size Name Size 

Arch 1024 × 669 × 5 Puppets 1024 × 812 × 5 

Brunswick 683 × 1024 × 3 Readingman 2448 × 3264 × 3 

Cliff 683 × 1024 × 3 Russ1 683 × 1024 × 3 

Campus 648 × 1011 × 6 SculptureGarden 754 × 1024 × 5 

Forest 683 × 1024 × 4 Square 683 × 1024 × 3 

Horse 690 × 1024 × 3 Tate3 683 × 1024 × 3 

Lady 3872 × 2592 × 3 Wroclav 683 × 1024 × 3 

Llandudno 683 × 1024 × 3 YWFusionopolis 712 × 1072 × 6 

ProfJeonEight 1424 × 2144 × 7 
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ersity of Economics. All comparison images are produced via ei- 

her running the original implementations provided on the web- 

ages of respective projects or respective authors themselves. All 

ethods including PAS-MEF are employed in their default settings 

ithout any optimization. It is important to note that the experi- 

ents of Yang20 are conducted by its authors via a 2.4 GHz Intel 

eon CPU E 5 − 2673 v3, GeForce GTX 2080Ti and 64GB memory 

achine. The remaining experiments are carried out on an AMD 

yzen(TM) 5 3600x CPU @3.80 GHz 6-core 16 GB RAM machine 

sing MATLAB R2020b. 

.1. Quality assessment metrics for MEF 

Four different perceptual quality metrics, namely, multi-scale 

tructural-similarity (MEF-SSIM) [32] , naturalness image quality 

valuator (NIQE) [33] , blind/referenceless image spatial quality 

valuator (BRISQUE) [34,35] and perception based image quality 

valuator (PIQE) [36,37] , are employed for statistical evaluation. 

hese metrics are chosen since they are commonly used in im- 

ge enhancement applications and particularly MEF-SSIM is widely 

referred in MEF studies. 

The MEF-SSIM metric measures the patch structural consistency 

ia the structural-similarity metric (SSIM) [38] and outputs a score 

n the range [0,1], where results closer to 1 indicate better percep- 

ual quality. Only the contrast and structure components of distinct 

nput exposures are considered while forming a structural compar- 

son element ( S) in Eq. (5) and luminance is neglected due to un-

er/over exposedness in patches [3] . 

({ x n } , y ) = ( 2 σ ˆ x y + C ) / ( σ 2 
ˆ x + σ 2 

y + C ) . (5)

n Eq. (5) , the collocated set of patches in all N images in the input

tack are demonstrated with { x n } and the corresponding patch in 

he output (fused) image is indicated by y . C is a small constant 

hich deals with the low contrast saturation effects [38] . ˆ x = ˆ c · ŝ 

epresents the desired output patch as a function of the desired 

ontrast ˆ c and structure ˆ s . σ 2 
ˆ x 

and σ 2 
y denote the local variances 

f ˆ x and y respectively, while σ ˆ x y represents the local covariance 

etween ˆ x and y . A spatial quality map is formed using all local 

atches and the overall MEF-SSIM score is obtained via averaging 
5 
hese local values. The luminance consistency is further taken into 

ccount via a set of scale-level scores. It is worth mentioning here 

hat there exists a modified version of MEF-SSIM which is intro- 

uced by Fang et al. [31] for dynamic scenes. The fused output 

s separated into static and dynamic regions, and then the quality 

easurements of these regions are combined to produce an overall 

EF-SSIM score. This version is used in the evaluation of dynamic 

cenes in this study. 

Another metric used is NIQE, which is a space domain nat- 

ral scene statistic (NSS) driven blind opinion- and distortion- 

naware quality assessment method, i.e., it does not need train- 

ng on databases of human judgments of distorted images and de- 

ends only on image models or exposure to naturalistic source im- 

ges [33] . NIQE is based on the formation of quality aware fea- 

ures and their fit to a multivariate Gaussian model. Similar to 

IQE, BRISQUE is also an NSS driven no-reference quality assess- 

ent technique [35] . BRISQUE computes point-wise statistics of lo- 

al normalized luminance and makes use of measured deviations 

rom a natural image model to determine the image naturalness. 

he last metric employed is the opinion-unaware method PIQE, 

hich does not require training data to measure distortions in im- 

ges [36] . By taking the advantage of human perception of distor- 

ions, local blocks of the input image are classified as distorted or 

ot, and a score is assigned to each block. The mean of these lo- 

al values provides an overall PIQE score in the range between 0 

nd 100. For NIQE, BRISQUE and PIQE, the smaller scores indicate 

etter perceptual quality. 

.2. Experimental results and discussion 

In order to analyze PCA, adaptive well-exposedness (AWE) and 

aliency features, the weight maps are employed individually (as 

ell as pairwise) to guide the fusion process. All 38 stacks listed 

n Tables 1 and 2 are tested and the statistical scores obtained are 

ummarized in Table 3 . 

It is observed that there exists very slight differences in terms 

f NIQE, BRISQUE and PIQE scores. On the other side, PAS-MEF out- 

erforms the distinct and pairwise use of weight maps with the 

EF-SSIM score, both on average and several times on individ- 

al sequences. In particular, alongside presenting the best average 

EF-SSIM result, the combination of all three weights produces 

he minimum MEF-SSIM score. Moreover, as seen from the aver- 

ge MEF-SSIM scores, using the saliency weight, which has a corre- 

pondence in the human visual system, increases the performance 

f weight combinations consistently, whereas using this weight in- 

ividually results in a much lower MEF-SSIM score than PAS-MEF. 

lso, the slight increase in execution time due to using three differ- 

nt weights is compensated by the visually appealing output im- 

ges. Hence, the combination of three map extraction methods is 

ore efficient to guide the fusion process. 

For static image fusion, MEF-SSIM scores and the average run- 

ime (in sec) are reported in Table 4 and NIQE, BRISQUE and PIQE 

cores are provided in Table 5 . As it can be clearly observed, PAS- 

EF produces very competitive MEF-SSIM scores. On average, PAS- 

EF is the second-best performing algorithm. In particular, PAS- 

EF presents the best MEF-SSIM scores in five of the static input 

tacks and its worst score for an individual stack is better than the 

orst result of most of the algorithms in Table 4 . Furthermore, it 

chieves the third-best BRISQUE score on average while its NIQE 

nd PIQE scores surpass several existing methods ( Table 5 ). As 

resented in Table 4 , several existing MEF algorithms are slightly 

aster than PAS-MEF, however although it is not optimized yet PAS- 

EF outperforms all methods except of Li20, which compensates 

or the slightly higher execution time. 

The statistical scores for dynamic image fusion are reported in 

able 6 . PAS-MEF presents its effectiveness for also dynamic con- 
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Table 3 

Statistical comparison of the weights used in the fusion process. Average execution time of each step is provided in the last column. 

Min Max Avg 

Weight map MEF-SSIM NIQE BRISQUE PIQE MEF-SSIM NIQE BRISQUE PIQE MEF-SSIM NIQE BRISQUE PIQE Time (s) 

PCA 0.869 1.684 4.482 19.024 0.988 4.670 42.372 56.849 0.933 2.667 21.685 38.339 0.076 

AWE 0.914 1.200 2.126 16.705 0.996 5.739 43.350 57.076 0.972 2.661 23.100 38.276 0.017 

Saliency 0.890 1.748 5.675 18.066 0.993 4.974 43.234 56.303 0.953 2.664 23.040 37.715 0.351 

PCA & AWE 0.909 1.607 3.708 16.717 0.995 5.770 43.374 57.365 0.972 2.689 23.243 38.335 0.130 

PCA & Saliency 0.893 1.622 2.976 17.821 0.992 4.897 42.766 57.495 0.952 2.666 22.872 38.658 0.453 

AWE & Saliency 0.917 1.694 2.521 16.808 0.996 5.761 43.367 57.177 0.973 2.703 23.240 38.219 0.352 

PAS-MEF 0.919 1.599 5.142 16.777 0.995 5.836 43.383 57.283 0.974 2.700 23.351 38.408 0.651 

Table 4 

Static scenes. Statistical comparison of different methods via MEF-SSIM. Best scores are highlighted in bold. 

Image Sequence Mertens09 Li13 Paul16 Nejati17 Ma17 Kou17 Lee18 Hayat19 Li20 Yang20 Ulucan21 PAS-MEF 

Arno 0 . 991 0.969 0.958 0.985 0.980 0.971 0.987 0.989 0.990 0.960 0.986 0.989 

Chinese Garden 0.989 0.984 0.982 0.991 0.985 0.983 0.990 0.993 0 . 994 0.958 0.991 0.993 

Church 0.989 0 . 992 0.978 0.991 0 . 992 0 . 992 0 . 992 0 . 992 0 . 992 0.900 0.989 0.991 

Farmhouse 0.981 0.985 0.971 0.983 0.984 0.982 0.979 0.984 0 . 986 0.906 0.979 0.981 

Flowers 0.994 0.989 0.961 0.992 0.987 0.992 0.990 0 . 995 0 . 995 0.932 0.990 0.990 

IzmirCordon 0.988 0.990 0 . 994 0.986 0.988 0.989 0.988 0.990 0.991 0.942 0.975 0.992 

IzmirFair 0.984 0.985 0.983 0.991 0.992 0.985 0.990 0.993 0 . 996 0.983 0.992 0.995 

Kluki 0.980 0.968 0.952 0.972 0.970 0.971 0.975 0.980 0 . 983 0.923 0.963 0.979 

Landscape 0.976 0.942 0.972 0.992 0 . 993 0.947 0.981 0.973 0.988 0.979 0.986 0.983 

Laurenziana 0.988 0.987 0.982 0.987 0.985 0.984 0.987 0.989 0.990 0.963 0.990 0 . 991 

Lighthouse 0.980 0.950 0.965 0.975 0.970 0.970 0.979 0.974 0.978 0.926 0.974 0 . 982 

Mask 0.987 0.979 0.975 0.988 0.988 0.976 0.990 0 . 992 0 . 992 0.937 0.987 0 . 992 

Office 0.984 0.967 0.973 0.988 0.988 0.984 0 . 991 0.987 0.990 0.972 0 . 991 0.984 

OldHouse 0.983 0.981 0.973 0.988 0.987 0.990 0.990 0.968 0.990 0.982 0.991 0 . 992 

Ostrow 0.974 0.967 0.968 0.979 0.967 0.976 0.978 0.980 0.979 0.950 0.970 0 . 982 

Set 0.986 0.960 0.975 0.988 0.988 0.965 0.983 0.990 0 . 992 0.973 0.987 0.990 

Tower 0.986 0.986 0.977 0.986 0.986 0.986 0.987 0.987 0 . 988 0.915 0.982 0.983 

Treeunil 0.950 0.956 0.864 0.948 0.936 0 . 963 0.956 0.945 0.943 0.713 0.875 0.935 

Venice 0.966 0.954 0.954 0.976 0.940 0.952 0.972 0.972 0 . 984 0.948 0.978 0.981 

Window 0 . 982 0.971 0.962 0.981 0 . 982 0.972 0.981 0 . 982 0 . 982 0.935 0.979 0.980 

YellowHall 0.995 0.990 0.987 0.996 0.995 0.987 0.995 0.994 0 . 997 0.983 0.982 0.995 

Avg 0.983 0.974 0.967 0.984 0.980 0.977 0.984 0.983 0 . 987 0.937 0.978 0.985 

Time (s) 0.269 0.351 0.442 0.158 3.213 0.599 0.401 0.892 0.312 0 . 090 2.877 0.667 

t

i

s

a

o

v

a

p

G

P

t

c

r

a

F

t

e

a

c

o

0

A

v

a

s

a

F

o

o

p

a

W

a

M

L

c

c

F

i

a

p

t

a

m

L

e

S

o

B

F

ent, by outperforming most of the methods employed for compar- 

son in terms of MEF-SSIM score by reaching the second-best re- 

ult on average. Moreover, it presents competitive NIQE, BRISQUE 

nd PIQE scores among others. Additionally, the outcome images 

f dynamic PAS-MEF are ghosting-free. In the remainder, several 

isual comparisons are provided for both static and dynamic im- 

ge sequences, where corresponding MEF-SSIM scores are given in 

arenthesis in all figures. 

In Fig. 4 , visual comparisons are presented for the static Chinese 

arden stack. While the sky area is slightly saturated in Ulucan21, 

AS-MEF recovers this region successfully. Moreover, the bush on 

he bottom right has more well-settled colors in PAS-MEF when 

ompared to Hayat19. PAS-MEF produces better NIQE and BRISQUE 

esults, which indicate superior perceptual quality than Hayat19 

nd Ulucan21. 

The visual comparison for the IzmirFair stack is presented in 

ig. 5 . PAS-MEF and Ma17 recover the cloud behind the statue and 

he flowers on the foreground successfully, while Yang20 loses sev- 

ral details and produces a noisy output. Moreover, Ma17 produces 

 dark statue, whereas PAS-MEF recovers this area with more vivid 

olors. Statistically PAS-MEF produces a superior MEF-SSIM score 

f 0.995, while Ma17 and Yang20 present scores of 0.992 and 

.983, respectively. 

In Fig. 6 , the visual outcomes are provided for the Kluki stack. 

s it can be observed from the figure, PAS-MEF produces more 

ivid colors on the grass regions. Moreover, while the rooftop 

nd the door of the house contain more faded and slightly over- 

aturated colors in Hayat19 and Paul16, PAS-MEF outputs relatively 

ppealing and well-settled colors in these areas. 
6 
Visual comparisons for the Landscape stack can be observed in 

ig. 7 . While colors are faded and details are partially lost through- 

ut the image in Paul16 and under-saturated tree regions can be 

bserved in Ma17, PAS-MEF recovers these details successfully and 

reserves the naturalness of colors. Statistically, PAS-MEF produces 

 better PIQE score compared to Paul16 and Ma17. 

In Fig. 8 , visual results are provided for the Laurenziana stack. 

hile the sky region is lightly over-exposed in Ulucan21, Lee18 

nd PAS-MEF output visually more appealing colors in this region. 

oreover, while the tower on the right is slightly under-exposed in 

ee18 and over-exposed in Ulucan21, it has a well-settled and vivid 

olor in PAS-MEF. PAS-MEF presents a superior MEF-SSIM score 

ompared to all algorithms ( Table 4 ). 

The visual comparison for the Lighthouse sequence is given in 

ig. 9 . PAS-MEF presents the best MEF-SSIM score for this stack as 

t can be observed in Table 4 . While details and color information 

re severely damaged on the sky and the beach in Paul16, PAS-MEF 

resents more vivid colors and preserves the details properly. Fur- 

hermore, Li20 outputs dark regions on the rooftop of the house 

nd rocks on the beach, whereas PAS-MEF recovers the color infor- 

ation successfully and presents a natural-looking fusion result. 

In Fig. 10 , visual outputs are provided for the Mask stack. While 

i20 produces dark regions especially in the building and loses sev- 

ral details, Hayat19 and PAS-MEF recover these areas efficiently. 

tatistically, all three algorithms reach a high MEF-SSIM score 

f 0.992; however PAS-MEF outperforms both in terms of NIQE, 

RISQUE and PIQE scores. 

Visual results of the OldHouse sequence are demonstrated in 

ig. 11 . Mertens09 produces dark regions on the roof area, whereas 
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Table 5 

Static scenes. Statistical comparison of different methods via NIQE, BRISQUE and PIQE. Best scores are highlighted in bold. 

Mertens09 Li13 Paul16 Nejati17 

Image sequence NIQE BRISQUE PIQE NIQE BRISQUE PIQE NIQE BRISQUE PIQE NIQE BRISQUE PIQE 

Arno 2.868 27.927 38.266 2.907 20 . 575 37.066 2.944 22.982 35 . 082 2.927 29.207 37.658 

Chinese Garden 2.129 17.636 33.680 1.961 9.636 35.591 1.847 19.303 31.900 1.978 25.428 34.516 

Church 5.697 43.416 58.814 5.569 43.379 56.359 5.397 43.429 52.460 6.144 43.435 57.727 

Farmhouse 2.985 27.782 45.884 3.162 21.657 47.679 2.910 27.074 41 . 915 3.042 25.317 46.128 

Flowers 1.728 22.497 18.713 1.578 22.424 18.354 1.893 26.864 17 . 062 1.915 24.914 20.749 

IzmirCordon 3.526 32.435 46.634 3.263 9 . 991 21.973 3.166 25.502 38.876 3.231 31.619 44.762 

IzmirFair 4.775 24.122 43.609 4.435 26.300 42.018 4.323 12 . 776 40.699 4.777 26.625 42.705 

Kluki 2.039 23.332 40.035 1.960 22.961 41.389 1 . 714 24.522 34.631 1.991 23.562 42.334 

Landscape 2.702 21.867 27 . 867 2.655 22.457 28.875 2.908 23.468 30.998 2.680 18.277 30.192 

Laurenziana 2.534 22.312 41.262 2.496 21.131 39 . 689 2.582 10 . 289 40.760 2.468 22.401 41.785 

Lighthouse 2.794 15 . 036 37.161 2.715 16.816 36.588 2 . 701 24.295 34 . 336 2.911 17.495 41.681 

Mask 3.081 24.182 34.236 2.761 23.426 33.940 2.827 3 . 411 33.096 3.055 20.758 35.848 

Office 3.055 24 . 206 52.710 3.100 29.245 51.521 2.975 42.849 51.196 2.891 32.795 53.049 

OldHouse 1.834 20.471 32.404 1.780 7 . 100 31.064 1.703 25.081 30 . 453 1.583 13.718 31.571 

Ostrow 3.024 21.180 53.156 2.526 16 . 449 44.387 2 . 282 26.532 36 . 234 2.422 17.695 46.664 

Set 3.756 32.615 41.104 3.394 28.360 42.313 3.355 26.884 40 . 619 3.253 25.572 43.181 

Tower 2.204 21.843 31.284 2.239 20.832 27.447 2.097 22.517 25 . 753 2.327 27.767 30.611 

Treeunil 1 . 608 12 . 107 23 . 346 2.296 23.566 34.102 1.892 18.391 25.741 2.437 16.654 32.857 

Venice 3.476 27.011 50.545 3.125 15.790 46.338 2.536 23.132 47.561 3.311 25.263 49.390 

Window 2.326 24.123 35.836 2.294 25.310 37.835 2.465 6 . 492 34 . 591 2 . 284 24.079 34.827 

YellowHall 3.127 12.367 45.143 3.114 11 . 774 44.000 3.191 20.398 33 . 549 3.126 11.841 48.313 

Avg 2.918 23.737 39.604 2.825 20 . 913 38.025 2.748 22.676 36 . 072 2.893 24.020 40.312 

Ma17 Kou17 Lee18 Hayat19 

Image sequence NIQE BRISQUE PIQE NIQE BRISQUE PIQE NIQE BRISQUE PIQE NIQE BRISQUE PIQE 

Arno 3.056 25.337 39.802 2.922 26.158 40.319 0 . 301 22.740 37.120 3.025 24.118 37.571 

Chinese Garden 1.923 16.825 34.571 2.069 8.207 33.515 2.056 8 . 179 34.085 1.947 16.406 34.626 

Church 5.668 43.410 57.236 5.212 43.148 56.299 5.489 43.330 57.339 5.822 43.420 57.294 

Farmhouse 3.125 21.962 48.022 3.006 27.951 48.118 2.969 28.788 47.420 3.067 28.506 48.919 

Flowers 1.720 24.768 19.644 1.781 21.515 19.129 1 . 509 21.817 18.281 1.661 22.387 19.476 

IzmirCordon 3.336 31.439 46.308 3.172 10.691 20 . 911 3.227 31.576 46.422 3.369 31.889 46.282 

IzmirFair 4.264 24.567 42.022 4.198 23.716 41.932 4.150 24.481 41.324 4.590 25.137 40.945 

Kluki 2.064 23.530 42.529 2.023 23.105 42.428 2.025 22.646 41.226 1.984 22.758 42.272 

Landscape 2.548 20.820 30.283 2.661 21.784 29.807 2.655 22.236 28.964 2.658 22.546 28.492 

Laurenziana 2.481 22.221 39.974 2.417 19.626 40.995 2.550 20.799 40.260 2.507 21.901 40.670 

Lighthouse 2.889 19.310 41.866 2.790 18.991 36.141 2.752 19.176 37.213 2.702 16.378 36.837 

Mask 2.874 23.594 35.028 2.883 23.359 34.904 2.885 23.353 31.781 2.889 22.990 33.680 

Office 3.147 40.429 53.707 3.005 33.757 52.915 2.822 37.080 53.787 2.971 34.336 53.056 

OldHouse 1.618 14.505 33.181 1.670 7.296 33.536 1.706 9.342 33.521 1.768 15.551 35.950 

Ostrow 2.527 20.191 48.786 2.443 20.684 48.119 2.384 22.721 47.410 2.816 23.943 50.846 

Set 3.354 25.436 47.063 3.359 24.501 45.199 3.457 26.597 49.229 3.286 25.136 45.095 

Tower 2.296 26.876 31.281 2.245 21.933 29.704 2.306 19.285 30.313 2.317 19.439 30.458 

Treeunil 2.373 35.766 31.420 2.357 30.725 32.203 2.314 28.869 31.729 2.578 35.539 36.042 

Venice 3.292 24.662 49.114 3.197 15.991 47.074 3.318 6.759 43.777 3.251 22.628 48.036 

Window 2.447 25.487 36.352 2.366 24.664 37.436 2.414 23.072 38.332 2.431 22.832 37.495 

YellowHall 3.094 13.026 48.536 3.158 14.869 49.493 3.099 14.332 47.108 3.094 11.804 46.254 

Avg 2.862 24.960 40.796 2.806 22.032 39.056 2.804 22.723 39.840 2.892 24.269 40.490 

Li20 Yang20 Ulucan21 PAS-MEF 

Image Sequence NIQE BRISQUE PIQE NIQE BRISQUE PIQE NIQE BRISQUE PIQE NIQE BRISQUE PIQE 

Arno 3.006 23.550 41.231 2.794 29.072 38.930 3.040 27.905 39.987 2.965 21.965 37.427 

Chinese Garden 2.137 18.776 32.512 1 . 739 18.640 31 . 182 1.942 9.109 35.977 1.937 6.919 34.446 

Church 5.721 43.313 57.220 4 . 679 36 . 796 49 . 185 5.486 43.260 56.179 5.836 43.383 57.283 

Farmhouse 3.151 18 . 298 48.316 2 . 689 29.544 44.599 2.965 30.075 48.973 2.952 29.349 48.716 

Flowers 1.779 24.620 20.066 2.583 23.386 23.088 1.836 23.133 19.099 1.599 19 . 855 18.043 

IzmirCordon 3.350 32.513 48.068 2 . 874 34.586 40.196 3.197 31.361 46.779 3.364 32.111 48.066 

IzmirFair 4.779 25.393 41.021 3 . 139 26.685 40 . 218 4.240 24.808 40.807 4.012 23.509 42.464 

Kluki 2.100 23.270 39.746 2.166 23.886 31 . 183 2.077 22 . 527 43.047 2.138 22.615 41.792 

Landscape 2.726 17 . 618 30.428 2.559 25.563 30.061 2 . 487 19.511 32.631 2.612 22.450 29.005 

Laurenziana 2.538 22.237 41.236 2 . 239 21.724 38.390 2.381 22.741 40.160 2.473 20.346 39.648 

Lighthouse 2.854 17.346 37.901 2.436 30.145 36.639 2.804 20.911 39.933 2.772 18.659 39.089 

Mask 3.288 22.338 36.501 1 . 932 26.715 28 . 553 2.775 23.303 37.002 2.748 21.014 32.967 

Office 2.895 26.359 53.077 3.050 33.216 49 . 564 2.906 26.008 54.324 2 . 758 40.183 54.391 

OldHouse 1.713 10.769 32.253 1.936 23.935 32.838 1 . 578 14.444 34.477 1.709 14.557 33.955 

Ostrow 3.192 23.229 54.270 3.144 24.847 39.974 2.573 21.934 45.014 2.623 25.063 48.569 

Set 3.440 25.424 45.013 3 . 179 27.654 51.794 3.342 24 . 234 48.250 3.283 24.266 45.898 

Tower 2.233 21.483 31.764 2 . 096 14.671 28.013 2.345 22.468 30.422 2.331 11 . 991 29.732 

Treeunil 3.126 29.707 41.589 1.966 28.340 29.895 1.889 31.588 25.516 2.438 31.936 24.986 

Venice 3.297 27.101 46.377 2 . 919 10.794 36 . 561 3.437 12.710 44.999 3.368 5 . 142 45.201 

Window 2.488 23.143 37.010 3.288 22.085 42.182 2.572 24.539 38.139 2.600 21.185 39.253 

YellowHall 3.178 12.059 45.857 2 . 873 15.023 51.608 3.120 11.995 47.726 3.136 13.812 49.857 

Avg 3.000 23.264 41.022 2 . 680 37.569 37.841 2.809 23.265 40.450 2.841 22.396 39.547 
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Table 6 

Dynamic scenes. Statistical comparison of different methods via MEF-SSIM, NIQE, BRISQUE and PIQE. Best scores are highlighted in bold. 

Hu13 Li14 Qin14 Ma17 

Image sequence MEF-SSIM NIQE BRISQUE PIQE MEF-SSIM NIQE BRISQUE PIQE MEF-SSIM NIQE BRISQUE PIQE MEF-SSIM NIQE BRISQUE PIQE 

Arch 0.948 1.934 19.668 24.139 0.935 1 . 580 5.882 21.612 0.859 1.685 4 . 819 19 . 188 0 . 983 1.966 8.685 20.241 

Brunswick 0.966 2.221 16.077 42.611 0.959 2.195 16.072 42.125 0.902 1.992 18.647 40 . 176 0 . 975 2.365 19.208 43.843 

Campus 0.954 2.059 9.897 29.053 0.952 2.275 16.306 26.208 0.922 1 . 764 23.119 27.055 0.961 1.924 22.620 27.086 

Cliff 0.870 2.902 30.680 30.157 0.981 2.982 21.582 29.448 0.817 2 . 412 30.251 25 . 504 0 . 986 2.997 20.484 33.077 

Forest 0.886 3 . 231 23 . 886 34.528 0.921 4.117 32.744 40.819 0.809 3.576 19.684 31 . 708 0 . 962 3.715 32.793 43.301 

Horse 0.945 2.882 32.005 34.134 0.938 2.734 28.783 31 . 992 0.894 2.903 22 . 315 35.065 0 . 971 2.765 29.826 35.407 

Lady 0.916 2.332 15.344 42.847 0.923 2.621 11 . 045 41.032 0.856 2.491 38.107 58.534 0.928 2.820 30.969 26 . 343 

Llandudno 0.958 2.527 36.777 50.988 0.988 2.694 32.846 47.273 0.916 2 . 499 36.748 50.004 0.986 3.016 33.485 50.840 

ProfJeonEight 0.922 2.302 22.522 41.981 0.923 2.221 17.983 43.057 0.885 2.097 31.707 41.868 0.947 2.346 28.312 34.225 

Pupptes 0.933 2.306 9.683 25.604 0.934 2.190 19.786 25.827 0.850 1 . 641 25.037 32.977 0 . 958 2.414 22.908 26.893 

ReadingMan 0.967 2.538 28.137 22.787 0.962 2.401 35.253 29.669 0.927 2.840 32.326 53.049 0.971 2 . 145 29.175 20.824 

Russ1 0.970 2.785 16.366 23.833 0.966 2.862 16.855 22.207 0.917 2 . 608 14 . 564 26.386 0 . 979 2.895 21.984 20 . 643 

SculptureGarden 0.917 1 . 957 18.035 35.834 0.915 2.230 8.316 33 . 961 0.762 2.307 27.915 34.348 0.948 2.214 8.090 36.424 

Square 0.973 1.929 27.335 39.532 0.965 1.978 25.385 39.270 0.918 1 . 790 28.825 36 . 544 0 . 987 2.151 28.462 40.673 

Tate3 0.953 2.263 24.221 43.259 0.951 2.119 28.979 42.921 0.909 2 . 049 29.591 41.383 0.942 2.247 28.620 42.655 

Wroclav 0.896 2.372 28.517 41.480 0.954 2 . 063 21.841 42.747 0.856 2.163 30.402 39 . 300 0 . 972 2.149 30.082 43.868 

YWFusionopolis 0.876 1.902 20.268 36.429 0.877 1 . 779 16 . 102 37.769 0.839 1.807 17.965 32.886 0.891 2.246 11.771 38.840 

Avg 0.932 2.379 22.319 35.247 0.944 2.414 20 . 927 35.173 0.873 2 . 272 25.413 36.822 0 . 962 2.493 23.969 34 . 423 

Hayat19 Li20 Qi20 PAS-MEF 

Image sequence MEF-SSIM NIQE BRISQUE PIQE MEF-SSIM NIQE BRISQUE PIQE MEF-SSIM NIQE BRISQUE PIQE MEF-SSIM NIQE BRISQUE PIQE 

Arch 0.953 2.096 14.317 19.985 0.976 2.056 20.335 21.082 0.975 1.947 5.001 19.621 0.937 1.812 14.718 24.165 

Brunswick 0.859 2.315 19.495 46.383 0.969 2.138 15 . 662 45.757 0.838 2.502 17.058 44.657 0.972 1 . 934 24.759 40.313 

Campus 0.881 2.175 7 . 519 25.136 0.923 2.036 19.578 26.419 0.958 2.292 9.067 23 . 684 0 . 963 2.058 24.142 36.026 

Cliff 0.887 2.737 19 . 109 32.735 0.981 3.049 23.106 32.830 0.975 2.824 21.664 32.381 0.981 3.013 21.108 32.878 

Forest 0.896 3.797 31.401 41.395 0.950 3.748 32.624 42.629 0.958 4.208 36.851 45.825 0.950 3.983 33.783 44.851 

Horse 0.758 2.757 29.496 39.888 0.969 2.723 27.546 35.035 0.960 2 . 694 23.993 36.342 0.932 3.075 30.186 35.051 

Lady 0.822 2.626 35.581 26.711 0.827 2 . 172 25.306 51.985 0.782 2.513 19.012 49.769 0 . 974 2.995 24.142 36.026 

Llandudno 0.907 2.614 32.111 48.810 0.993 2.982 33.742 50.049 0.879 3.063 32.876 49.808 0 . 994 2.518 30 . 594 46 . 015 

ProfJeonEight 0.848 2.121 21.070 32 . 365 0.885 2.218 16 . 242 47.124 0 . 952 2 . 010 20.745 42.728 0.932 2.463 33.124 38.092 

Pupptes 0.835 2.399 6 . 788 27.808 0.951 2.240 8.405 32.474 0.933 2.416 18.799 25 . 053 0.921 2.528 22.334 25.067 

ReadingMan 0.828 2.266 30.521 19.062 0.966 2.366 33.286 30.914 0.964 2.621 27.987 26.376 0 . 974 2.208 27 . 615 16 . 777 

Russ1 0.871 2.844 15.932 25.795 0.978 2.782 21.429 21.167 0.856 3.127 24.064 23.026 0.975 2.748 15.256 25.283 

SculptureGarden 0.835 2.177 10.059 36.678 0 . 954 2.359 6 . 423 39.308 0.922 2.197 12.982 34.810 0.919 2.165 25.622 39.653 

Square 0.902 2.153 29.241 41.744 0.986 2.028 21.055 40.950 0.857 2.250 14 . 379 41.779 0.980 1.834 30.867 38.160 

Tate3 0.831 2.174 24.602 45.405 0.859 2.254 17.666 45.485 0.893 2.324 19.112 39 . 827 0 . 969 2.054 14 . 811 40.179 

Wroclav 0.813 2.465 14 . 438 46.359 0.968 2.189 22.499 46.306 0.824 2.217 29.625 45.802 0.936 2.320 23.821 47.269 

YWFusionopolis 0.813 2.179 21.719 30 . 470 0.867 1.841 18.429 38.320 0.827 1.879 22.852 38.299 0 . 962 1.992 20.755 36.584 

Avg 0.855 2.464 21.376 34.513 0.941 2.422 21.373 38.108 0.903 2.534 20.945 36.458 0.957 2.453 24.567 35.435 

8
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Fig. 4. Visual comparison of PAS-MEF with Hayat19 and Ulucan21 for Chinese Garden . 

Fig. 5. Visual comparison of PAS-MEF with Yang20 and Ma17 for IzmirFair . 
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ee18 and PAS-MEF recover these areas successfully. Overall, PAS- 

EF outputs a more natural-looking fusion image with well-settled 

olors. In terms of MEF-SSIM, PAS-MEF suppresses all algorithms 

ith a high score of 0.992. 

In Fig. 12 , visual comparisons are illustrated for the Set se- 

uence. Ulucan21 produces bright areas in the sky region and 

round the lights, while PAS-MEF presents more natural-looking 

olors in these regions. Compared to Paul16, PAS-MEF outputs an 
9 
mage with more vivid and well-settled colors, which may also 

ffect the MEF-SSIM scores. Paul16 reaches a MEF-SSIM score of 

.975 and PAS-MEF achieves a high score of 0.990. 

The visual comparison is demonstrated for the Tower stack in 

ig. 13 . While the tower contains under-saturated regions and con- 

equently suffers from detail loss both in Mertens09 and Li20, PAS- 

EF recovers the tower successfully and produces a visually more 

ppealing result. Additionally, the colors of the flowers on the fore- 
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Fig. 6. Visual comparison of PAS-MEF with Hayat19 and Paul16 for Kluki . 

Fig. 7. Visual comparison of PAS-MEF with Paul16 and Ma17 for Landscape . 
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round appear to be faded In Mertens09, but PAS-MEF presents 

ore vivid colors in this region. On the other side, Mertens09 and 

i20 both preserve the details on the bright clouds on the left suc- 

essfully, however PAS-MEF outputs a slightly over-exposed clouds. 

The visual results for the Treeunil stack are presented in Fig. 14 . 

his sequence has 7 input images containing severely over- and 

nder-exposed regions, which makes it hard to preserve details for 

ost of the methods discussed in Section 2 . While the sky region 

ontains severely over-exposed regions, the tree has strong shad- 

ws which affect the visual and statistical results of all algorithms. 

he best MEF-SSIM score is 0.963 and it is obtained by Kou17. The 

utput of Li13 contains halo effects, and the fused images of Li20 

nd PAS-MEF face a challenge in over-exposed regions. Besides, 

AS-MEF presents higher outcomes than these methods in terms 

f the PIQE score. 

The comparison for Venice is presented in Fig. 15 . PAS-MEF 

ecovers the sky region efficiently by producing a more natural- 

ooking output, while Ulucan21 presents a brighter sky and sev- 

ral details are lost due to excessive luminosity. Furthermore, 

i20 demonstrates a slightly higher MEF-SSIM score than PAS-MEF. 
10 
owever, in contrary to Li20, PAS-MEF avoids to output low-light 

egions, thus presents the fine details in the image better than 

i20. 

In Fig. 16 , visual outcomes are given for the YellowHall se- 

uence. Nejati17 presents an output in which the left part of the 

mage is relatively darker compared to its right side, while both 

ertens09 and PAS-MEF produce a fusion with more balanced and 

ell-settled colors. In Mertens09, the ceiling has a more brighter 

olor than PAS-MEF. Statistically, all three algorithms demonstrate 

ery similar MEF-SSIM results, but PAS-MEF outperforms them in 

erms of NIQE score. 

The exposure stack and visual outputs are demonstrated for 

he dynamic Cliff sequence in Fig. 17 . While the texture of the 

ock on the cliff and the rocks at the seaside are faded both in 

i14 and Hayat19, PAS-MEF preserves these fine details success- 

ully. Although statistical results are competitive for all algorithms, 

ayat19 produces a more over-exposed result and Li14 produces 

olor distortions at the small cave. PAS-MEF creates a more vivid- 

ooking image while covering the details on the mentioned regions 

ithout sacrificing the color correlation. 
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Fig. 8. Visual comparison of PAS-MEF with Lee18 and Ulucan21 for Laurenziana . 

Fig. 9. Visual comparison of PAS-MEF with Paul16 and Li20 for Lighthouse . 

11 
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Fig. 10. Visual comparison of PAS-MEF with Hayat19 and Li20 for Mask . 

Fig. 11. Visual comparison of PAS-MEF with Mertens09 and Lee18 for OldHouse . 
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Visual results of the dynamic Llandudno sequence are shown in 

ig. 18 . Ma17 produces ghosting artifacts in the region where peo- 

le are preparing the tables, whereas Li20 and PAS-MEF produce 

hosting-free outputs. PAS-MEF preserves the details successfully 

nd creates a more natural-looking image with a surpassing high 

EF-SSIM score of 0.994. 

The visual comparison for the dynamic ReadingMan stack is pre- 

ented in Fig. 19 . While Ma17 produces an outcome with several 

rtifacts on the T-shirt and glasses of the man, PAS-MEF recovers 

hese areas successfully. Furthermore, PAS-MEF preserves the push 

ign on the door, whereas Hu13 fails to preserve this detail. On the 

ther hand, Hu13 recovers the color information in small parts of 

he white T-shirt and the wall better than PAS-MEF. Overall, PAS- 

EF outperforms all algorithms in terms of MEF-SSIM, BRISQUE 

nd PIQE. 

In Fig. 20 , visual results are provided for the dynamic Square 

tack. While Hayat19 and Qin14 produce images with ghosting ar- 

ifacts, PAS-MEF creates a ghosting-free image. The artifacts are 

lso significantly visible in the sky region for Qin14, whereas 

ayat19 and PAS-MEF create a more natural-looking sky. In addi- 
12 
ion, PAS-MEF recovers texture details of the buildings which re- 

ults in a higher statistical score compared to Hayat19 and Qin14. 

Visual outputs for the dynamic YWFusionopolis sequence are 

emonstrated in Fig. 21 . It can be observed that the color of the 

rass is faded in Qin14, and it is successfully preserved in Li14 and 

AS-MEF. The gray cubic part of the building on the background 

as lost its natural color in both Li14 and Qin14, whereas this color 

nformation is efficiently recovered in PAS-MEF. Furthermore, sev- 

ral artifacts can be seen on the pants of the woman in Li14 and 

in14, while PAS-MEF produces an artifact-free and visually more 

ppealing outcome in this region. PAS-MEF produces the highest 

EF-SSIM score and outperforms all other algorithms significantly. 

The visual outcomes for the Campus stack are demonstrated 

n Fig. 22 . This stack contains severely under- and over-exposed 

egions, which challenge PAS-MEF in some regions of the scene. 

verall, PAS-MEF preserves the details well and produces the high- 

st MEF-SSIM score among the algorithms in Table 6 . 

A visual comparison for the Lady stack is given in Fig. 23 . PAS-

EF produces the highest MEF-SSIM score among other algorithms 

or this sequence. Although more complex methods based on his- 
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Fig. 12. Visual comparison of PAS-MEF with Paul16 and Ulucan21 for Set . 

Fig. 13. Visual comparison of PAS-MEF with Mertens09 and Li20 for Tower . 

13 
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Fig. 14. Visual comparison of PAS-MEF with Li13, Kuo17 and Li20 for Treeunil . 

Fig. 15. Visual comparison of PAS-MEF with Li20 and Ulucan21 for Venice . 

Fig. 16. Visual comparison of PAS-MEF with Mertens09 and Nejati17 for YellowHall . 

14 
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Fig. 17. Visual comparison of PAS-MEF with Li14 and Hayat19 for Cliff. 

Fig. 18. Visual comparison of PAS-MEF with Ma17 and Li20 for Llandudno . 

15 
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Fig. 19. Visual comparison of PAS-MEF with Hu13 and Ma17 for ReadingMan . 

Fig. 20. Visual comparison of PAS-MEF with Qin14 and Hayat19 for Square . 

16 
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Fig. 21. Visual comparison of PAS-MEF with Li14 and Qin14 for YWFusionopolis . 

Fig. 22. Visual comparison of PAS-MEF with Hu13 and Li14 for Campus . 

t  

c

t

p

a

p

4

t

l

w

l

d

o

e

t

a

u

a

a

t  

a

p

C

t

ograms such as [39] can be used instead of Eq. (1) , it can be

learly observed that the proposed solution is a simple yet effec- 

ive method to prevent any artifacts and noise when motion is 

resent in the input stack. In the outcomes of both Qin14 and Li20, 

mbiguities due to non-effective handling of the motion are visible 

articularly around the head of the person. 

.3. Application to visible and infrared image fusion 

Based on the thermal radiance difference, the background and 

argets can be distinguished in infrared images, which usually have 

ow resolution, but are not affected by poor lightning and bad 

eather conditions [40] . On the other hand, based on the reflected 

ight, texture information and fine details are provided in accor- 
17 
ance with the HVS in visible images, which tend to have high res- 

lution, but are easily disturbed by poor illumination [40] . Consid- 

ring infrared and visible images have complementary characteris- 

ics, the output from their proper fusion will naturally demonstrate 

n image containing more information than these images individ- 

ally. Thus, several applications such as object detection, tracking 

nd recognition, remote sensing, surveillance and color vision take 

dvantage of infrared and visible image fusion [40] . 

In recent years, numerous studies have been conducted related 

o infrared and visible image fusion. In the work of Liu et al. [41] ,

 method based on convolutional neural networks (CNNs) is pro- 

osed to carry out infrared and visible image fusion. A siamese 

NNs architecture is modeled to extract a weight map containing 

he integrated pixel activity information and then fusion is per- 
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Fig. 23. Visual comparison of PAS-MEF with Qin14 and Li20 for Lady . 
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ormed via a pyramidal approach. Neural networks are also used 

n the study of Li et al. [42] , which takes advantage of ResNet to

xtract features from input images. These weight maps are nor- 

alized through zero-phase component analysis and � 1 -norm, and 

atter processed via a softmax operation. Lastly, fusion is conducted 

hrough weighted-averaging. In the study of Bavirisetti et al. [43] , 

 blending method based on guided filter and pixel level fusion is 

roposed to perform diverse fusion operations. The structure trans- 

erring and multi-scale image decomposition property of guided 

lters is exploited to design a new visual saliency and weight map 

xtraction technique. 

In this paper, the application of PAS-MEF is tested in the field 

f infrared and visible image fusion. It is utilized to fuse infrared 

nd visible images with its default settings and no optimization is 

arried out on the algorithm. The outputs of PAS-MEF is compared 

ith the studies Liu18 [41] , Li19 [42] and Bavirisetti19 [43] through 
18 
he benchmark of Zhang et al. [44] . Six different image pairs are 

mployed to carry out the experiments. In order to provide sta- 

istical analysis two perceptual metrics, namely SSIM [38] and vi- 

ual information fidelity (VIF) [45] are reported in this study. VIF 

s based on image distortions, a statistical model for natural scenes 

nd the HVS [45] . It presents scores in the range [0 , 1] , where re-

ults closer to 1 indicate better perceptual quality. Table 7 presents 

he statistical outcomes of infrared and visible image fusion, in 

hich PAS-MEF demonstrates highly competitive results by achiev- 

ng the second best SSIM and VIF scores on average. 

Fig. 24 compares visual outputs and corresponding SSIM scores 

or the ElecBike input pair. While Li19 and PAS-MEF recover the 

etails of the man efficiently, several details are lost in Li18. Fur- 

hermore, fine details of trees and bushes both in the foreground 

nd background are successfully preserved by PAS-MEF, whereas 

nformation loss is observed in Li19. 
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Table 7 

Infrared and visible image fusion. Statistical comparison of different methods via SSIM 

and VIF. Best scores are highlighted in bold. 

Liu18 Li19 Bavirisetti19 PAS-MEF 

SSIM VIF SSIM VIF SSIM VIF SSIM VIF 

CarLight 0.783 0.597 0 . 810 0.437 0.582 0 . 639 0.796 0.539 

ElecBike 0.780 0.568 0 . 817 0.427 0.790 0 . 581 0.785 0.575 

Man 0.727 0 . 531 0 . 768 0.367 0.737 0.467 0.742 0.527 

ManCall 0.759 0.443 0 . 813 0.332 0.773 0.429 0.785 0 . 468 

NightCar 0.724 0.475 0 . 768 0.337 0.733 0.432 0.744 0 . 487 

Tricycle 0.767 0 . 541 0 . 798 0.376 0.781 0 . 541 0.773 0.518 

Avg 0.756 0 . 526 0 . 795 0.379 0.733 0.515 0.771 0.519 

Fig. 24. Visual comparison of PAS-MEF with Liu18 and Li19 for ElecBike . 

Fig. 25. Visual comparison of PAS-MEF with Li19 and Bavirisetti19 for Man . 

19 



O. Ulucan, D. Ulucan and M. Turkan Signal Processing 202 (2023) 108774 

s

d

f

l

5

i

t

u

s

A

s

o

a

t

p

b

f

t

m

e

i

n

a

t

s

v

o

c

s

i

M

c

o

c

d

m

D

c

i

C

V

V

S

o

M

v

A

t

R

 

 

 

 

 

 

 

[  

[

[  

[

[

[

[  

[

[

[

 

[

[

[

[

Visual outputs and SSIM scores of the Man input pair are pre- 

ented in Fig. 25 . Overall, Bavirisetti19 and PAS-MEF recover fine 

etails successfully. Even though its higher SSIM score, visual in- 

ormation is lost in Li19, which may also explain its significantly 

ower VIF score in Table 7 . 

. Conclusion 

The production of HDR-like content through MEF is a challeng- 

ng yet useful technology. Since high quality images can be ob- 

ained with low computational cost, it is commonly preferred by 

ser-grade device manufacturers. Hence, it is an attractive field of 

tudy and numerous methods have been developed in recent years. 

lthough the fusion process of these diverse MEF algorithms are 

imilar, the weight map characterization procedure is different. In 

rder to keep the “best” parts of each exposure, these weight maps 

re used to eliminate the unsatisfactory regions of each input in 

he stack. This process becomes more troublesome in case of the 

resence of local and/or global motion in between the exposure 

racket. 

To contribute to the development of a general weight map 

ramework, this study introduces a novel weight map characteriza- 

ion scheme based on PCA, adaptive well-exposedness and saliency 

aps. These weight maps are refined through a guided filter to 

liminate possible noise and artifacts. Then, the fusion process 

s carried out via a pyramidal decomposition. It is important to 

ote here that, to the best of available knowledge, PCA and fully- 

daptive well exposedness are introduced to the field of MEF for 

he first time. 

The developed PAS-MEF algorithm is compared extensively with 

everal state-of-the-art methods and it demonstrates very strong 

isual and statistical results in both static and dynamic cases. In 

rder to observe its effectiveness in different image fusion appli- 

ations, PAS-MEF is also tested in infrared and visible image fu- 

ion. Without any optimization, PAS-MEF presents highly compet- 

tive results in this field. As a result, it can be deduced that PAS- 

EF may enlighten the path to the design of a general weight map 

haracterization scheme. As a future direction, it is considered to 

ptimize the algorithm to both increase its effectiveness and de- 

rease its computational complexity, and extend its applications to 

ifferent image fusion problems, such as medical image fusion and 

ulti-focus image fusion. 
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