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ABSTRACT

RESIDUAL LIFELENGTHS OF CENSORED DATA

CEKİ FRANKO

M.S. in Applied Statistics

Graduate School of Natural and Applied Sciences

Supervisor: Prof. Dr. İsmihan Bayramoğlu

June 2010

Residual lifelengths of the remaining components are of special in reliability

analysis, actuarial science and survival studies. In this thesis the residual lifetime

of remaining components under different types of censoring schemes are investi-

gated. Some interesting results about the distributional properties, mean residual

lives and characterizations are obtained.

Keywords: Order Statistics; Residual Lifetimes; Mean Residual life; (n− k + 1)-

out-of-n system; Sequential (n− k + 1)-out-of-n system.



ÖZ

SANSÜRLENMİŞ VERİLERİN GERİYE KALAN
YAŞAM UZUNLUKLARI

CEKİ FRANKO

Uygulamalı İstatistik, Yüksek Lisans

Fen Bilimleri Enstitüsü

Tez Yöneticisi: Prof. Dr. İsmihan Bayramoğlu

Haziran 2010

Geriye kalan elemanların kalan yaşam uzunlukları güvenilirlik analizinde,

aktüerya biliminde ve sağ kalan analizinde büyük önem teşkil etmektedir. Bu

tezde farklı sansürleme şemaları altında geriye kalan elemanların kalan yaşam

uzunlukları araştırıldı. Dağılım özellikleri, ortalama geriye kalan yaşamlar ve

karakterizasyonlarla ilgili bazı ilginç sonuçlar elde edildi.

Anahtar Kelimeler : Sıra istatistikleri; Geriye kalan yaşam süreleri; Ortalama

Geriye kalan yaşam; n’in (n− k + 1)’li sistem; Dizili n’in (n− k + 1)’li sistem.
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Chapter 1

Introduction

The subject of order statistics is one of the most important concepts of the

statistical theory. It is used in both theoretical and application areas. Order

statistics are sufficient statistics, hence they contain all the information about

the sample. Moreover since most statistics based on order statistics, have the

distribution-free property, it is widely used in non-parametric statistical meth-

ods. Another important aspect of the order statistics is that, the lifetime of the

components can be represented with order statistics so it takes a major place

in lifetime analysis and reliability theory. In lifetime analysis and reliability ex-

periments there are different scenarios involving the components that are tested

removed from the experiment before failure. Such components are generally called

censored components. The reason behind these scenarios is to rescue the unfailed

components for possible future use in other systems. Another reason is that the

tested components may be expensive so it is reasonable to stop the experiment

before waiting all of them to fail and have an insight about the lifetimes of the

rescued ones. In life-time analysis and reliability theory two censoring schemes,

Type-I and Type-II are studied with intensity. Assume that at time 0 n compo-

nents are put on a life-time test. Type-I censoring occurs when a pre-fixed time

t is reached. At time t the experiment is stopped. It should be noted that t is

independent of the failure times. In Type-I censoring the failure of a component

can be observed if it fails before t. The survived components, in other words

1



CHAPTER 1. 2

components which have a life-time greater than t, are called censored units. In

Type-II censoring, the experiment is terminated when a prefixed number say, the

kth failure occurs. In this scheme the remaining n − k components are called

censored components.

In reliability theory an (n−k+1)−out-of-n system functions until k com-

ponents have failed so it is reasonable to test them in Type-II censoring scheme

and investigate the lifetimes of the remaining n− k censored components. In the

classical theory of (n− k + 1)−out-of-n systems it is assumed that the lifetimes

of the components are independent and identically distributed and the failure of

one component does not affect the functioning of the remaining ones. If this is

not the case, for instance the failure of a component puts added stress or load

on the remaining components, then models involving sequential order statistics

(Kamps, 1995) can be used in the analysis of such systems. Another scenario oc-

curs when additional components are removed after the failure of a component. If

this is the case, progressively type-II right censored order statistics can be applied

effectively to reflect the situation. In this paper the marginal and joint distribu-

tions of residual lifetimes of the remaining components are obtained for different

types of censored data and some distributional properties and characterizations

are investigated.



Chapter 2

Order Statistics

The independent and identically distributed random variables which can be

interpreted as results of an experiment measuring values of a certain random

variable arranged in order of magnitude, are called order statistics. In the sta-

tistical model of many experiments, for instance in reliability analysis, life time

studies, the analysis of time to graduation of students and testing of strength

of materials, the realizations arise in nondecreasing order, therefore the use of

order statistics is necessary. Order statistics are extensively used in statistical

inferences; in estimation theory and hypothesis testing. Order statistics have

wide applications in many areas where the use of an ordered sample is important.

Let X1, X2, ..., Xn denote a random sample from a population with cumulative

distribution function (c.d.f) F Suppose that the elements of this sample are

arranged in order of magnitude and X(1) denotes the smallest; X(2) denotes the

second smallest; etc. and X(n) denotes the largest of the set X1, X2, ..., Xn. Then

X(1) ≤ X(2) ≤ · · · ≤ X(n) denotes the original random sample arranged in increas-

ing order of magnitude, and these are called the order statistics associated with

the sample X1, X2, ..., Xn. We call X(i), for 1 ≤ i ≤ n the ith order statistic. The

subject of order statistics deals with the distributional properties of X(i) itself,

some functions of the subset of the n order statistics and their applications. It

is well known from classical statistical theory, that the natural estimate of an

unknown distribution function is the empirical distribution function, which is a

3



CHAPTER 2. 4

function of order statistics. Therefore, many important statistics in estimation

theory and hypothesis testing appear to be an integral functional of the empirical

distribution function, and can be expressed in terms of order statistics. Order

statistics do not change their order under probability integral transformation,

namely if U(i) = F (X(i)), i = 1, 2, ..., n then U(1) ≤ U(2) ≤ · · · ≤ U(n). Due to

unique distribution free properties, they are widely used in nonparametric inter-

val estimation and hypothesis testing. Order statistics and their properties have

been extensively studied since early part of the last century, and recent years

have seen a particularly rapid growth of studies. The multiauthored book Contri-

butions to Order Statistics, edited by A.H. Sarhan and B.G. Greenberg appeared

in the Willey series in probability and statistics in 1962. The first monograph,

”Order Statistics” by H. David appeared in 1970 in the same Willey series and

has served as a text, a survey of growth and a general introduction. The Second

edition appeared in 1981 and the third, coauthored with H. Nagaraja, in 2003.

For further reading we refer also Arnold et al. (1992), Balakrishnan (2007).

2.1 Distribution Theory of Order Statistics

Let X1, X2, ..., Xn be a sample size of n from the population with c.d.f F

(i.i.d. random variables with c.d.f F ).

The order statistics obtained by arranging the random sample X1, X2, ..., Xn in

increasing order of magnitude are denoted by

X1:n ≤ X2:n ≤ ... ≤ Xn:n

or

X(1) ≤ X(2) ≤ ... ≤ X(n).

The distribution function of the rth order statistic is

Fr:n(x) = P {Xr:n ≤ x} =
n∑
i=r

(
n

i

)
F i(x) (1− F (x))n−i . (2.1)
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If F is absolutely continuous with pdf f then (2.1) can be written also as follows

Fr:n(x) =
1

B(r, n− r + 1)

∫ F (x)

0

ur−1(1− u)n−rdu

=
1

B(r, n− r + 1)
IF (x)(r, n− r + 1), (2.2)

where

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt,

Ip(a, b) =

∫ p

0

ta−1(1− t)b−1dt,

and the coefficient 1
B(r,n−r+1)

= n!
(r−1)!(n−r)! .

Formula (2.1) yields true for discrete, absolutely continuous and continuous ex-

cept countable number of points (having countable number points of discontinu-

ity). Formula (2.2) is true only for absolutely continuous distribution. Given the

realizations of the n order statistics to be X1:n < X2:n < ... < Xn:n, the origi-

nal random variables Xi are restrained to take on the values Xi:n (i = 1, 2, .., n)

which by symmetry assigns equal probability to each of the n! permutations of

(1,2,...,n). Therefore, the joint density function of all n order statistics is

f1,2,...,n(x1, x2, ..., xn) =


n!
∏n

i=1 f(xi) if x1 < x2 < ... < xn

0 otherwise

(2.3)

The joint pdf of two or more order statistics can be obtained by integrating from

(2.3) as well as by using continuous total probability formula.

The joint pdf of Xr:n and Xs:n, 1 ≤ r < s ≤ n is

fr,s(x, y) =


n!

(r−1)!(s−r−1)!(n−s)!F
r−1(x)

×(F (y)− F (x))s−r−1(1− F (y))n−sf(x)f(y) if x < y

0 otherwise

(2.4)

The joint pdf of order statistics Xr1:n, Xr2:n, ..., Xrk:n is

fr1,r2,...,rk(x1, x2, ..., xk)
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=



n!
(r1−1)!(r2−r1−1)!...(n−rk)!

F r1−1(x1) [F (x2)− F (x1)]r2−r1−1

× [F (x3)− F (x2)]r3−r2−1 ... [1− F (xk)]
n−rk

×f(x1)...f(xk) if x1 < x2 < ... < xk

0 otherwise

(2.5)

If F is a discrete distribution function, then the joint c.d.f of Xr:n and Xs:n is

Fr,s(x, y) =



n∑
i=r

n−i∑
j=max(0,s−i)

n!

i!j!(n− i− j)!
(F (x))i

×[F (y)− F (x)]j[1− F (y)]n−i−j if x < y

Fs(y) otherwise

(2.6)

and the pmf of Xr:n and Xs:n is

fr,s(x, y) = Fr,s(x, y)−Fr,s(x−1, y)−Fr,s(x, y−1)+Fr,s(x−1, y−1), x ≤ y. (2.7)

Definition. Let X1:n, ..., Xn:n be order statistics based on the sample X1, X2, ...,

Xn. Then the random variables

Y1 = X1:n, Y2 = X2:n −X1:n, , ..., Yn = Xn:n −Xn−1:n

are called spacings.

Let X1:n, ..., Xn:n be order statistics based on the sample X1, X2, ..., Xn with

c.d.f F (x) = 1− exp(−λx), x ≥ 0. Then the spacings

Y1 = X1:n, Y2 = X2:n −X1:n, , ..., Yn = Xn:n −Xn−1:n

are independent, furthermore the random variables

Z1 = nλX1:n, Z2 = (n− 1)λ(X2:n −X1:n) , ...,

Zr = (n− r + 1)λ(Xr:n −Xr−1:n), ..., Zn = λ(Xn:n −Xn−1:n)
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are i.i.d. with F (x) = 1− exp(−x), x ≥ 0.

If n units placed under test of solidity and X1, X2, ..., Xn represent the life lengths

of these units, then the lengths of time intervals Xr:n −Xr−1:n ,r = 1, 2, ..., n be-

tween two failures are independent and identically distributed random variables.

Theorem 2.1 Let X1:n, X2:n, ..., Xn:n be order statistics of the sample

X1, X2, ..., Xn with absolutely continuous c.d.f F and p.d.f f. Then

{(Xr+1:n, Xr+2:n, ..., Xn:n) | Xr:n = x} d
= (Y1:n−r, Y2:n−r, ..., Yn−r:n−r),

where Y1:n−r, Y2:n−r, ..., Yn−r:n−r are order statistics from the sample Y1, Y2, ..., Yn−r

of size n− r, and

Y
d
= {X | X > x}

the pdf of Y is fY (u) =

{
0 if u ≤ x
f(u)

1−F (x)
otherwise

.

Theorem 2.2 Let X1:n, X2:n, ..., Xn:n be order statistics of the sample

X1, X2, ..., Xn with absolutely continuous c.d.f F and p.d.f f. Then

{(Xr+1:n, Xr+2:n, ..., Xs−1:n) | Xr:n = x,Xs:n = y}
d
= (Y1:s−r−1, Y2:s−r−1, ..., Ys−r−1:s−r−1),

where Y1:s−r−1, Y2:s−r−1, ..., Ys−r−1:s−r−1 are order statistics from the sample

Y1, Y2, ..., Ys−r size s− r − 1, and

Y
d
= {X | x ≤ X ≤ y}

the pdf of Y is fY (u) =

{
0 if u /∈ [x, y]
f(u)

F (y)−F (x)
otherwise

.

Theorem 2.3 Let X1:n, X2:n, ..., Xn:n be order statistics of the sample

X1, X2, ..., Xn with absolutely continuous c.d.f F and p.d.f f. Then

{Xj:n | Xj−p:n = x,Xj+q:n = y} d
= Yp:p+q−1

p+ 1 ≤ j ≤ n− q

where

Y
d
= {X | x ≤ X ≤ y}.

(Bairamov and Özkal (2007)).
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2.2 Progressive Type II censored order statis-

tics

The model of Progressive Type II censored order statistics is one of the most

applicable general models of ordered random variables and is very useful in re-

liability and life time studies. Let X1, X2, ..., Xn be a sequence of independent

and identically distributed (i.i.d.) random variables representing failure times of

n identical units placed on a life test. Under the Progressive Type II right cen-

soring scheme, at the time of ith failure Ri (i = 1, 2, ...,m and m ≤ n) surviving

items are removed at random from the experiment, where m+
∑n

i=1Ri = n. Let

R = (R1, R2, ..., Rm). Denote the m ordered observed failure times by X1:m:n,

X2:m:n, ..., Xm:m:n. These random variables are called Progressive Type II right

censored order statistics from a sample X1, X2, ..., Xn with progressive censoring

scheme R = (R1, R2, ..., Rm). A nice description of details of theory, methods

and applications of Progressive censoring can be found in Balakrishnan and Ag-

garwala (2000). Schematic representation of Progressive Type-II right censoring

experiment with censoring scheme R = (R1, R2, ..., Rm) :

If the failure times of the n items originally on the test are from a continuous

population with c.d.f F and p.d.f f, the joint p.d.f of all m progressively Type

II censored order statistics is

f1,2,...,m(x1, x2, ..., xm) = c
m∑
i=1

f(xi) {1− F (xi)}Ri , x1 < x2 < ... < xm,

where c = n(n−R1 − 1)...(n−R1 −R2 − ...−Rm−1 −m+ 1).
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The marginal c.d.f and p.d.f of Xr:m:n are given respectively as

FXr:m:n(x) = 1− cr−1

r∑
i=1

ai,r
γi

(1− F (x))γi , 1 ≤ r ≤ m

and

fXr:m:n(x) = cr−1f(x)
r∑
i=1

ai,r(1− F (x))γi , 1 ≤ r ≤ m

where cr−1 =
m∏
j=1

γj and ai,r =
r∏
j=1
j 6=i

1
γj−γi , 1 ≤ i ≤ r ≤ m,m ≥ 2, γj = n − j +

n∑
i=1

Ri + 1 and the empty product Πφ is defined to be 1.

2.3 Sequential Order Statistics

Definition. (Kamps 1995) Let
(
Y

(i)
j

)
, 1 ≤ j ≤ n−i+1, 1 ≤ i ≤ n, be a sequence

of independent random variables with
(
Y

(i)
j

)
∼ Fi,1 ≤ j ≤ n− i + 1, 1 ≤ i ≤ n,

where F1, . . . Fn are continuos distribution functions with F−1
1 (1) ≤ . . . ≤ F−1

n (1).

Let

X
(1)
j = Y

(1)
j , 1 ≤ j ≤ n,

X(1)
∗ = min{X(1)

1 , . . . , X(1)
n },

and for 2 ≤ i ≤ n, let

X
(i)
j = F−1

i

(
Fi(Y

(i)
j )(1− Fi(X(i−1)

∗ )) + Fi(X
(i−1)
∗ )

)
, 1 ≤ j ≤ n− i+ 1,

X(i)
∗ = min{X(i)

1 , . . . , X
(i)
n−i+1}.

Then the random variables X
(1)
∗ , X

(2)
∗ , . . . , X

(n)
∗ are called sequential order statis-

tics (based on F1, F2, . . . , Fn).

One can obtain the conditional distribution of the random variables X
(i)
1 for
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1 ≤ i ≤ n. Since Y
(i)

1 and X
(i−1)
∗ are independent we have

P
(
X

(i)
1 ≤ t|X(i−1)

∗ = s
)

= P

(
Fi(Y

(i)
1 ) ≤ Fi(t)− Fi(s)

1− Fi(s)

)
=
Fi(t)− Fi(s)

1− Fi(s)
, for t ≥ s.

For a particular choice of the distribution functions F1, . . . , Fn, namely

Fi(t) = 1− (1− F (t))αi , 1 ≤ i ≤ n,

with some absolutely continuous and strictly increasing distribution function F

and positive real numbers α1, . . . , αn Kamps(1996) found the joint density of the

first r sequential order statistics X
(1)
∗ , . . . , X

(r)
∗ as

fX
(1)
∗ ...,X

(r)
∗ (x1, . . . , xr) =

n!

(n− r)!

(
r∏
j=1

αj

)
×

(
r−1∏
j=1

(1− F (xj))
mjf(xj)

)
×(1− F (xr))

αr(n−r+1)−1f(xr), x1 < . . . xr, r ≤ n

with mj = (n− j + 1)αj − (n− j)αj+1 − 1, 1 ≤ j ≤ n− 1.

Ordinary order statistics are contained in the model of sequential order statis-

tics in the distribution theoretical sense. Choosing r = n and α1 = . . . ,= αn

we obtain the joint density function of order statistics X(1) ≤ X(2) ≤ · · · ≤ X(n)

based on iid random variables X1, . . . Xn with distribution function 1− (1−F )α1 .



Chapter 3

Residual Lifetimes of Remaining

Components in an n− k + 1 out of

n system

In their article Bairamov and Arnold (2007) found the residual lifelengths of

the remaining functioning components following the kth failure in the system. In

addition they discuss the joint distribution of these exchangeable random vari-

ables and identify the sufficient conditions that guarantee independence of the

residual lifelengths.

Consider an (n− k + 1) out of n system which will function successfully until k

of the components have failed. Consequently, if we denote the lifetimes of the

individual components by X1, X2, . . . , Xn then the lifetime of the (n−k+1) out

of n system will be represented by the kth order statistic Xk:n. After an n−k+ 1

out of n system fails (i.e. after the kth failure has been observed), it is often

reasonable to break down the system and rescue the functioning components for

possible future use in other systems. It will be of interest to determine the joint

distribution of the residual lifetimes of these functioning components in order to

assess the desirability of reusing them in other systems. In the modelling of failure

times for components of the system with i.i.d components, we assume that the

failure of one component does not affect the functioning of the remaining ones.

11
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The classical theory of n − k + 1 out of n systems assumes that the n lifetimes

X1, X2, . . . , Xn of the components of the system are independent and identically

distributed (i.i.d) with common absolutely continuous distribution function F

and corresponding density f . With this setup, the time of the first failure will

be the first order statistic X1:n and the subsequent times between failures can be

identified with the spacings Xi:n − Xi−1:n, i = 2, 3, . . . , n. The i.i.d assumption

is often crucial for obtaining relatively simple distributional results. Note that

even under the classical assumption that the original lifetimes were i.i.d, it will

turn out that the residual lifetimes of the unfailed items will be exchangeable, but

typically not independent. They will be conditionally independent given the time

of the kth failure, but we are not assuming that the time of that failure is known,

or equivalently we do not know the time at which the system was switched on,

we just know it has stopped functioning because k failures have occurred. Note

that if we put the rescued components into a new system, we will need to con-

sider systems with dependent identically distributed component lifetimes, thus

justifying a concern with at least this variation on the classical set up of n−k+1

out of n systems.

For any k ∈ {1, 2, ..., n} we will use the notation X
(k)
1 , X

(k)
2 , ..., X

(k)
n−k to denote

the residual lifetimes of the n− k components still functioning at the time of the

kth failure. For each k, we may define

X
(k)
1:n−k = min{X(k)

1 , X
(k)
2 , . . . , X

(k)
n−k}.

Upon reflection, it is evident that these X
(k)
1:n−k’s simply represent an alterna-

tive description of the spacings of the order statistics of the original sample

X1, X2, . . . , Xn. Thus

Xk+1:n −Xk:n = X
(k)
1:n−k

and

Xk−1:n = X1:n +X
(1)
1:n−1 +X

(2)
1:n−2 + . . .+X

(k)
1:n−k.
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3.1 The joint distribution of the residual life-

lengths of remaining components

We begin with X1, X2, . . . , Xn i.i.d with common absolutely continuous dis-

tribution F and density f . If we are given Xk:n = x, then the conditional dis-

tribution of the subsequent order statistics Xk+1:n, . . . , Xn:n is the same as the

distribution of order statistics of a sample of size n − k from the distribution

F truncated below at x. If we denote by Y
(k)
i , i = 1, 2, . . . , n − k the randomly

ordered values of Xk+1:n, . . . , Xn:n, then given Xk:n = x, these Y
(k)
i ’s will be i.i.d

with common survival function F̄ (x + y)/F̄ (x). The residual lifetimes after k

failures, X
(k)
1 , . . . , X

(k)
n−k, may be represented as

X
(k)
i = Y

(k)
i −Xk:n, i = 1, 2, . . . , n− k

and using Fk:n to denote the distribution function of Xk:n we can obtain the joint

survival function of the residual lifelengths as follows

F̄ (k)
n (x1, x2, . . . , xn−k) = P (X

(k)
1 > x1, X

(k)
2 > x2, . . . , X

(k)
n−k > xn−k)

=

∫ ∞
0

P (X
(k)
1 > x1, . . . , X

(k)
n−k > xk|Xk:n = t)dFk:n(t)

=

∫ ∞
0

P (Y
(k)

1 > x1 + t, . . . , Y
(k)
n−k > xn−k + t|Xk:n = t)dFk:n(t)

=

∫ ∞
0

[
n−k∏
j=1

F̄ (xj + t)

F̄ (t)

]
dFk:n(t). (3.1)

Here and henceforth, the subscript n on a distribution, density or survival func-

tion of residual lifetimes denotes the original sample size while the superscript

denotes the number of failures that have occurred. From (3.1) the joint density

of the residual life lengths can be obtained by justifiably differentiating under the

integral sign, to get

f (k)
n (x1, x2, ..., xn−k) =

∫ ∞
0

[
n−k∏
j=1

f(xj + t)

F̄ (t)

]
dFk:n(t)

= k

(
n

k

)∫ ∞
0

n−k∏
j=1

f(xj + t)F k−1(t)dF (t). (3.2)



CHAPTER 3. 14

It is obvious from (3.1) or (3.2) that X
(k)
i ’s are exchangeable (it was already

obvious since they were conditionally independent given Xk:n). The common

marginal distribution function of the X
(k)
i ’s is

F (k)
n (x) = P (X

(k)
i ≤ x) = k

(
n

k

)∫ ∞
0

[F̄ (t)]n−k−1[F (t+ x)− F (t)]F k−1(t)dF (t).

(3.3)

The marginal density of the X
(k)
i ’s can be expressed as

f (k)
n (x) =

∫ ∞
0

f(t+ x)

F̄ (t)
fk:n(t)dt, (3.4)

where fk:n denotes the density of the k’th order statistic Xk:n.

Example 3.1. Suppose that F (x) = U0,1(x) = x; 0 ≤ x ≤ 1, a uniform distri-

bution on the interval (0, 1). Referring to (3.2) we find the corresponding joint

density of the residual lifetimes following the k’th failure to be

f (k)
n (x1, x2, . . . , xn−k) = k

(
n

k

)∫ 1

0

[
n−k∏
j=1

I(0 < xj + t < 1)

]
tk−1dt

= k

(
n

k

)∫ 1

0

I(0 < t < 1−max(xi))t
k−1dt

=

(
n

k

)
[1−max(xi)]

kI(0 < xi < 1, i = 1, 2, . . . , n− k)

with corresponding marginal density (from (3.4))

f (k)
n (x) =

∫ 1

0

I(0 < t+ x < 1)

1− t
k

(
n

k

)
tk−1(1− t)n−kdt

= k

(
n

k

)∫ 1−x

0

tk−1(1− t)n−k−1dt

= k

(
n

k

)
I1−x(k, n− k)

=
n

n− k
I1−x(k, n− k),

where Iγ(α, β) denotes the incomplete gamma function, in this case a polynomial

of degree n− k.

Example 3.2. Suppose that F (x) = 1− e−λx, x > 0, an exponential distribution

with intensity λ. The lack of memory of the exponential distribution could be



CHAPTER 3. 15

used to argue that the residual lifetimes following the k’th failure should have

the same distribution as the original lifetimes. We can confirm this readily by

substituting the exponential survival function in (3.1) to obtain

F̄ (k)
n (x1, x2, . . . , xn−k) =

∫ ∞
0

[
n−k∏
j=1

e−λ(xj+t)

e−λt

]
dFk:n(t)

=
n−k∏
j=1

e−λxj
∫ ∞

0

dFk:n(t)

=
n−k∏
j=1

e−λxj , xj > 0, j = 1, 2, . . . , n− k.

This joint density of residual lives has two remarkable features. First the residual

lifetimes are independent. Second the residual life distribution of a component is

the same as the original life distribution of a component.

3.2 Remarks on Wearouts

Typically components degrade under usage.

Definition. F is said to be new better than used (NBU) if for every t, x ≥ 0 we

have F̄ (x + t) ≤ F̄ (x)F̄ (t). If for every t, x ≥ 0, we have F̄ (x + t) ≥ F̄ (x)F̄ (t)

then F is said to be new worse than used (NWU) (Barlow and Proschan (1975)).

We use the symbol ≤st to denote stochastic ordering, thus we write X ≤st Y
(X is stochastically smaller than Y ) if P (X > x) ≤ P (Y > x),∀x ∈ R.

Common sense tells us that if components wear out (i.e. if F is NBU) then

the residual lifetimes will be stochastically smaller than the original lifetimes. We

may confirm this as follows.

Proposition 3.1 If F is NBU(NWU), then X
(k)
1 ≤st X1 ( X

(k)
1 ≥st X1 ).

Proof. Assume that F is NBU. We can write the joint distribution function of



CHAPTER 3. 16

the survival times as follows

F (k)
n (x1, x2, . . . , xn−k) =

∫ ∞
0

[
n−k∏
j=1

F (xj + t)− F (t)

1− F (t)

]
dFk:n(t).

The marginal distribution function of X1 is obtained by taking the limit as xi →
∞, i = 2, . . . , n− k. Thus

F (k)
n (x1) =

∫ ∞
0

F (x1 + t)− F (t)

1− F (t)
dFk:n(t)

=

∫ ∞
0

F̄ (t)− F̄ (x1 + t)

F̄ (t)
dFk:n(t).

Since F is NBU, we have F̄ (x1 + t) ≤ F̄ (x1)F̄ (t) and so

F (k)
n (x1) ≥

∫ ∞
0

F̄ (t)− F̄ (x1)F̄ (t)

F̄ (t)
dFk:n(t)

= [1− F̄ (x1)]

∫ ∞
0

dFk:n(t)

= F (x1).

Of course if F is both NBU and NWU (i.e. if F is an exponential distribution

function), then X
(k)
1

d
= X1. We now turn to characterizations related to this

observation.

3.3 Characterizations

If the original component lifetime distribution F was an exponential distri-

bution, then we have seen that the residual lifetimes following the k’th failure

will be independent and will have the same marginal distribution as that of the

original lifetimes. It is thus reasonable to ask whether the conditions

(A) X
(k)
1

d
= X1

and

(B) X
(k)
1 and X

(k)
2 are independent
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are together or separately sufficient to guarantee that the original component

lifetime distribution must be exponential. Condition (A) is readily dealt with.

Theorem 3.2 If X
(k)
1

d
= X1, then X1 ∼ exponential (λ) for some λ > 0.

Proof. If X
(k)
1

d
= X1, then for every x > 0,

F̄ (x) = P (X1 > x) = P (X
(k)
1 > x) =

∫ ∞
0

F̄ (x+ t)

F̄ (t)
dFk:n(t).

Thus ∫ ∞
0

F̄ (x+ t)− F̄ (x)F̄ (t)

F̄ (t)
dFk:n(t) = 0 ∀x > 0.

But this is an integrated Cauchy functional equation (see e.g.Rao and Shanbhag

(1994) ) and the only solution is if the form F̄ (x) = e−λx, x > 0 for some λ > 0.

We are able to characterize the exponential distribution using condition (B) by

imposing a rather strong regularity condition. Whether this regularity condition

can be dispensed with remains an open problem.

Theorem 3.3 If X
(k)
1 and X

(k)
2 are independent and if

i. F̄ (x) is strictly decreasing on (0,∞) and

ii. for each x > 0, F̄ (x+t)

F̄ (t)
is a monotone function of t,

then X1 ∼ exponential (λ) for some λ > 0.

[Note that a sufficient condition for monotonicity of F̄ (x+t)

F̄ (t)
for every x is that

F have a monotone failure rate, i.e. is either IFR or DFR.]

Proof. For any x1, x2 > 0 we have

F̄(k)(x1, x2) =

∫ ∞
0

[
2∏
j=1

F̄ (xj + t)

F̄ (t)

]
dFk:n(t)

and

F̄(k)(x1) =

∫ ∞
0

(
F̄ (x1 + t)

F̄ (t)

)
dFk:n(t).
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Thus if X
(k)
1 and X

(k)
2 are independent we have∫ ∞

0

[
2∏
j=1

F (xj + t)

F̄ (t)

]
dFk:n(t) =

∫ ∞
0

F̄ (x1 + t)

F̄ (t)
dFk:n(t)

∫ ∞
0

F̄ (x2 + t)

F̄ (t)
dFk:n(t).

We can write this as

cov

(
F̄ (x1 +Xk:n)

F̄ (Xk:n)
,
F̄ (x2 +Xk:n)

F̄ (Xk:n)

)
= 0. (3.5)

Recall what is sometimes called Tchebychev’s second inequality. It states that

for any random variable X and any two non-decreasing functions φ1 and φ2, then

provided appropriate expectations exist we have cov(φ1(X), φ2(X)) ≥ 0 with

equality if and only if at least one of the random variables φ1(X) and φ2(X) is

degenerate. The same conclusion holds if both φ1 and φ2 are non-increasing.

The assumed monotonicity of F̄ (x+t)

F̄ (t)
for each x, together with equation (3.5)

and Tchebychev’s second inequality permits us to conclude that for any pair

x1, x2, at least one of the random variables F̄ (x1+Xk:n)

F̄ (Xk:n)
and F̄ (x2+Xk:n)

F̄ (Xk:n)
is degenerate.

If for every pair x1, x2, both of the random variables F̄ (x1+Xk:n)

F̄ (Xk:n)
, F̄ (x2+Xk:n)

F̄ (Xk:n)
are

degenerate, then it follows that for every x, F̄ (x+Xk:n)

F̄ (Xk:n)
is degenerate, say equal to

c(x).

If there exists a pair x1, x2 for which one of the random variables F̄ (x1+Xk:n)

F̄ (Xk:n)
,

F̄ (x2+Xk:n)

F̄ (Xk:n)
is not degenerate, then without loss of generality we can assume that

F̄ (x1+Xk:n)

F̄ (Xk:n)
is not degenerate, but then for every x 6= x1, we must have F̄ (x+Xk:n)

F̄ (Xk:n)

degenerate and equal to c(x), say. Thus for any y > 0 and any x > 0, x 6= x1, we

have, since F̄ (x) is assumed to be decreasing,

F̄ (x+ y)

F̄ (y)
= c(x). (3.6)

Using the right continuity of F̄ we can define c(x1) = limx↓x1 c(x) and conclude

that (3.6) holds for every x, y > 0. But this is Pexider’s equation and thus

F̄ (x) = k1e
−λx and c(x) = k2e

−λx. Finally by considering limits as x → 0, we

conclude that k1 = k2 = 1.
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3.4 An extension to exchangeability

Instead of assuming that the Xi’s are i.i.d we may wish to entertain the

possibility that they are exchangeable. Indeed some Bayesians might argue that

this is almost always more appropriate than an i.i.d assumption. Provided we

interpret the concept of exchangeability in the strict deFinetti sense, then we

are really dealing with conditionally independent variables. Thus we assume

the existence of a random variable Z with distribution function G(z), such that

given Z = z the Xi’s are conditionally i.i.d within common marginal conditional

distribution denoted by Fz(x). Thus the joint distribution of X1, X2, . . . , Xn

assumes the form:

FX1,X2,...,Xn(x1, x2, . . . , xn) =

∫ ∞
−∞

[
n∏
j=1

Fz(xj)

]
dG(z). (3.7)

It then follows that the joint survival function of the residual lives of the remaining

components after k failures will be of the form

F̄
X

(k)
1 ,X

(k)
2 ,...,X

(k)
n−k

(x1, x2, . . . , xn−k)

=

∫ ∞
−∞

(∫ ∞
0

[
n−k∏
j=1

F̄z(xj + t)

F̄z(t)

]
dFz;k:n(t)

)
dG(z). (3.8)

For most choices of conditional distributions Fz, this expression will be difficult

to evaluate. In certain favorable cases analytic results are obtainable.

Example 3.3. Suppose that, given Z = z, the Xi’s are conditionally independent

exponential (δz) random variables. In addition suppose that Z ∼ Γ(α, λ), i.e.

that

fZ(z) =
λαzα−1e−λz

Γ(α)
I(z > 0).

In this case we will have

F̄
(k)

X
(k)
1 ,X

(k)
2 ,...,X

(k)
n−k|Z

(x1, x2, . . . , xn−k|z) =
n−k∏
j=1

e−δzxi

= exp(−δz
n−k∑
j=1

xj).
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Consequently the joint density of the residual lives after k failures will be given

by

F
(k)

X
(k)
1 ,X

(k)
2 ,...,X

(k)
n−k

(x1, x2, . . . , xn−k)

=

∫ ∞
0

exp(−δz
n−k∑
j=1

xj)
λkzα−1e−λz

Γ(α)
dz

= (1 +
δ

λ

n−k∑
j=1

xj)
−α, (3.9)

which is a multivariate Pareto distribution. In (3.9), the X
(k)
i ’s are identically

distributed but only conditionally independent.

3.5 A link with mean residual life functions

For a component Xi with lifetime distribution F , the corresponding mean

residual life (MRL) function ψF is defined as follows

ψF (t) = E(X − t|X > t) =
1

F̄ (t)

∫ ∞
0

xf(t+ x)dx. (3.10)

The MRL function is of much utility in actuarial, survival and reliability settings.

For detailed discussion of the MLR function see Meilijson (1972), Hall and Wellner

(1981), Oakes and Dasu (1990). The MRL function is related to other well known

functions such as the Lorenz curve and the hazard function (cf., Arnold (1983)).

Recently papers have appeared investigating the mean residual life functions of

k-out-of-n systems. See for example, Bairamov et al. (2002), Asadi and Bairamov

(2005), Asadi and Bairamov (2006), Li and Zhao (2006).

In fact the expected value of a residual lifetime after k failures (X
(k)
1 ) is directly

related to the MRL function of the component lifetime distribution F , i.e. to ψF .

We have

Theorem 3.4 E(X
(k)
1 ) = E(ψF (Xk:n)), k = 1, 2, . . . , n− 1.
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Proof. From (3.1), the density of X
(k)
1 is given by

f (k)
n (x) =

∫ ∞
0

f(t+ x)

F̄ (t)
fk:n(t)dt,

where fk:n(t) denotes the density of Xk:n. Consequently

E(X
(k)
1 ) =

∫ ∞
0

xf (k)
n (x)dx

=

∫ ∞
0

∫ ∞
0

x
f(t+ x)

F̄ (t)
fk:n(t)dtdx

=

∫ ∞
0

ψF (t)fk:n(t)dt = E(ψF (Xk:n)).

3.6 On reuse of unfailed components

Suppose that we have on hand n − k unfailed units from an n − k + 1 out

of n system and that we use them to construct an n − k − k′ + 1 out of n − k
system. What can we say about the residual lifetimes of the n− k − k′ unfailed

units from this n− k − k′ + 1 out of n− k system. The joint distribution of the

component lifetimes of the n−k units used to build the second system will be only

conditionally independent given Xk:n (the failure time of the original n − k + 1

out of n system). Their joint distribution will be given by (3.1), i.e.

F̄ (k)
n (x1, x2, . . . , xn−k) =

∫ ∞
0

[
n−k∏
j=1

F̄ (xj + t)

F̄ (t)

]
dFk:n(t).

Thus for the second system, built with these used components, the joint distribu-

tion of the component lifetimes is a mixture as in (3.7) with mixing distribution

G(z) = Fk:n(z) and conditional survival functions F̄z(xj) =
F̄ (xj+z)

F̄ (z)
. We may

then, using (3.8), obtain the joint survival function of the residual lifetimes of the

unfailed items from the second system, i.e. the n−k−k′+ 1 out of n−k system.

Thus we obtain

F̄
X

(n−k)
1 X

(n−k)
2 ,...,X

(n−k)

n−k−k′
(x1, x2, . . . , xn−k−k′)
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=

∫ ∞
0

∫ ∞
0

n−k−k′∏
j=1

F̄ (xj + t+ z)

F̄ (t+ z)
dFz;k′:n−k(t)dFk:n, (3.11)

where Fzjk′:n−k(t) denotes the distribution of the kth order statistic from a sam-

ple of size n − k from the distribution with survival function F̄ (x + z)/F̄ (z).

Eventually this simplifies to yield

F̄
X

(n−k)
1 X

(n−k)
2 ,...,X

(n−k)

n−k−k′
(x1, x2, . . . , xn−k−k′)

=

∫ ∞
0

n−k−k′∏
j=1

F̄ (xj + u)

F̄ (u)
dFk+k′:n(u)

confirming the retrospectively obvious result that the residual lives of the remain-

ing components after serving in both systems, correspond in distribution to the

residual lives of the remaining components when a n− k− k′+ 1 out of n system

has failed. We are indeed waiting first for k failures and then k′ more failures

among the original n components.

If only n− p of the surviving components from the n− k + 1 out of n system

are used to construct an n− p− k′+ 1 out of n− p system, equation (3.11) must

be slightly modified to describe the residual lives of the surviving components in

the second system. We will have

F̄
X

(n−p)
1 ,X

(n−p)
2 ,...,X

(n−p)

n−p−k′
(x1, x2, . . . , xn−p−k′)

=

∫ ∞
0

∫ ∞
0

n−p−k′∏
j=1

F̄ (xj + t+ z)

F̄ (t+ z)
dFzjk′+n−p(t)dFk,n(z). (3.12)

Only in very special cases will it be possible to simplify this expression. For

example, if the original components had exponential (λ) lifetime distributions

then the lack of memory property guarantees that the residual lifetimes of the

surviving components in the second system (the n − p − k′ + 1 out of n − p

system) will again have independent exponential (λ) distributions. Substitution

of F̄ (x) = e−λx in (3.12) will confirm this conclusion.
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Residual Lifetimes of Remaining

Progressively Type-I Censored

Order Statistics

Suppose n independent units are placed on a life-test with the corresponding

failure times X1, X2, ..., Xn being identically distributed with c.d.f F (x) and p.d.f

f(x). Suppose that in a given time t the number of failed components are known

and we are interested in residual lifetimes of the remaining components that

survives after time t. Let ξ(t) denotes the number of failed components up to

time t. Given ξ(t) = k ⇔ (Xk:n < t < Xk+1:n) the residual lifetimes of the

23
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remaining can be represented as

F
(t,k)
n−k (x1, x2, ...xn−k) = P{Xk+1:n − t ≤ x1, Xk+2:n − t ≤ x2, ...Xn:n − t ≤ xn−k| ξ(t) = k}

F
(t,k)
n−k (x1, x2, ...xn−k) =

P{Xk:n < t, t < Xk+1:n − t ≤ x1, ..., Xn:n − t ≤ xn−k}
P{Xk:n < t < Xk+1:n}

=

P{Xk:n < t, t < Xk+1:n ≤ x1 + t,Xk+1:n < Xk+2:n ≤ x2 + t,

..., Xn−1:n < Xn:n ≤ xn−k + t}
P{Xk:n < t < Xk+1:n}

=

(
n
k

)
F (t)k

x1+t∫
t

x2+t∫
u1

x3+t∫
u2

...
xn−k+t∫
un−k−1

dF (un−k)dF (un−k−1)...dF (u1)(
n
k

)
F (t)k(1− F (t))n−k

=

x1+t∫
t

x2+t∫
u1

x3+t∫
u2

...
xn−k+t∫
un−k−1

dF (un−k)dF (un−k−1)...dF (u1)

(1− F (t))n−k
.

4.1 The joint and the marginal distribution of

the residual lifelengths of remaining compo-

nents

Theorem 4.1 Let X1, X2, ..., Xn denote the corresponding failure times of n

components being identically distributed with c.d.f F (x) and p.d.f f(x). Given

ξ(t) = k the joint distribution of the residual lifetimes of the remaining n − k

items for n− k ≥ 2 can be found by the recursive formula given below

F
(t,k)
n−k (x1, x2, ...xn−k) =

(1− F (t))n−k−1
[
F (xn−k + t)F

(t,k)
n−k−1(x1, x2, ...xn−k−1)

−
n−k−1∑
j=2

F (xj+t)

(n−k−j+1)
A

(t,k)
maxn−k−1,j(x1, x2, ...xn−k−1)

]
+ (−1)n−k+1 F

n−k(x1+t)−Fn−k(t)
(n−k)!

(1− F (t))n−k

where A
(t,k)
maxn−k−1,j(x1, x2, ..., xn−k−1) denotes the terms of the joint distribution

function F
(t,k)
n−k−1(x1, x2, ...xn−k−1), whose maximum index is j, and F

(t)
1 (x1) =

F (x1+t)−F (t)
1−F (t)
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Using theorem 4.1 one can evaluate the joint distributions of the residual

lifelenghts for n− k = 2, 3 respectively.

F
(t,k)
2 (x1, x2) =

F (x2 + t) [F (x1 + t)− F (t)]− F 2(x1+t)−F 2(t)
2!

(1− F (t))2

A
(t,k)
max 2,2(x1, x2) =

F (x2 + t) [F (x1 + t)− F (t)]

(1− F (t))2

F
(t,k)
3 (x1, x2, x3) =

(1− F (t))2
[
F (x3 + t)F

(t,k)
2 (x1, x2)− F (x2+t)

2
A

(t,k)
max 2,2(x1, x2)

]
+ F 3(x1+t)−F 3(t)

3!

(1− F (t))3

=

F (x3 + t)F (x2 + t) [F (x1 + t)− F (t)]− F (x3 + t)F
2(x1+t)−F 2(t)

2!

−F 2(x2+t)
2

[F (x1 + t)− F (t)] + F 3(x1+t)−F 3(t)
3!

(1− F (t))3

A
(t,k)
max 3,2(x1, x2, x3) =

−F 2(x2+t)
2

[F (x1 + t)− F (t)]

(1− F (t))3

A
(t,k)
max 3,3(x1, x2, x3) =

F (x3 + t)F (x2 + t) [F (x1 + t)− F (t)]− F (x3 + t)F
2(x1+t)−F 2(t)

2!

(1− F (t))3

The marginal survival function of the residual lifetimes Xk+r:n r = 1, 2...n−k
given (Xk:n < t < Xk+1:n) can be expressed as

= P{Xk+r:n − t > xr |Xk:n < t < Xk+1:n}

=
P{Xk+r:n > xr + t,Xk:n < t < Xk+1:n}

P{Xk:n < t < Xk+1:n}

P{Xk+r:n > xr + t,Xk:n < t < Xk+1:n} =(
n
k

)
(F (t))k

n−k∑
j=n−k−r+1

(
n−k
j

)
(F (xr + t))j(F (xr + t)− F (t))n−k−j.

Since

P{Xk:n < t < Xk+1:n} =
(
n
k

)
(F (t))k(F (t))n−k

one can find the marginal survival functions of the residual lifetimes for r =

1, 2...n− k as

P{Xk+r:n − t > xr |Xk:n < t < Xk+1:n} =
P{Xk+r:n > xr + t,Xk:n < t < Xk+1:n}

P{Xk:n < t < Xk+1:n}

=
n−k∑

j=n−k−r+1

(
n−k
j

)(F (xr + t)

F (t)

)j (
1− F (xr + t)

F (t)

)n−k−j
.
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Residual Lifetimes of Remaining

Progressively Type-II Right

Censored Order Statistics

Normally in progressively type-II right censoring n units are placed on test at

time zero. Immediately following the first failure, R1 surviving units are removed

from the test at random. Then immediately following the second observed failure,

R2 surviving units are removed from the test at random. This process continues at

the time of the m-th observed failure remaining Rm = n−R1−R2−...−Rm−1−m
units are all removed from the experiment. Now suppose after m-th observed

failure we do not remove all remaining units. We are interested on the remaining

lifetimes of the n−R1−R2− ...−Rm−1−m = Rm survived units given the time

of the m-th failure.

For any m ∈ {1, 2...n} we will use the notation X
(m)
1 , X

(m)
2 , ..., X

(m)
Rm

to denote

the residual lifetimes of the Rm units still functioning at the time of mth failure.

Denote Y
(m)
i , i = 1, 2...Rm. randomly ordered values of Xi:m:Rm , i = 1, 2...Rm.

Given Xm:m:n = x these Y
(m)
i will be i.i.d with common survival function F (x +

y)/F (x). Then residual lifetimes of the remaining components after m failures
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can be represented as

X
(m)
i = Y

(m)
i −Xm:m:n, i = 1, 2...Rm.

Using FXm:m:n to denote the distribution of Xm:m:n we can obtain the joint survival

function of the residual lifelenghts as follows

F
(m)

n (x1, x2, ...xn−R1−R2−...−Rm−1−m)

= P{X(m)
1 > x1, X

(m)
2 > x2, ..., X

(m)
Rm

> xRm}

=

∞∫
0

P{X(m)
1 > x1, ..., X

(m)
Rm

> xRm |Xm:m:n = t}dFXm:m:n(t)

=

∞∫
0

P{Y (m)
1 > x1 + t, ..., Y

(m)
Rm

> xRm + t |Xm:m:n = t}dFXm:m:n(t)

=

∞∫
0

[
Rm∏
j=1

F (xj + t)

F (t)

]
dFXm:m:n(t). (5.1)

The joint density of residual lifelenghts can be obtained by differentiating

under the integral sign to get

∞∫
0

[
Rm∏
j=1

f(xj + t)

F (t)

]
dFXm:m:n(t). (5.2)

The marginal density of X
(m)
i can be expressed as

f (m)
n (x) =

∞∫
0

f(x+ t)

F (t)
fXm:m:n(t)dt. (5.3)

5.1 Aging of the remaining components

Proposition 5.1 If F is NBU (NWU), then X
(m)
1 ≤st X1 ( X

(m)
1 ≥st X1 ).
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Proof. Assume that F is NBU. We can write the joint distribution function of

the survival times as follows

F (m)
n (x1, x2, . . . , xRm) =

∫ ∞
0

[
Rm∏
j=1

F (xj + t)− F (t)

1− F (t)

]
dFXm:m:n(t).

The marginal distribution function of X1 is obtained by taking the limit as xi →
∞, i = 2, . . . , n− k. Thus

F (m)
n (x1) =

∫ ∞
0

F (x1 + t)− F (t)

1− F (t)
dFXm:m:n(t)

=

∫ ∞
0

F̄ (t)− F̄ (x1 + t)

F̄ (t)
dFXm:m:n(t).

Since F is NBU, we have F̄ (x1 + t) ≤ F̄ (x1)F̄ (t) and so

F (m)
n (x1) ≥

∫ ∞
0

F̄ (t)− F̄ (x1)F̄ (t)

F̄ (t)
dFXm:m:n(t)

= [1− F̄ (x1)]

∫ ∞
0

dFXm:m:n(t)

= F (x1).

5.2 Characterizations

Theorem 5.2 If X
(m)
1

d
= X1, then F ≡ Exp(λ), λ > 0.

Proof. If X
(m)
1

d
= X1 then for every x > 0,

F̄ (x) = P (X1 > x) = P (X
(m)
1 > x) =

∫ ∞
0

F̄ (x+ t)

F̄ (t)
dFXm:m:n(t).

Thus ∫ ∞
0

F̄ (x+ t)− F̄ (x)F̄ (t)

F̄ (t)
dFXm:m:n(t) = 0 ∀x > 0.

But this is an integrated Cauchy functional equation (see e.g.Rao and Shanbhag

(1994) ) and the only solution is if the form F̄ (x) = e−λx, x > 0 for some λ >

0.
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5.3 An extension to exchangeability

Instead of assuming that the Xi’s are i.i.d we may wish to entertain the

possibility that they are exchangeable. It follows from (3.7) that the joint survival

function of the residual lives of the remaining components after m failures will

be of the form

F̄
X

(m)
1 ,X

(m)
2 ,...,X

(m)
n−Rm

(x1, x2, . . . , xRm)

=

∫ ∞
−∞

(∫ ∞
0

[
Rm∏
j=1

F̄z(xj + t)

F̄z(t)

]
dFz;m:m:n(t)

)
dG(z). (5.4)

5.4 A link with mean residual life functions

The expected value of a residual lifetime after m failures (X
(m)
1 ) is directly

related to the MRL function of the component lifetime distribution F , i.e. to ψF .

Theorem 5.3 E(X
(m)
1 ) = E(ψF (Xm:m:n)),m = 1, 2, . . . , n− 1.

Proof. The density of X
(m)
1 is given by

f (m)
n (x) =

∞∫
0

f(x+ t)

F (t)
fXm:m:n(t)dt,

where fXm:m:n(t) denotes the density of Xm:m:n. Consequently

E(X
(m)
1 ) =

∫ ∞
0

xf (m)
n (x)dx

=

∫ ∞
0

∫ ∞
0

x
f(t+ x)

F̄ (t)
fXm:m:n(t)dtdx

=

∫ ∞
0

ψF (t)fm:m:n(t)dt = E(ψF (Xm:m:n)).
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Residual Lifetimes of the

Remaining Sequentially Ordered

Statistics

When modelling of failure times for components of the system having i.i.d

components it is assumed that the failure of one component does not affect the

functioning ones. If that is not the case for instance if the failure of a compo-

nent puts added stress or load on the remaining components the model involving

sequentially ordered statistics can be appropriately used in the analysis of the sys-

tem. Gurler(2010) extended some results on the joint distribution of the residual

lifetimes of the remaining components in an ordinary (n− k+ 1)-out-of-n system

presented in Bairamov and Arnold to the case of the sequential (n− k + 1)-out-

of-n system.

Let X1, X2, . . . , Xn be the lifetimes of the components each following con-

tinuos distribution functions F1, F2, . . . , Fn and respective density functions

f1, f2, . . . , fn. To simplify the presentation, we assume F−1
i (0+) = 0 and F−1

i (1) =

∞, 1 ≤ i ≤ s. Moreover, let X
(1)
∗ , X

(2)
∗ , . . . , X

(n)
∗ denote sequential order statistics

based on F1, F2, . . . , Fn that describe the failure times in a sequential (n−k+ 1)-

out-of-n system. Then, the lifetime of the sequential (n− k+ 1)-out-of-n system

is modeled by the kth sequential order statistic X
(k)
∗ , 1 ≤ k ≤ n.
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Let X
(k+1)
j , j = 1, 2, . . . , n − k, represent the overall lifetimes of the remaining

components in the sequential (n− k+ 1)-out-of-n system after the kth failure,i.e.

after the system itself has failed. Then, the residual lifetimes of the remaining

components after the occurrence of the kth failure are given by

Z
(k+1)
j = X

(k+1)
j −X(k)

∗ , j = 1, 2, . . . , n− k.

It is known that the residual lifetimes of these components are conditionally

independent given the kth failure time X
(k)
∗ in the system. If FX

(k)
∗ (s) denotes

the distribution function of the kth sequential order statistic X
(k)
∗ , then the joint

survival function of the residual lifetimes of the n−k components after kth failure

is given by

F
(k+1)

(z1, . . . , zn−k) = P (Z
(k+1)
1 > z1, . . . , Z

(k+1)
n−k > zn−k)

=

∞∫
0

P (Z
(k+1)
1 > z1, . . . , Z

(k+1)
n−k > zn−k|X(k)

∗ = s)dFX
(k)
∗ (s)

=

∞∫
0

P (X
(k+1)
1 > z1 + s, . . . , X

(k+1)
n−k > zn−k + s|X(k)

∗ = s)dFX
(k)
∗ (s)

=

∞∫
0

n−k∏
i=1

(
1− Fk+1(zi + s)

1− Fk+1(s)

)
dFX

(k)
∗ (s). (6.1)

Analogously, the joint distribution function can be derived as follows.

F (k+1)(z1, . . . , zn−k) =

∞∫
0

n−k∏
i=1

(
Fk+1(zi + s)− Fk+1(s)

1− Fk+1(s)

)
dFX

(k)
∗ (s). (6.2)

A particular choice of the involved distribution functions F1, . . . , Fn is given by

Fi = 1− (1− F )αi , 1 ≤ i ≤ n, (6.3)

where F is an absolutely continuous distribution function with density f and

α1, . . . , αn are positive real numbers used to indicate the influence of a failure on

the remaining components (see Kamps 1995). Utilizing this representation, the

joint survival function of residual lifetimes after k failures simplifies to

F
(k+1)

(z1, . . . , zn−k) =

∞∫
0

n−k∏
i=1

(
F (zi + s)

F (s)

)αk+1

dFX
(k)
∗ (s),
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where F = 1− F denotes the survival function of F .

For the joint density function of the residual lifetimes, we obtain

f (k+1)(z1, . . . , zn−k) = αk+1

∞∫
0

n−k∏
i=1

(
f(zi + s)F (zi + s)

)αk+1−1(
F (s)

)αk+1
dFX

(k)
∗ (s). (6.4)

Let h(k+1) and H(k+1) denote the common marginal density and marginal distri-

bution functions of the Z
(k+1)
i ’s. Then the common marginal distribution function

of the Z
(k+1)
i ’s is,

H(k+1)(z) = P
(
Z

(k+1)
i ≤ z

)
=

∞∫
0

P
(
Z

(k+1)
i ≤ z|X(k)

∗ = s
)
dFX

(k)
∗ (s)

=

∞∫
0

P
(
X

(k+1)
i ≤ z + s|X(k)

∗ = s
)
dFX

(k)
∗ (s)

=

∞∫
0

[
Fk+1(z + s)− Fk+1(s)

1− Fk+1(s)

]
dFX

(k)
∗ (s). (6.5)

Using the relation in (6.3), marginal distribution and the marginal density of

Z
(k+1)
i ’s are written as

H(k+1)(z) =

∞∫
0

[(
F (s)

)αk+1 −
(
F (z + s)

)αk+1(
F (s)

)αk+1

]
dFX

(k)
∗ (s), (6.6)

h(k+1)(z) =

∞∫
0

[
αk+1f(z + s)

(
F (z + s)

)αk+1−1(
F (s)

)αk+1

]
dFX

(k)
∗ (s). (6.7)

6.1 Aging of the remaining components

Proposition 6.1 If F is NBU (NWU), then Z
(k+1)
1 ≤st Z1 (Z

(k+1)
1 ≥st Z1).

Proof. The marginal distribution of Z
(k+1)
1 has the following form:

H(k+1)(z1) =

∞∫
0

(
F (s)

)αk+1 −
(
F (z1 + s)

)αk+1(
F (s)

)αk+1
dFX

(k)
∗ (s).
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If F is NBU, we have(
F (z1 + s)

)αk+1 ≤
(
F (z1)

)αk+1
(
F (s)

)αk+1
.

Hence,

H(k+1)(z1) ≥
∞∫

0

(
F (s)

)αk+1 −
(
F (z1)

)αk+1
(
F (s)

)αk+1(
F (s)

)αk+1
dFX

(k)
∗ (s)

≥ 1−
(
F (z1)

)αk+1

= Fk+1(z1).

6.2 Characterizations

Theorem 6.2 If Z
(k+1)
1

d
= Z1, then F ≡ Exp(λ), λ > 0.

Proof. If Z
(k+1)
1

d
= Z1, then for z > 0,

H
(k+1)

(z) =

∞∫
0

[
F k+1(z + s)

F k+1(s)

]
dFX

(k)
∗ (s) = F k+1(z)

Thus, the following assertion holds:

=

∞∫
0

[
F k+1(z + s)

F k+1(s)

]
dFX

(k)
∗ (s)−

∞∫
0

F k+1(z)dFX
(k)
∗ (s) = 0,

=

∞∫
0

[
F k+1(z + s)− F k+1(z)F k+1(s)

F k+1(s)

]
dFX

(k)
∗ (s) = 0, for z > 0.

This satisfies the integrated Cauchy functional equation (Rao and Shanbhag 1994)

and the solution is only based on the exponential distribution for some λ > 0.
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6.3 Exchangeability of the residual lifetimes

The concept of exchangeability introduced by deFinetti allows the more flex-

ible modeling by forcing Bayesian approach. It is important to notice that when

Xi’s are considered to be a random sample from some model, then they are nec-

essarily exchangeable. If we assume that there exists a random variable Y with

distribution function G(y), given Y = y, Xi’s are conditionally independent with

common marginal conditional distribution denoted by FY (x). Thus the joint

distribution of X1, X2, . . . , Xn assumes the form:

FX1,...,Xn(x1, . . . , xn) =

∞∫
−∞

[
n∏
j=1

FY (xj)

]
dG(y).

Similarly, the joint distribution of Z
(k+1)
i ’s follows

F
(k+1)

(z1, . . . , zn−k) =

∞∫
−∞

 ∞∫
0

n−k∏
i=1

(
1− FY,k+1(zi + s)

1− FY,k+1(s)

)
dFX

(k)
∗ (s)

 dG(y).

(6.8)

If we suppose that, given Y = y, Z
(k+1)
i ’s are conditionally independent exponen-

tial random variables, then

F
(k+1)

(z1, . . . , zn−k) =

∞∫
−∞

n−k∏
i=1

(
F Y (zi)

)αk+1
dG(y). (6.9)

6.4 Expected value of the residual lifetimes

The concept of mean residual life is based on conditional expectations and

has been much interest in the actuarial science, survival studies and reliability

theory. The mean residual life function Ψ(s) of a component, with distribution

function F related to a lifelength X, is defined by the following expectation of

X − s given X > s:

Ψ(t) = E (X − s|X > s) .
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If we denote the survival function for a component at the (k + 1)th level as

S(k+1)(x|s), the mean residual life function Ψ(k+1)(s) can be defined as follows:

Ψ(k+1)(s) = E
(
X

(k+1)
i − s|X(k+1)

i > s
)

=

∞∫
0

S(k+1)(x|s)dx. (6.10)

The survival function of the remaining components after the kth failure in the

system has the following form:

S(k+1)(x|s) = P (X
(k+1)
i − s|X(k+1)

i > s)

=
P (X

(k+1)
i > x+ s)

P (X
(k+1)
i > s)

=
F k+1(x+ s)

F k+1(s)
.

Utilizing (6.10) we have,

Ψ(k+1)(s) =

∞∫
0

F k+1(x+ s)

F k+1(s)
dx, for s ≥ 0. (6.11)

Theorem 6.3 The expected value of a residual lifetime after k failures is directly

related to MRL function of the (k + 1)th level. That is

E
(
Z

(k+1)
1

)
= E

(
Ψ(k+1)(X(k)

∗ )
)
.

Proof. The result follows directly from the expectation of Z
(k+1)
i .

E
(
Z

(k+1)
1

)
=

∞∫
0

P
(
Z(k+1) > z

)
dz

=

∞∫
0

∞∫
0

P
(
X(k+1) > z + s|X(k)

∗ = s
)
dFX

(k)
∗ (s)dz

=

∞∫
0

∞∫
0

F k+1(z + s)

F k+1(s)
dFX

(k)
∗ (s)dz

=

∞∫
0

Ψ(k+1)(s)dFX
(k)
∗ (s)

= E
(
Ψ(k+1)(X(k)

∗ )
)

.
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Conclusion

The subject of residual lifelengths has a lot of applications in real life. It is

logical to investigate distributional properties and characterizations of the resid-

ual lifetimes of the remaining components to have foreknowledge incase they will

be reused in other systems. It is seen that even under the classical assumption

that the original lifetimes were i.i.d, it will turn out that the residual lifetimes of

the remaining items will be exchangeable, but typically not independent. They

will be conditionally independent under different censoring schemes.
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