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Telling functional networks apart 
using ranked network features 
stability
Massimiliano Zanin1*, Bahar Güntekin2,3, Tuba Aktürk4, Ebru Yıldırım4, Görsev Yener5,6, 
Ilayda Kiyi5, Duygu Hünerli‑Gündüz5, Henrique Sequeira7 & David Papo8,9

Over the past few years, it has become standard to describe brain anatomical and functional 
organisation in terms of complex networks, wherein single brain regions or modules and their 
connections are respectively identified with network nodes and the links connecting them. Often, 
the goal of a given study is not that of modelling brain activity but, more basically, to discriminate 
between experimental conditions or populations, thus to find a way to compute differences between 
them. This in turn involves two important aspects: defining discriminative features and quantifying 
differences between them. Here we show that the ranked dynamical stability of network features, 
from links or nodes to higher-level network properties, discriminates well between healthy brain 
activity and various pathological conditions. These easily computable properties, which constitute 
local but topographically aspecific aspects of brain activity, greatly simplify inter-network comparisons 
and spare the need for network pruning. Our results are discussed in terms of microstate stability. 
Some implications for functional brain activity are discussed.

Characterising the structure of brain dynamics and understanding how the demands of physiological or cognitive 
tasks act on it to give rise to function represent fundamental endeavours in neuroscience. Both at rest and during 
the execution of cognitive tasks, brain dynamics has been shown to present rich non-random spatio-temporal 
structure1–7. On the one hand, the need to respond in a fast and reliable way to changes in the environment 
favoured the emergence of functionally specialised segregated modules, e.g., sensory systems. On the other 
hand, carrying out complex tasks may sometimes involve computational sophistication exceeding single module 
capacity, and require interactions among them8. Overall, the global organisation of healthy brain activity can be 
thought of as a balance between these two modes9–11, and imbalance between segregation and integration has 
been associated with various pathological conditions, e.g., autism or schizophrenia10–12, epilepsy13,14, and LSD 
consumption15.

This organisation is naturally described in terms of complex networks16,17, wherein single brain regions or 
modules and their connections are respectively identified with network nodes and the links connecting them18. 
Simple functions of the connectivity contain information on the organisation at all scales of the underlying system 
and can therefore be used to model relations within and between brain modules, for a given coarse-graining 
level of that system, both in healthy brains and in neurological and psychiatric pathologies19. Most importantly, 
the brain is organised around an integration-segregation trade-off, reflecting a balance between topographically 
local specificity and global activity. On the other hand, the standard statistical mechanics approach to complex 
networks neglects, at least prima facie, the lack of translational invariance of functional brain activity in the 
anatomical space. Nodes and links have no topographically-specific properties, and the network is described in 
terms of statistical properties of the interactions20; to illustrate, nodes may have specific topological properties, 
but the mapping with the corresponding brain regions is lost in such abstract representation.
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Often, studies may not set out to model brain activity but simply aim to discriminate between experimental 
conditions or populations. One fundamental question is then to find a way to compute differences or, somehow 
equivalently, distances between experimental conditions or populations. This in turn involves two important 
aspects: defining discriminative features and quantifying differences between them.

In the network neuroscience approach, the former aspect constitutes a particularly arduous task, due on the 
one hand to computational issues induced by network size and the consequent need to reduce the associated 
problem’s dimensionality and, on the other hand, to the multiplicity of network properties. The two main some-
how interrelated questions in such an approach are then in general: what aspects of the network structure are 
sufficient and efficient in such a discrimination task? How can the network’s dimensionality be reduced without 
affecting its discriminatory power? On one hand, which features possess discriminatory power may be difficult 
to predict. Often, the first considered feature dimension is related to the system’s representation in the anatomical 
space. While the integration–segregation literature suggests the discriminating feature to be a combination of 
local topographically-specific and distributed and network-like, a recent study21 pointed to the possibility that 
experimental conditions may be identifiable by their relations across the whole network in a way that is at least 
partially independent of topographical localisation. This study showed that the hierarchy of dynamic connectivity 
strengths can discriminate between different patient populations. It also showed that the dynamics of connectivity 
may be more important than its spatial fine-graining in discriminating between conditions; and that variability 
has a prominent role in healthy biological systems and in pathology. On the other hand, computational costs and 
graphical representability often force reducing the analysis to the subnetwork created by the strongest links, or 
by links selected according to other criteria22. However, weak links have been shown to have a strong impact on 
network topology23,24, dynamics and on the processes taking place on it25,26. Importantly, weak links may be key 
to brain function27, but also to the discrimination between brain pathologies21, and retaining higher percentages 
of links may improve classification accuracy28.

Quantifying differences in connectivity and in network properties across conditions or populations also 
constitutes an arduous task. Functional networks typically differ in size29, and efforts to tackle this difficulty may 
distort the functional meaning of the reconstructed network. Moreover, choosing the appropriate distance may 
also be non-trivial30. Finally, the multiplicity of metrics is inevitably associated with multiple comparison risks.

Here we propose to discriminate networks of brain activity using the stability of some property of the dynami-
cal network. In the simplest case, this involves discriminating populations by the stability of the strongest link in 
the network. This principle is naturally extended to the stability of higher-order structures in the network induced 
by dynamic connectivity. Importantly, these properties constitute in general local but topographically aspecific 
features. In this sense they would provide complementary information with respect to both topographically-
specific or global aspects of brain activity of existing analyses, and would provide a simple criterion greatly 
simplifying both feature choice and quantification of differences across experimental conditions. Ranked link 
stability induces two variables (network feature rank stability and its associated time scale). Stability can in prin-
ciple be measured at all scales from microscopic (links, nodes) to mesoscopic and macroscopic scales. Here, we 
quantify link, node centrality and clustering coefficient stability associated with the resting brain activity of vari-
ous neurological populations: amnesic mild cognitive impairment (MCI), Alzheimer’s disease (AD), Parkinson’s 
disease with MCI (PD-MCI) and Parkinson’s disease dementia (PD-D). We further validate our results using an 
auxiliary data set comprising Parkinson’s disease patients and matched control subjects.

Results
Stability of network features.  For each subject in a given group, and for each available ⌊l/w⌋ functional 
networks (where l is the total length of the available time series, and w the size of the considered non-overlapping 
windows, see “Materials and methods” for details on the reconstruction process), we extract the link with the 
largest weight. Note that this here corresponds with the link of highest absolute linear correlation value, but any 
other correlation or causality metric could be used. For each subject, the link that most frequently turns out to be 
the strongest is then selected; and the corresponding probability is calculated according to a binomial distribu-
tion π = B(n, p, k) , where:

•	 n is the number of trials, here the number of windows for a subject, i.e. ⌊l/w⌋.
•	 p the success probability of each trial, or the probability of finding the target link as the strongest one. The 

probability is thus the inverse of the number of possible links, i.e. 1/(N(N − 1)/2).
•	 k is the number of successful trials, i.e. the number of times the most frequent strongest link has appeared.

π thus represents the probability of obtaining the most frequent strongest link at random, i.e. if networks were 
completely independent; and can thus be seen as the p value, with the null hypothesis being the independence of 
consecutive networks. Here the value lnπ is represented. Insofar as obtaining very stable strongest links is highly 
improbable, lnπ ≪ 0 suggests that a subject’s most frequent strongest link is stable across time; in other words, 
lnπ is inversely proportional to the stability of such link. Similarly, the window size w for which lnπ is minimised 
indicates the time scale at which such stability is mostly observed. A similar analysis has also been carried out for 
the stability of the node with the highest strength centrality in each network, i.e. the node with the largest sum of 
weights of links connected to it; and for the stability of the node with the largest (local) clustering coefficient31.

Stability of the strongest link.  We applied the previously described methodology to detect how stable 
the strongest link is for each subject. Specifically, the top two panels of Fig. 1 report the evolution of lnπ as a 
function of the window length w, averaged over all patients belonging to the six groups here considered (see 
Materials and Methods for details on the data sets). Small window lengths are associated with unstable strongest 
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links; this is to be expected, as windows of size ≈ 10 ms can only detect high-frequency (and potentially noisy) 
trends. The same result is predictably found in the other extremum, reflecting the intrinsically fluctuating nature 
of resting brain activity.

Strong minima can be found for window lengths between 20 and 40 ms, as synthesised by the two central 
panels of Fig. 1. The optimal w is smaller for young control subjects, but strongly increases for elder controls. 
For patients, the optimal w is shorter than the one associated with elderly control subjects, though still slower 
than the one characterising young control subjects. Regarding the magnitude of the minimum probability, this 
is especially small for MCI patients. While this probability has a physical interpretation (as the probability of 
finding a strongest link in random networks as stable as what observed, and hence is inversely proportional to 
the stability of such link), it can also be interpreted as a topological feature of the functional network itself, and 
as such can be used to assess differences between groups—as demonstrated below. Horizontal green lines in 
these two panels further report the maximum and minimum of both metrics, when one of the subjects belong-
ing to that group is deleted—hence providing an estimation of the sensitivity of the metrics, and of the statistical 
significance of results.

Figure 1’s bottom panels report the evolution of the average distance between the strongest and the second 
strongest link in the ranking, as a function of the window size. Such distance is calculated as �w = log2 s1/s2 , 
where si is the strength of the i-th link in the ranking. Distances appear to be very small for all groups, with 
minimal differences for control subjects in the 40–150 ms range. Note that the minimum observable in the top 

Figure 1.   Stability of the strongest links. (Top panels) Evolution of the logarithm of the probability of finding 
the most frequent strongest link, as a function of the length of the window used to reconstruct the networks, for 
the six considered groups. (Centre panels) Peak value of the top graphs, both in terms of the minimal probability 
logarithm (left panel) and of the optimal window length yielding that probability (right panel). Green lines 
indicate the maximum and minimum obtained when deleting one subject. (Bottom panels) Average distance 
between the strongest and the second strongest link. In the top and bottom panels, patient groups are distributed 
in two columns for the sake of clarity.
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panels is not present. Thus, it appears that the stability of the most important link is not a direct consequence of 
varying distance to the second most stable one.

Stability of multi‑link structures.  The two panels of Fig. 2 respectively depict the evolution of the prob-
ability, and of the optimal window length, when multiple strongest links are considered at the same time, as a 
function of the number of such links. It can be appreciated that larger structures are stable only for small values 
of w. According to the previous hypothesis, links calculated with small ws are influenced by noise. Nevertheless, 
here we are now considering a larger number of strong links at the same time; noise may then change their rela-
tive ranking, but not their belonging to the top set. In synthesis, larger structures are more stable when consider-
ing shorter time windows.

Stability of node‑based topological features.  The top and bottom panels of Fig. 3 represent the stabil-
ity of the node with respectively the highest centrality and clustering coefficient. As expected from the results 
of Fig. 2, the optimal window length is in general smaller than 20 ms, as we are here analysing structures larger 
than a single link. In both cases, the most important node is less stable in young control subjects, both elderly 
controls and patients having a much lower π.

Intra‑group stability.  We further analyse how the strongest links, and the nodes of highest centrality and 
clustering, are stable not only within each subject, but also across subjects belonging to each group. This is 
achieved by firstly splitting the available time series into non-overlapping windows of size w; reconstructing 
the individual functional networks; and identifying the link or node of maximal topological feature—that is, as 
done when analysing one single subject. Secondly, results are aggregated for all subjects belonging to the same 
group, thus yielding a single probability π per group. Results are presented in Fig. 4; as in the previous cases, what 
is represented is the evolution of the logarithm of the probability of finding the same link (or node) being the 
strongest one (respectively, the most central one) in multiple subjects, as a function of the length of the window 
used to reconstruct the functional networks.

It can be appreciated that control subjects’ behaviour, both young and elderly, and of MCI patients is qualita-
tively similar. On the other hand, a large difference can be observed for AD and PD-D in the node-based metrics: 
while the former is characterised by stability across subjects, in the latter the logarithm of the probability increases 
up to −10 . In other words, the most central node and the node with highest clustering frequently coincide for 
AD patients, but generally differ for PD patients.

Topology and neuropsychological data.  Beyond analysing how the stability of some network structure 
changes between different conditions, it is also of interest to see how it is related to people’s demographic and 
cognitive information. Towards this aim, Table 1 reports the coefficients of the Spearman’s rank-order correla-
tion between several attributes, and the stability of three network structure, both in terms of their probability 
of appearance and the best window length at which they appear. Correlations are generally small, as can be 
expected with the drastic information compression associated with ranked feature stability. It is nevertheless 
worth noting the positive correlation between age and best window lengths, for all three metrics, for control 
subjects; and how such correlation becomes mostly negative for patients. This may point towards a mechanism 
whereby brain dynamics becomes faster but at the expense of increased randomness. Furthermore, education 
level positively correlates with best window length to obtain a stable strongest link (statistically significant at 
α = 0.01 ), but negatively with node centrality and clustering stability. Higher education seems to stabilise the 
strongest link, but also introduces more flexibility at the network meso-scale. Moving to the cognitive assess-
ment of patients, only the Geriatric Depression Scale presents a statistically significant correlation, and specifi-

Figure 2.   Stability of multi-link structures. (Left) Evolution of the logarithm of the probability of finding a 
consistent set of strongest links, as a function of the number of links, and for the six groups here considered. 
(Right) Evolution of the window length yielding the maximal stability, as a function of the number of links 
considered.
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cally a negative relationship with the best window length for observing a stable strongest link, consistent with a 
general slow-down in dynamical transitions in depression32,33.

In order to further assess the explanatory power of the six metrics reported in Table 1, several Ordinary Least 
Square (OLS) linear regressions have been fitted, in which the six metrics (i.e. the topology of the network) are 
taken as explanatory variables, and demographic and cognitive indices as the response variables. Finally, Table 2 
reports the coefficient of determination R2 of the fits, i.e. how much the topological properties are able to explain 
the observed variable values. In line with what previously seen, the R2 is especially large in the case of age and 
education of control subjects, and still significant in the case of patients and of the Geriatric Depression Scale.

Discrimination power.  One important aspect to be elucidated is whether the proposed stability of the 
topological features can be used as a way to distinguish between groups of subjects. In order to achieve this, each 
subject has been described by six features, i.e. the lnπ and w of the strongest link and of the nodes with highest 
centrality and clustering. We have then executed different binary classification tasks, in which a Random Forest 
model34–37 has been trained to correctly classify subjects as belonging to a group, considering all possible pairs 
of conditions. The final classification scores, measured as the average accuracy over 100 independent realisations 
and using a Leave-One-Out cross-validation38, are reported in Fig. 5 (top panel, pink columns). In order to put 
such scores in context, the same plot also reports the classification scores in three validation scenarios: (1) by 
using the same features, but randomly shuffling the original class labels to obtain a random baseline; (2) using 
the weight of six links, chosen at random at the beginning of the classification process; and (3) the weight of 
two random links, plus the centrality and clustering of two random nodes. Note that, in all cases, the number of 
features has been kept to six, in order to provide a fair comparison and potentially the same amount of informa-
tion; for this same reason, more sophisticated models using as input the whole network, as e.g. based on Deep 
Learning39–42, have not been considered. The classification score obtained with the network feature stability 
fluctuates between 0.7 and 0.8, and, most importantly, is substantially higher than what yielded by the other 
alternatives. While promising, these results have to be interpreted with due caution, due to the reduced number 
of subjects comprising each group.

As customary in machine learning, the previously trained models can also be used to assess the relative 
importance of the six stability metrics. This is done by training an independent model over the same subjects, 
not including the feature to be analysed; for then calculating the drop in the classification score. The larger this 
drop, the more important was the considered feature for achieving a correct classification, and hence the larger 

Figure 3.   Stability of node-based features. (Top panels) Evolution of the logarithm of the probability of 
finding the most frequent most central node, as a function of the length of the window used to reconstruct the 
networks, and for the six groups here considered. (Bottom panels) Evolution of the logarithm of the probability 
of finding the most frequent node with highest clustering coefficient. Patient groups are distributed in two 
columns for the sake of clarity.



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2562  | https://doi.org/10.1038/s41598-022-06497-w

www.nature.com/scientificreports/

the quantity of information it encodes. Results are reported in the bottom panel of Fig. 5. While the importance 
of each feature varies depending on the pair of conditions considered, the lnπ and w of the strongest link, and 
in less the degree the lnπ of the node with highest clustering, seem to the best most relevant ones.

Figure 4.   Intra-group stability. Evolution of the logarithm of the probability of finding the most frequent link 
with highest weight (top panels), and of the most frequent node with highest centrality (central panels) and 
highest clustering coefficient (bottom panels), as a function of the length of the window used to reconstruct the 
networks. Colour code of groups as in previous figures.

Table 1.   Spearman’s rank-order correlation coefficients between topological metrics (columns) and 
demographic and cognitive indices (rows). m.p. minimum probability, b.w.l. best window length, MMSE 
Mini-Mental State Examination, GDS Yesavage Geriatric Depression Scale, OVMPT Oktem Verbal Memory 
Processes Test.

Strongest link Node centrality Node clustering

m.p. b.w.l. m.p. b.w.l. m.p. b.w.l.

Age (control) 0.123 0.272 0.059 0.139 0.091 0.162

Age (patients) − 0.037 − 0.260 − 0.144 − 0.073 − 0.177 − 0.013

Education (control) 0.317 0.284 0.177 − 0.136 0.129 − 0.262

Education (patients) 0.092 − 0.004 0.137 0.113 0.062 0.075

MMSE 0.011 0.070 0.086 0.015 0.084 − 0.149

GDS − 0.078 − 0.241 − 0.057 − 0.163 − 0.059 − 0.103

OVMPT 0.018 0.079 0.126 0.035 0.106 − 0.152

Categorical fluency − 0.009 − 0.023 0.095 0.093 0.063 − 0.159

Phonemic fluency 0.018 0.130 0.117 0.081 0.097 − 0.047

Language 0.068 − 0.032 − 0.087 0.059 − 0.040 0.013
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Validation and generalisability.  As a final point, we assess the validity and generalisability of the results 
here presented. While the main data set comprises a large number of subjects (98 in total), the fact that they are 
divided in six groups reduces the statistical significance of any test between them. For instance, a Kolmogorov–
Smirnov test between the optimal window length for detecting the strongest link (see Fig. 1) only yields p values 
below 0.01 for the pairs control elder—control young and control elder—PD-MCI, due to the low number of 
samples in each group. In order to validate these results beyond the intervals reported in the central panels of 
Fig. 1, and the classification task above described, we here consider two different strategies: a data set upsam-
pling, and the use of a complementary data set.

In the first case, we split each subject’s time series in five equal parts, and then considered each part as an 
independent subject. This not only increments the number of (virtual) subjects in each group, but also allows 

Table 2.   Coefficient of determination R2 for Ordinary Least Squares linear models between the six topological 
metrics included in Table 1, and the demographic and cognitive indices.

R
2

Age (control) 0.3367

Age (patients) 0.1071

Education (control) 0.3401

Education (patients) 0.1603

MMSE 0.0279

GDS 0.1051

OVMPT 0.0337

Categorical fluency 0.0532

Phonemic fluency 0.0562

Language 0.0246

Figure 5.   Classification using network features stability. (Top panel) Classification scores obtained by a 
Random Forest model, for all classification tasks (represented as groups of four bars), and using four different 
network features: the stability here proposed, composed of the best window length and minimum probability for 
the strongest link, and highest centrality and clustering nodes (pink columns); same features, but with the class 
of each subject randomly shuffled (blue columns); the weight of six links chosen at random (brown columns); 
and four standard network-wide topological metrics (purple columns). Columns represent the average over 100 
random realisations, and red whiskers the corresponding standard deviation. (Bottom panel) Reduction in the 
classification score when one of the six network stability metrics is not used in the training.
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to test whether the results are valid even when shorter time series are available; or, in other words, if previously 
shown results are stable over time. Figure 6 reports the results of this analysis, and specifically the evolution of 
the stability of the strongest link (top panels), most central node (central panels) and highest clustering node 
(bottom panels). It can be appreciated that curves are very similar to those of Figs. 1 and 3, with the minor excep-
tion of the node centrality and clustering of Amnesic MCI patients, which is slightly larger (i.e. the probability 
is lower) than for the original data set.

As an additional test for the generalisability our approach, we performed the same analysis on an independent 
data set of EEG recordings, including PD patients and matched control subjects (see “Materials and methods” 
for details on the data sets). Figure 7 reports the evolution of the stability of the strongest link, and of the most 
central and highest clustering nodes. Results are once again comparable with Figs. 1 and 3, with the exception of 
the stability of the strongest link, which is much higher than in the main data set. It is nevertheless worth noting 
that any comparison must be taken with caution, as for instance ages are not exactly matched between groups, 
e.g. control subjects are older and PD patients are younger in the validation data set.

Discussion and conclusions
Complex networks constitute a straightforward and versatile representations of brain activity. However, com-
paring networks is in general an arduous tasks. Here we propose a method that greatly simplifies it, wherein 
networks are characterised in terms of the temporal rank stability of link and node-based features. We used 
ranked stability to compare resting brain activity of patients suffering from various diseases with healthy young 
and ageing subjects.

Figure 6.   Results for the upsampled data set. Evolution of the logarithm of the probability of finding the most 
frequent link with highest weight (top panels), and of the most frequent node with highest centrality (central 
panels) and highest clustering coefficient (bottom panels), as a function of the length of the window used to 
reconstruct the networks. Metrics are here calculated by dividing each subject time series in five parts, and 
considering them as separate subjects. Colour code of groups as in previous figures.
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Our results show that link stability probability is affected in some pathologies, but not in others. Likewise, 
node centrality appears to be less stable for young than for elderly control subjects and for subjects with patholo-
gies. The time scale at which link stability peaks turned out to maximally differ between young and elderly control 
subjects, whereas for all the considered pathologies, the optimal window length appeared to fall in between that 
of these two groups.

Normal ageing was characterised by decreased link stability with respect to young control subjects, but also 
most remarkably by a corresponding widened optimal window length, both for single link rank and for at least 
the most strongly connected links. On the other hand, node centrality and clustering stability turned out to 
be more persistent than for young healthy controls. Overall, this pattern is consistent with a picture wherein 
essentially normal function is maintained by compensating the slight decrease in connectivity and increased 
hub persistence by an overall slower dynamics, and with the idea that a certain level of flexibility is the hallmark 
of healthy biological systems43.

As in healthy ageing, all pathologies considered in this study, with the notable exception of amnesic MCI, 
were associated with more unstable strongest links with respect to young control subjects, but optimal window 
length appeared to be considerably shorter than that of normal ageing, though still longer than those of the young 
control group. Interestingly, a recent electrophysiological study showed that the prodromal stages of AD dementia 
are characterised by cortical hyperconnectivity, particularly in posterior regions, and that hyperconnectivity 
disappears at later stages of the disease, suggesting that it is an early electrophysiological feature of dementia44. 
Our results would in turn suggest that in addition to the total amount of connectivity45–47, the stability of a small 
subset of connections at various scales might also be used for this purpose. A noteworthy aspect is represented 
by the differential effect of neurodegeneration in AD and PD. The trajectory towards AD is characterised first 
by increased ranking stability and decreased optimal window length with respect to normal ageing, at the MCI 
stage, then by a reduction in fully-fledged AD. However, the pattern for node centrality and clustering ranking 
stability was indistinguishable from what the one observed for normal ageing. Conversely, for PD patients, MCI 
subjects were not associated with more stable link ranking, but only with considerably shorter optimal time 
windows with respect to healthy ageing. On the other hand, node centrality ranking appeared to be increasingly 
stable from MCI to fully-fledged PD dementia, though over the same optimal time-window as in normal ageing.

For control subjects, age and, to some extent, education level affected the optimal window length, rendering 
links more persistent. On the other hand, for pathological states, the optimal window length was negatively 
correlated with age and depression scores, but was not affected by education level. Finally, depression severity 
appeared to shorten the optimal time window length at all scales, a result consistent with reported alterations in 
functional connectivity in depression48.

These results can be interpreted in a straightforward way by observing that in essence what link stability 
documents is some property of neural microstates. Microstates are quasi-stationary segments of duration l ≤ 150 
ms49,50 where the brain activity field remains stable, punctuated by abrupt changes to new configurations51,52. 
These stable segments were proposed to be “atoms of thought”53, which may correspond to different informa-
tion processing steps. Shrinking microstate durations have been associated with various pathologies, including 
schizophrenia54–59, AD60–62, PD63–65, depression32,33, mood alterations66, or panic disorder67. Shortening of specific 
microstate classes, in combination with altered microstate syntax, have been interpreted to reflect disturbances in 
the information processing stream49,50. Interestingly, various studies found not only that patients suffering from 
AD had microstates of shorter duration compared to healthy elderly controls68–70, but also of altered dynamics62. 
On the other hand, microstates were found to be of abnormal duration for PD patients, some topographical maps 
with significantly shorter and other ones with significantly longer durations with respect to matched controls64. 
Since, control subjects for AD and PD populations are typically over 60 years of age, our results are at least par-
tially consistent with microstate literature. Finally, depression was also found to be associated with shortening32 
and more generally alterations of microstate morphology and dynamics33.

From a methodological view-point, it is important to compare ranked stability with microstate analysis. 
In essence, ranked link stability can be thought of as microstates’ topographically aspecific minimal core at a 
given spatial scale. In this vein, cluster stability represents a higher-order microstate core; conversely, standard 
microstaste topographical maps can be thought of as whole brain stability. In microstate analysis, brain activity 
is described in terms of occurrence rate, duration, and transition sequence of topographical maps. Although 
ranked feature stability mainly deals with the first aspect and to some extent with the second, it can in principle 
produce comparable analyses, albeit in an arguably more cumbersome form for the latter two. On the other 
hand, ranked stability presents some important advantages with respect to standard microstate analysis: (1) it 

Figure 7.   Evolution of the stability of the strongest link (left panel), most central node (central panel) and node 
with higher clustering (right panel) in the PD validation data set.



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2562  | https://doi.org/10.1038/s41598-022-06497-w

www.nature.com/scientificreports/

minimally depends on discretionary choices such as those involved in segmentation procedures in standard 
microstate analysis; (2) it explicitly takes into account the relational structure of brain activity, and (3) it can 
potentially parse microstates’ topology at all scales, from the microscopic ones of links and nodes to the global 
scale of standard microstate topographic maps.

More generally, the proposed method shows that ranked network features, that are spatially local but topo-
graphically aspecific aspects of resting neural activity, together with the time scale that each of these aspects 
induces at a given spatial scale, contain surprisingly rich information on the underlying brain activity. In particu-
lar, information on connectivity limited to the strongest link and its persistence, irrespective of its topographical 
and temporal localisation, may be sufficient to discriminate resting brain activity associated with different popula-
tions. Thus, our results add an additional feature to a list of already well-documented aspects of brain activity with 
discriminatory power, including brain topography, connectivity and its hierarchy and topological properties. On 
the negative side, it should be noted that, insomuch as it requires reconstructing multiple functional networks 
at different temporal scales, the proposed method entails a high computational cost and can only be applied to 
long time series, as e.g. those recorded in a resting state.

Materials and methods
Main data set, control subjects and patients recruiting and selection.  Ninety-eight participants 
were included in the study with six different groups, namely: healthy young, healthy elderly, MCI, AD, PD-MCI, 
and PD-D. Demographic information of the participants is presented in Table 3.

The study included participants with the diagnosis of amnestic MCI (aMCI) according to the NIA-AA 
criteria71; with PD-MCI according to the Movement Disorder Society (MDS) Level2 criteria72 and age-, gen-
der- and education-matched healthy elderly controls. Patients with aMCI and PD-MCI were recruited from an 
outpatient memory clinic and a movement disorders outpatient clinic of a university setting, respectively. Healthy 
controls were recruited from various community sources.

The healthy elderly volunteers were included when no neurological abnormality or no global cognitive impair-
ment (Mini-mental State Examination (MMSE) score ≥ 27 ) were determined. Inclusion criteria for amnestic 
MCI were: (1) living independently in the community, (2) memory problem as defined with performances ≥ 1.5 
standard deviations below for age and education matched controls in a set of neuropsychological tests, and (3) 
with no impairment of daily living activities, clinical dementia rating (CDR) score of 0.5. The inclusion criteria 
for the young healthy controls were: no history or presence of any neurological and psychiatric abnormalities, 
no history of drug and alcohol abuse and/or Mini Mental State Examination (MMSE) score of ≥ 27.

The inclusion criteria for PD-MCI patients were diagnosed according to: (1) a cognitive impairment defined 
by performances ≥ 1.5 standard deviations below the normative scores in two neuropsychological tests assessing 
same cognitive domain or in tests evaluating two different cognitive domains; (2) stable treatment with dopa-
minergic medication and successful control of motor symptoms; (3) Hoehn and Yahr stage III or less; and (4) 
no dementia according to the Movement Disorder Society (MDS) clinical diagnostic criteria.

The exclusion criteria for all participants are as follows: (1) history of neurological and/or psychiatric includ-
ing evidence of depression as demonstrated by Yesavage Geriatric Depression Scale scores higher than 1373; (2) 
presence of nonstabilized medical illnesses; (3) history of severe head injury and alcohol or drug misuse; (4) 
using any psychoactive drugs or cognitive enhancers including acetylcholinesterase inhibitors; (5) presence of 
vascular brain lesions, hydrocephalus, or a brain tumor in MRI.

The exclusion criteria for the PD-MCI patients were as follows: (1) a history of other neurological diseases; 
history of visual hallucinations; (2) severe tremor or dyskinesias preventing EEG recordings, and (3) treatment 
with subcutaneous apomorphine, jejunal levodopa, or deep brain stimulation. All participants with PD-MCI 
were using dopaminergic medication, including levodopa and/or dopamine agonist and/or monoamineoxidase 
B (MAO-B) inhibitor.

Probable PD-D diagnosis was made according to the Movement Disorder Society (MDS) Level 1 criteria74,75. 
Probable PD-D was diagnosed when all the following five criteria were satisfied: (1) Diagnosis of PD according 
to United Kingdom Parkinson’s Disease Society Brain Bank Criteria76; (2) The development of PD prior to the 
onset of dementia; (3) PD associated with a decreased global cognitive cognitive score which was defined as a 
score of ≤ 24 on the Mini Mental Status Examination (MMSE)77; (4) cognitive deficiency that impair daily life; 
(5) impairments found in more than one cognitive domain. All participants underwent complete neurological 
structural magnetic resonance imaging (MRI), and laboratory examinations and an extensive battery of neu-
ropsychological tests.

Table 3.   Demographic data of the subject comprising the main data set.

Subject group Size Of which men/women Avg. age (std.) Avg. years of education (std.)

Control (young) 18 9/9 24.1 (3.68) 15.5 (1.54)

Control (elder) 19 11/8 69.1 (7.25) 10.9 (4.67)

MCI 16 7/9 70.4 (5.05) 9.4 (5.88)

AD 19 5/14 73.2 (5.68) 8.8 (4.40)

PD-MCI 14 9/5 71.1 (6.63) 11.4 (5.18)

PD-D 12 9/3 73.0 (6.71) 5.9 (5.21)
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All patients with Alzheimer’s disease dementia were diagnosed according to the National Institute of Aging-
Alzheimer’s Association diagnostic guideline78. The inclusion criteria for AD patients included: (1) impairment 
of two or more cognitive domains; (2) impaired daily living activities with CDR score of 1 or 2. The exclusion 
criteria for AD patients were history or presence of any other neurological and/or psychiatric disorders includ-
ing depression, traumatic brain injury, vascular brain lesions, and alcohol or drug misuse. All AD patients were 
on cholinesterase inhibitor drugs (donepezil; 5–10 mg per day and rivastigmine; 6–9.5 mg/24 h per day), some 
patients were on memantine (10–20 mg per day) in addition to cholinesterase inhibitors. All participants under-
went a comprehensive neuropsychological test battery, neuroimaging, and neurological examination. Participants 
with depressive conditions, assessed as a Geriatric Depression Scale > 13 , were excluded from the study79,80.

The study conformed to the principles of the Declaration of Helsinki. All participants and/or their relatives 
provided informed consent for the study, which was approved by the local ethical committee (Istanbul Medipol 
University Ethical Committee, Report No: 10840098-604.01.01-E.8374).

Main data set, electroencephalographic data recording.  EEG was recorded in two different cen-
tres (The Istanbul Medipol University Hospital, REMER, Clinical Electrophysiology, Neuroimaging, and Neu-
romodulation Laboratory and the Izmir Dokuz Eylül University Multidisciplinary Brain Dynamics Research 
Center) with the same recording system and recording protocol. EEGs were recorded in a dimly lit, soundproof, 
electrically shielded room. A BrainAmp 32-channel DC system (Brain Product GmbH, Germany) was used for 
recordings with a 500 Hz sampling rate and 0.001–250 Hz band limits. Elastic caps (EasyCap GmbH, Germany) 
on which 32 Ag/AgCl electrodes were placed according to the 10/20 system were used for EEG recording. All 
electrode impedances were kept below approximately 10 k � . As the online reference two additionally linked 
electrodes (A1+A2) were placed on the earlobes. Also, two electrodes were used as the electrooculogram which 
was placed on the medial upper and lateral orbital rim of the left eye with Ag/AgCl electrodes.

Spontaneous EEG recordings were performed in sessions of 8 min (i.e. approximatively 240,000 data points 
per channel and subject), of which the first four corresponded to an “eyes open” condition, and the latter four 
to “eyes closed”. A black screen, specifically a 19-in. computer monitor, was presented to subjects throughout 
the EEG recording, without fixation cross. The experimenters watched the subjects with video monitor during 
the EEG recordings.

No additional data preprocessing has been carried out, and, unless otherwise specified, broadband signals 
have been used.

Validation data set, participant recruiting and electroencephalographic data recording.  To 
support the validation of results obtained in the main data set previously described, a second EEG data set of PD 
patients was recorded at Istanbul Medipol University Hospital in Istanbul. PD patients were diagnosed according 
to the criteria of “United Kingdom Parkinson’s Disease Society Brain Bank”81. The Unified Parkinson’s Disease 
Rating Scale (UPDRS) was used in order to determine the clinical features of PD; and the Hoehn-Yahr scale82 
was used to determine the disease stage. A total of 74 patients (ages 56–86, median of 74) and 22 matched control 
subjects (ages 54–89, median of 67) compose this validation data set. All patients with PD were evaluated 60–90 
min after their morning dose of levodopa for the EEG recordings.

The EEG signals were recorded in a dimly isolated room with a Brain Amp 32-channel DC system machine 
(Brain Product GmbH, Germany) from 32 different electrodes which were arranged according to the interna-
tional 10/20 system. The sampling rate was 500 Hz with band limits of 0.01–250 Hz. All impedances were kept 
below 10 Kohm and two additional linked earlobe electrodes (A1+A2) served as reference electrodes. Electro-
oculogram was recorded with two electrodes placed in the medial upper and lateral orbital rim of the left eye.

As in the case of the previous data set, spontaneous EEG recordings correspond to two 4-min sessions, respec-
tively for “eyes open” and “eyes closed”, with a 19-in. computer monitor performing as a black screen without 
fixation cross. No additional data preprocessing has been carried out and broadband signals have been used.

The study conformed to the principles of the Declaration of Helsinki. All participants and/or their relatives 
provided informed consent for the study, which was approved by the local ethical committee (Istanbul Medipol 
University Ethical Committee, Report No: 10840098-51).

Reconstructing functional networks.  For each subject, the original data comprised a set of N = 32 time 
series X, corresponding to the 32 EEG channels, each one of length l. In what follows, the notation X(t)

c  , with 
t ∈ [1, l] , will be used to indicate the t-th element of the time series c. These time series are split into non-over-
lapping windows W of size w, yielding a total of ⌊l/w⌋ windows. In a way similar to the previous notation, W (i)

c  
denotes the i-th window of the time series c. A functional network is then created for each window, composed of 
32 nodes (one for each EEG sensor). The weight of the link between nodes j and k is then given by the absolute 
value of the Pearson’s linear correlation between time series W (i)

j  and W (i)
k .

Python software library.  As a complement to this contribution, we make public a Python software library 
with the implementation of the methodology here proposed. In order to preserve the open nature of the method-
ology, the library is structured in a flexible way, in which for instance the user can provide his/her own functions 
for reconstructing the functional networks and calculating topological metrics. The library is freely available at 
https://​gitlab.​com/​MZanin/​netwo​rk-​featu​re-​stabi​lity. We welcome readers to send us comments, suggestions 
and corrections, ideally using the “Issues” feature of GitLab.

https://gitlab.com/MZanin/network-feature-stability
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