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Stochastic inventory control in multi-echelon systemsegsolsard problems in optimization under uncertainty.
Stochastic programming can solve small instances opfyraaild approximately solve larger instances via scenario
reduction techniques, but it cannot handle arbitrary mesli constraints or other non-standard features. Sironlati
optimization is an alternative approach that has recerggnbapplied to such problems, using policies that require
only a few decision variables to be determined. Howeverntdiptimal or near-optimal solutions we must consider
exponentially large scenario trees with a correspondingbrar of decision variables. We propose instead a neu-
roevolutionary approach: using an artificial neural neftorcompactly represent the scenario tree, and training the
network by a simulation-based evolutionary algorithm. \Weve experimentally that this method can quickly find
high-quality plans using networks of a very simple form.

Keywords Inventory control, neural networks, evolutionary algomiis,
neuroevolution, multi-echelon systems

1 Introduction

In the area of optimization under uncertainty one of the nmoature fields isn-
ventory contral A typical inventory control problem is as follows. Given apning
horizon of N periods and a demand for each period {1,...,N}, which is a
random variable with a given probability density functi@emands occur instanta-
neously at the beginning of each time period andreme-stationary(can vary from
period to period), and demands in different periods arepeddent. A fixed delivery
costa is incurred for each order, a linear holding casis incurred for each prod-
uct unit carried in stock from one period to the next, and admnstockout cost
is incurred for each period in which the net inventory is rizga(it is not possible
to sell back excess items to the vendor at the end of a peibd@)aim is to find a
replenishment plan that minimizes the expected total ogstitne planning horizon.
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A cost-optimal solution can be expressed viacanario treewhich specifies an
action to be taken in every possildeenario(instantiation of the random variables).
However, under certain conditions much more compact psliare known to be op-
timal, or to have desirable properties such as planningdliggabor example in(s, .S)
policies whenever a stock level falls belewt is replenished up t&', while in (R, S)
policies the stock level is checked at times specifie@®bgnd if it falls belowsS then
it is replenished up t&. Whereas a scenario tree has exponential size in terms of the
number of periods, these special policies have only a linearber of parameters to
choose. This makes them popular even in situations in wihiep &re not known to
be optimal. For a discussion of inventory control policies §Silveret al. 1998).

In multi-echelon systemnthere are multiple stocking points each with an inven-
tory, linked together in a supply chain. Inventory contmlniulti-echelon systems
is particularly difficult because no simple form of policykisown to be optimal, so
in principle we must build a scenario tree. Faced with suabigms we may re-
sort to methods based asimulation Simulation alone can only evaluate a plan, but
when combined with an optimization algorithm it can be usedirtd near-optimal
solutions (or plans). This approach is calkichulation optimizatio(SO) and has
a growing literature in many fields including production edhling, network de-
sign, financial planning, hospital administration, mactifiang design, waste man-
agement and distribution. It is a practical approach torojgttion that can handle
problems containing features that make them difficult to ed@hd solve by other
methods: for example non-linear constraints and objedtinetions, and demands
that are correlated or have unusual probability distrimgi A survey of SO is given
in (Fu 2002), and a tutorial and survey of the application ©ft8 inventory control
is given in (Kdchel 2007). Relatively little work has beeang on applying SO to
multi-echelon systems. A pragmatic approach is to use ipslisuch ags, S) and
(R, S), and to apply an evolutionary algorithm (EA) by represemti@order points
and replenishment levels as genes. But in general thesggsothay be highly sub-
optimal, and a cost-optimal plan for a multi-stage problenstrspecify an order
guantity in every possible scenario. So the plan must beesgmited via a scenario
tree, yet the number of scenarios might be very large, oriiafin the case of contin-
uous probability distributions, making the use of SO protdéc. Scenario reduction
techniques may be applied to approximate the scenariotue, might not always
be possible to find a small representative set of scenarios.

Another form of approximation for multi-stage optimizatias the use oflin-
ear decision ruleswhich assume a simple form of policy based on affine func-
tions of the stochastic decisions. This can lead to traetgobblems that can
be solved in polynomial time, though with approximate resubee for example
(Chenet al.2008) which also explores modified forms of these rules. Aerah-
tive form of approximation is to use aartificial neural network(ANN) to rep-
resent the policy. An ANN is simply a parameterized functignose inputs and
outputs are vectors of values, but the interest of ANNs letheir status as uni-
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versal function approximators, their many machine leayripplications, and their
parallels to biological neural networks. In the case of iredhelon inventory con-
trol the inputs to the ANN could be the current stock leveld #re current time,
and the outputs could be the recommended actions (whetheotaio replenish
each stocking point and by how much). We may use a generpbparsearch
procedure such as an EA to tune the parameters of a networkasat tmini-
mizes expected costs. Thiuroevolutionaryapproach has been applied to con-
trol problems (Gomeet al.2008, Hewahi 2005, Stanley and Miikkulainen 2002)
and to playing strategies for games such as Backgammora@Rahd Blair 1998)
and Go (Lubberts and Miikkulainen 2001), but not extengivel inventory con-
trol, though several papers use EAs for inventory controhfdd and Kochel 1996,
Kochel and Nielander 2005, Olsen 2003, Prestveithl.2008b). A related ap-
proach to neuroevolution genetic programmingn which an EA is used to evolve
an algorithm instead of an ANN. Genetic programming has also been appiied
inventory control (Kleinau and Thonemann 2004).

Another interesting approach to multi-stage optimizatierthe field variously
referred to ameuro-dynamic programmingemporal difference learningnd ap-
proximate dynamic programmingdhis blend of dynamic programming and neu-
ral networks (and other forms of approximation) has beenliegypto many
problems including inventory control: see for example (draooghet al. 2008,
Giannoccaro and Pontrandolfo 2002, Jiang and Shenga 2G0BR et al. 1997).

A drawback is that special techniques are needed to copétwtivell-known “curse
of dimensionality”: the vast number of states that reswlirfra simple discretization
of the continuum of states in these problems. This probleevés worse in multi-
echelon systems, where we must discretize several stoelsland order quantities.
In contrast, neuroevolution can directly handle a contmud states.

The operations management community has recently addresiselar prob-
lems in inventory control. (Lewtal.2007) address the correlated demand
case for a single-item single-location inventory problemd gprovide compu-
tationally efficient policies with constant worst-case fpenance guarantees.
(Graves and Willems 2008) consider the problem of where daogbtrategic safety
stocks in a supply chain, in order to provide a high level ofi®e to the final cus-
tomer with minimum cost, and extend their model for statigrdemand to the case
of nonstationary demand. For an extensive coverage of astichmulti-echelon sys-
tems the reader is referred to (de Kok and Graves 2003), vidnmimcerned with the
decision-making processes arising in multi-echelon pectdo/inventory systems,
and investigates how operations research can supporialecia the design, plan-
ning and operation of multi-echelon production/inventsygtems.

In this paper we present the first application of neuroeimtuto stochas-
tic inventory control in multi-echelon systems. The papgran extension of
(Prestwichet al. 2009): we have added a new version of the method that scétes be
to problems with many time periods, added further experisiertest scalability, de-
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scribed our method more fully, and provided additionalmerfiees. Section 2 presents
our method, Section 3 evaluates the method experimeraaltiySection 4 concludes
the paper.

2 Neuroevolutionary inventory control

Recall that we wish to find a policy for stochastic inventaoyptrol in a multi-echelon
system. This policy takes the form of an exponentially lasgenario tree, which we
will approximate via an ANN whose parameter values must lwseh. We call our
method NEMUE (Neuro-Evolution for MUIti-Echelon systems)

2.1 Inventory control by neural network

Our ANN input is a vector containing the time period and coti@ventory levels,

and its output is a vector of order quantities (one per starkioint, some or all of
which might be zero). We use the ANN to choose order quastitteeach stocking
point and time period. However, before we can use the ANN wstmiuose values
for its parameters, which are referred tonasights

The process of tuning the weights is calliedining. ANNs come with a ready-
made training algorithm: the well-knowrackpropagatioralgorithm. Given a set of
training examples, backpropagation adjusts the ANN wsighminimize the error
between the known desired output and the actual output ke, This approach
has been applied to inventory control (Gaafar and Chou€B02 However, to ob-
tain training data we would first need to solve a set of inganbut the aim of this
paper is to investigate a method for doing exactly that. bt Eckpropagation is
only useful for the class of machine learning problems knassupervised learning
which is a form of regression, whereas we have a problemiifforcement learn-
ing. In reinforcement learning problems we must choose paeméh this case the
ANN weights) in order to maximize geward(in this case to minimize the expected
cost).

To choose the weights we can use an EA whose genes are thesvanghwhose
fithess function is the negation of the cost (fitness is cotiweally maximized but
we aim to minimize cost). In this neuroevolutionary prooessevolve a population
of chromosomes, each of whose genes specify an ANN. Thearttadl cost incurred
by using the ANN defined by a chromosome, the fitter the chrameds considered
to be. The hope is that the population will become fitter dyerolution, until one
or more chromosomes solves the problem by finding an optifaal p

When using an ANN to solve a problem, an important aspectdsprticular
form of the ANN. An ANN is typically organised as layers wihits each represent-
ing a simpletransfer functionsuch as a sigmoid, limiter or a polynomial function.
The ANN is then the composition of these simple functionshwhe ANN weights
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controlling how they are composed. In our experiments vwadtdifferent network
topologies and transfer functions, including an array ofMdNone for each time
period. Surprisingly, we obtained best results using areextly simple network: a
single layer of units each with the identity transfer fuontf (xz) = x. This counter-
intuitive result is explained by the fact that the ANN formslyopart of the policy
(see below). We will continue to refer to the function as anM\Nut it is not the
form of ANN used by most researchers. We now describe thditunin detail.

We use two alternative representations of the time peri@ddirect encodingn
which ¢ is a single ANN input represented by an integet 1... P, and aunary
encodingin which we associate a binary variable with each period, @aribd¢ is
represented by a binary vect@r,...,0;—1,1,0¢11,...,0p). The unary encoding
uses more ANN inputs than the direct encoding, but is a tegfenoften used to
represent symbolic ANN inputs and sometimes gives betsetsewhen a numerical
input can take only a few values. The ANN with unary time eriegdepresents a
set of affine functions

K
Ot]:atj+zst1b2] (t:lP, ]:1K)
i=1

whereOy; is the order quantity for stocking poirtat timet, Sy; is the stock level
for stocking pointi at timet, K is the number of stocking points, and thg and
b;; are parameters to be tuned. (An affine transformation iseafitransformation
followed by a translation.) This ANN has only (P + K) parameters, so if we can
successfully represent a scenario tree with it then we heleded an exponential
compression of the tree. The ANN with direct time encodinyesents a different
set of affine functions

K C
Otj :aj+ZStibij+ZTk(t)ckj (t:1...P,j:1...K)
=1 k=1

where theT,(t) are the Chebyshev polynomials of the first kifidt) = ¢, T»(t) =

2t2 — 1, T3(t) = 42® — 3z, Ty(t) = 8z* — 822 + 1... Chebyshev polynomials
are a well-known family of functions used for function apgiroation, and therefore
an interesting candidate for approximating policy funesioThea;, b;; andcy;
are parameters to be tuned. There are now @iy + C' + 1) parameters so the
size of the ANN is independent of the number of time peri®dg his might make
NEMUE more scalable on problems with more time periods, tsupolicy will be
capable of less complex behaviour so the plan quality migfiess The hope is that
a fairly small value ofC' will suffice to represent sufficiently complex policies, and
we arbitrarily choos€' = 4.
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2.2 Handling constraints

The ANN forms only part of the policy. We also need a way of Heagdthe con-
straints of the problem, which forbid (i) negative orderer(esponding to selling
unused stock back to the supplier), and (ii) negative stee&l$; both types of con-
straint might be violated by th@;; values recommended by the ANN. We will train
the ANN by an EA and there are several ways of handling conssran EAs. We
use adecoderwhich transforms the (possibly infeasible) ANN solutiorioirone
that violates no constraints. In EA terminology, a decodeamy method for finding
a feasible solution from a chromosome representing a nhutigo. Decoders are
problem-specific and ours works as follows. Suppose at gpenee have stock lev-
elsS;; and the ANN suggests ordering quantiti@s. We modify each quantitQ;;

by
Otj — maX(Otj,O)

to avoid violating constraints of type (i). Then for any $timg point: that supplies
a set of stocking pointX; we modify its order leveD,; by

Otj «— Max Otj> Z Ou. | — St
keX;

This ensures that each supplier orders sufficient stock Ifo iis deliveries, and
avoids violating constraints of type (ii). The policy is ndlae composition of the
ANN and the decoder, which transforms the affine functiorhefANN into a con-
tinuous piecewise affine function.

Note that we must modify the order levels of the stocking tsowarlier in the
supply chain first. This is always possible if the supply ohigiin the form of a
directed acyclic graph. If there are complications suchastraints on order sizes
or storage capacities then the decoder must be modified, digave this issue for
future work.

We used a decoder to handle the problem constraints, bt #inerother ways of
handling constraints in EAs. The simplest is to uggeaalty functiorwhich adds a
large artificial cost for each violated constraint. In owltgdem this forces the ANN to
learn to order sufficient stock in order to avoid stockout.tviéd a penalty function
but it gave inferior results to the decoder.

2.3 Theevolutionary algorithm

To train the ANN we use an EA. There are many such algorithmihénlitera-
ture and the choice is somewhat arbitrary. We decided to ygefal)-Evolution
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Strategy (ES) (Backt al. 1991) because of its simplicity, and because an efficient
method for handling noise in the fithess function is knowndinilar algorithms
(Prestwichet al. 2008a). However, we use a slightly more complicatetiular ES:
see (Alba and Dorronsoro 2008) for example. Cellular atbors mimic the evo-
lution of cellular organisms that communicate only withith@eighbors, and can
reduce the likelihood gbremature convergende which an EA's chromosomes be-
come trapped near a local optimum. In a cellular ES each absome is notionally
placed in an artificial space and nearby chromosomes fomeitghborhood. A com-
mon way of defining neighborhoods is to number the chromoséme . — 1, and
for the neighbors of chromosomehoose chromosomégtj) modufori =1...n
and some neighborhood sizgwe usen = 1). In our ES the population size jg at
each iteration a new chromosomiés created bynutatinga randomly selected chro-
mosomer, and if ¢ is fitter than the least-fit chromosomein the neighborhood of

c then it replaces™, otherwised is discarded. Mutation is the random modification
of gene values, analogous to noise in Simulated Annealing.

A common form of mutation adds normally distributed noisesch gene, but
we use a method that gave better results in experiments.aebrehromosome we
generate two uniformly distributed random numbeiis, the rang€0, 1) andq in the
range(0, 0.5). Then for each allele (gene value) in the chromosome, withaiility
p we change it, otherwise with probability- p we leave it unchanged; this is a form
of masking If we do change it then with probabilitywe set it to 0, otherwise with
probability 1 — ¢ we add to it a random number with Cauchy distribution. This is
calledCauchy mutatiorand it has been shown to speed up EAs (Yao and Lin 1999).
It can be computed astan(u) whereu is a uniformly distributed random variable in
the rangé —, 7) ands is a scale factor. For each chromosome we compute a random
scale factor, itself with Cauchy distribution and fixed scfctor 100. Finally, if no
allele was modified (which is possible for smg)lthen we modify one randomly
selected allele as described. This rather complex mutatp@rator is designed to
generate a variety of random moves, with different numbémsaxlified alleles and
different scale factors. All chromosomes initially comtaileles generated randomly
using the same Cauchy distribution.

2.4 Handling uncertainty

When demand is probabilistic the fitness function of the EAdisy. In such cases we
must average costs over a number of simulations. In somepieB0 approaches to
inventory control this problem was tackled by averagingsoser a small number of
simulations, because the simulations were computatipealbensive: for example
(Kochel and Nielander 2005) use 3 samples. The standasdtam of the sample
mean of a random variable with standard deviatios o/+/n wheren is the num-
ber of samples, so a large number of samples may be needeérfoneisy fitness
functions. Here we use smaller problems than those in (Kieihd Nielander 2005)
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so we can afford to use a much larger number of simulation®hbtain reliable cost
estimates. To do this for every chromosome would be expensivthere are more
efficient methods.

Several alternative techniques for handling fithess naideAs are surveyed in
(Beyer 2000, Jin and Branke 2005). A popular approach ise@ioisy Genetic Al-
gorithm(NGA) which computes the fithess of each chromosome by airegager a
number of samples (Fitzpatrick and Grefenstette 1988, {akpshnaret al. 2001,
Miller 1997, Miller and Goldberg 1996). This wastes consilge time evaluating
unpromising chromosomes, but it can be improved by lineadyeasing the num-
ber of samples with search time, starting from a low value gy et al. 2000,
Wu et al. 2006). However, though NGAs have been used to solve realgsh
they may not be the most efficient approach. An alternatielerigue is taresample
chromosome fitness: that is, chromosome fitness estimaggseaodically refined
by taking additional samples (Arnold and Beyer 2002, 8wal. 2005, Hughes 2001,
Prestwichet al. 2008a, Stagge 1998, Stroud 2001, Then and Chong 1994).

We wuse the greedy averaged samplingresampling scheme of
(Prestwichet al.2008a). This requires two parameters to be tuned by the user:
U and S. On generating a new chromosomét takes.S samples to estimate its
fitness before placing it into the population. It then sedeiother chromosomé
(which may bec) for resampling anotherS samples are taken faf and used to
refine its fithess estimate. is the chromosome with highest fithess among those
with fewer thanU samples, so the function éf is to prevent any chromosome from
being sampled more times than necessary. If all chromosam#é®e population
have been sampled times then no resampling is performed. The algorithm is
summarized in Figure 1.

The aim of this resampling method is to obtain chromosomdis gdod fithess
averaged over many samples, while expending a smaller nushbamples on less-
promising chromosomes. Using sméllalso has an effect beyond reducing the av-
erage number of samples per chromosome: it encouragesatipioby preserving
less-fit chromosomes for longer. We found this to be a vergfeial effect.

Some points are glossed over in Figure 1 for the sake of rdagabirstly, if S
is not a divisor ofU then fewer thar samples are needed in the final resampling
of any chromosome to bring its total {6. Secondly, if no chromosome h&ssam-
ples on termination then we must choose another chromosometurn. To avoid
this, S should be assigned a sufficiently large value so that in @xeerts there is
always a chromosome wifli samples on termination. This value must be chosen by
experimentation.
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3 Experiments

Ultimately we are interested in solving large, realistieantory problems with multi-
ple stocking points, stochastic lead times, correlatedasets and other features that
make classical approaches impractical. Unfortunatelyetiaege no known methods
for solving such problems to optimality, so there is no wagwdluating our method
on problems of arbitrary form. Instead in Section 3.1 we @®ranore modest prob-
lems to test the ability of NEMUE to find good plans, and in 88t8.2 we test the
method on larger problems with special forms and known swiat

3.1 Problems solvable by stochastic programming

Our benchmark problems have two multi-echelon topologidsorescenandserial.

In the arborescent case we have three stocking points A, Bawith C supplying A
and B, while in the serial case C supplies B which suppliesvhdth cases we have
linear holding costs, linear penalty costs, fixed orderiogtg, and stationary proba-
bilistic demands. The closing inventory levels for peri@del* = I, +Q — df,
IP = 1B, + QP — dP andIf = IF | + Qf — Q* — QF whereQ); is the order
placed in period andd; is the demand in period If I; < 0 then the incurred cost is
—I,.m, otherwise it isl;.h, wherer is the penalty cost ankl the holding cost. Sup-
pliers are not allowed to run out of stock. Lead times areragglio be deterministic
and, without loss of generality, equal to zero. We prepagah&ances of both the
arborescent and serial types, with various costs and nunabéime periods, giving
a total of 56 instances with a range of characteristics. paces reasons we do not
specify the demands in detail, but we used 10 demand pafi@r@sborescent in-
stances and 4 patterns for serial instances. In each pedapecify a deterministic
demand which is then multiplied by eithérwith probability 0.25,1 with probability
0.5, or% with probability 0.25. Thus the number of possible scersisa”, giving
59,049 scenarios for the largest problems=£ 10).

We solved these problems in two ways: using Stochastic Bnoging (SP)
(Birge and Louveaux 1997) and NEMUE. SP is a field of OperatiResearch de-
signed to solve optimization problems under uncertairdysgenario reduction tech-
nigues: a representative subset of all possible scenargsected and used to gen-
erate a deterministic equivalent optimization problemiclvlis then typically solved
using integer linear programming. We use the SP resultsatuate the quality of
plans found by NEMUE. The optimal replenishment plans ar@iobd using the
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following Stochastic Integer Programming model:

min E[C] = Zi\il ZpEP (ap5pt + hpI;t + 7Tplp_t>
st.t=1,...,Nandpe P

Iy =1, 1+ Qpt — Qp, ¢ — dpt

Iy = I;t — Ip_,t

Qpt < Moy

5pt S {0, 1} th >0

where

: total holding and ordering/set-up cost of the system dvgreriods;
: fixed ordering/set-up cost;

: proportional inventory holding cost per period;

: the set of all stocking points;

: the set of stocking points supplied directly by the stogkiointp;

: random demand at stocking popmtin periodt;

: a binary variable that takes the value of 1 if a replenishmoenurs
: at stocking poinp in periodt and 0 otherwise;

I, : the inventory level at the end of periodt stocking poinp;

Qp: - the order quantity at the beginning of peribat stocking poinp;

?%N@LU’U?@Q

’qu
&

and/* andI~ denote positive and negative closing inventory levels.gpxdor the
lowest echelon stocking point$,” is zero. M is some large positive number. In
this stochastic modellaere-and-novpolicy is adapted: all decision variables are set
before observing the realisation of the random variablé® dertainty equivalent
model is obtained using the compiler described in (Tatral. 2006) and solved
with CPLEX 11.2.

The computational results are given in Table 1. All SP and NEEMuns took one
hour on a 2.8 GHz Pentium (R) 4 with 512 RAM, each NEMUE figurengehe
best of 12 five-minute runs. NEMUE with the unary encodingéaated NEMUE
and with the direct encoding NEMUEThe NEMUE parameters used wefe= 1,

u = 50 andU = 10000. The columns marked “%opt” denote the optimality gap: a
reported cost and gapy means that SP proved that the optimal solution cannot have
cost lower thanr’ = ¢(100 — ¢)/100 (this does not imply the existence of a solution
with costc’). In several cases NEMUE found superior plans to those fduyn8P,
showing that on larger instances SP fails to find optimalglan

In a few cases NEMUE found plans that appeared to be sliglktiebthan opti-
mal. This is because we estimate the expected cost by sanplid it may be an
over- or under-estimate. An under-estimated cost for amapiplan will of course
appear to be better than optimal: for example serial ingtaritas optimum cost 995,
but NEMUE" found a plan with estimated cost 993 and NEMUEB1. With fewer
samples the difference is greater, for example with- 1000 NEMUE" found cost
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986 and NEMUE 976. This effect cannot be completely eradicated but it aan b
reduced by increasing: with U = 30000 both NEMUE* and NEMUE found esti-
mated cost 994. In Table 1 we take a better-than-optimalegishate to indicate an
optimal plan.

SP was unable to find provably optimal plans for all but thellaginstances. We
believe that for the medium-sized instances SP finds oppitaak but does not prove
optimality before timeout. For the largest instances Shrdmf memory, though we
use a state-of-the-art CPLEX solver on a powerful machimeth@ largest instances
for which SP did not run out of memory, it was unable to provérality even
within several days. Thus our benchmarks straddle the bordeof solvability by
classical methods.

We found that for both serial and arborescent problems, rumoth the direct and
unary encodings, the use of multiple short runs was venyfhlespecially for prob-
lems with more periods, the best solutions were found onlg minority of runs.
Long runs appeared to be less useful and most improvemengsfotend in the first
few minutes. This may indicate premature convergence oEthéut not necessar-
ily: the use of “random restarts” is common in EAs and othetaheuristics such as
local search algorithms.

Despite the simplicity of its policies and the large numbfesaenarios (at least on
the larger instances) the NEMUE results are remarkably gboel NEMUE! results
are worse than those of NEMUWEN almost all cases, and sometimes much worse.
However, on 13 of the 28 arborescent instances and 19 of tleei28 instances,
NEMUE" found plans that were at least as good as those found by SReQhree
serial instances for which SP found provably optimal pI&SMUE" found equally
good plans. On most of the largest instances NEMtind better plans than SP.
These results indicate that: (i) a relatively simple, amntius, piecewise affine func-
tion can closely approximate a large policy tree for mutfirelon systems; (ii) such
a function can be effectively represented by an affine fondbllowed by a decoder
function; (iii) the affine function can be learned in a reasae time by evolutionary
search; (iv) that our approach is more scalable than SPhéwimary time encoding
can express better policies than the direct encoding (at thase policies that can
easily be found by EA).

3.2 Larger problems

We now consider what happens when the number of periodsasesefurther.
Clearly NEMUE will find feasible policies (because of its dder all its policies
are feasible) while SP will run out of memory, but how well dd¢EMUE" scale
up, and does it still beat NEMUR We constructed two larger classes of problem
to investigate these questions, one serial and one arlgoe8nth have 3 stocking
points as above, 4 periods, and optimal plans that repeat 2ygeriods. The latter
fact means that we can construct arbitrarily large probleitts P = 4N periods by
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repeating the demand patterns, and in each case the optigstrwvidl be NV times
that of the original 4-period problem. NEMUE does not exptbis knowledge and
we can examine how it scales up &sincreases. The serial problem has an optimal
plan with cost 1287 while the arborescent problem has am€mapplan with cost
3654.

We tested NEMUE and NEMUE' on these two problems withV &
{5,10,15,20,25} (P € {20,40,60,80,100}) and recorded the cost after 3, 10, 30,
100 and 300 seconds. The results are shown in Table 2 andearstihg pattern
emerges: NEMUE scales much better than NEMWEvhen runtime is limited. The
greater the number of time periods the more pronounced teeteAnd more so on
the arborescent problems. On the serial problems NEMidEalways worse than
NEMUEY after 300 seconds but the difference decreasd? mereases, and after
shorter runtimes NEMUEstill beats NEMUE. The most likely explanation for the
superior scalability of NEMUE is that it has a constant number of parameters to
learn, whereas NEMUEhas more parameters &sincreases; this makes learning
more difficult so the EA takes longer. Given sufficient timeMIBE“ should surpass
NEMUE¢, for example after 1 hour NEMUEfound a plan for the arborescent prob-
lem with 20 periods with cost 19860 which is 8.7% optimal, MNEMUE? never
progresses beyond 11.5%.

In conclusion, which version of NEMUE is the best dependshanapplication.
NEMUE* finds better policies and is recommended if the number obgeris mod-
erate, or if we have a great deal of time in which to find a plaowelver, if we require
a good plan in a limited time, or if the number of periods ig&rthen NEMUE is
better.

4 Conclusion

We have proposed the first neuroevolutionary method for aqimating optimal
plans in multi-echelon stochastic inventory control pewbs. Large or infinite sce-
nario trees are approximated by a neural network, whiclaised by an evolutionary
algorithm with resampling, while problem constraints aaadiled by a decoder. Be-
cause the method is simulation-based and uses generalgeutgchniques such as
evolutionary algorithms and neural networks, it does niyt o& special properties
of the problem and can be applied to inventory problems waitt-standard features.
We showed experimentally that the method can find near-a@ptiolutions. In fu-
ture work we will extend the method to handle problem featgech as capacity
constraints, and automatically evolve neural networksméhods such as that of
(Stanley and Miikkulainen 2002).
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train(u,S,U)
create ANN popul ation of size pu
eval uat e popul ati on using S sanples
whil e not (ti meout)
sel ect a parent
breed an of fspring O by nutation
eval uate O using S sanples
if Ofitter than locally least-fit chronosone L
replace L by O
select globally fittest chromosone F with #sanples<U
if F exists
re-evaluate F using S nore sanples
return best chronosone found with #sanples>U

Figure 1. Cellular evolution strategy with resampling

CAPTIONS:

Figure 1. Cellular evolution strategy with resampling

Table 1. Experimental results on small problems

Table 2. Experimental results on large problems
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arborescent serial
SP NEMUE*  NEMUE? SP NEMUE*  NEMUE?
# periods| cost %opt cost %opt cost %opt # %opt cost %opt cost %opt
1 4| 2507 0.0 2573 2.6 2600 316 995 0.0 993 0.0 981 0.0
2 5| 3124 1.4 3180 3.1 3251 531269 0.7 1298 2.9 1286 2.0
3 6 | 3657 2.7 3775 5.7 3846 7./51493 1.8 1491 1.7 1604 8.6
4 7| 4214 5.6 4250 6.4 4356 871794 7.4 1797 7.6 1888 12)0
5 8 | 4654 8.2 4722 9.54934 13/42087 12.0 1987 7.6 2167 15)2
6 9| 5472 16.95162 11.95443 16{8741 25.7 2295 11.3 2460 17|2
7 10 — ? 5590 ? 6046 ? — ? 2498 ? 2735 ?
8 41 2100 0.0 2169 3.2 2182 381311 0.2 1306 0.0 1327 14
9 5| 2626 0.6 2722 4.1 2738 471598 2.2 1594 2.0 1664 6.1
10 6| 3311 1.8 3409 4.6 3586 931833 4.3 1832 4.2 1935 9.8
11 7| 4065 2.5 4153 4.6 4714 15/92024 6.7 2024 6.7 2140 11,8
12 8| 4454 3.4 4542 5.3 5863 26)62160 9.3 2142 852285 14,3
13 9| 5158 10.3 5115 9.5 6144 24|72678 25.1 2264 11.4 2414 16|9
14 10 — ? 5432 ? 6756 ? — ? 2407 ? 2596 ?
15 411342 0.2 1340 0.1 1350 081104 0.0 1104 0.0 1105 o1
16 51 1657 1.8 1671 2.6 1673 271417 2.1 1423 2.5 1446 41
17 6| 1930 2.2 1938 2.6 1994 531759 4.1 1763 4.3 1790 5,8
18 7| 2180 4.5 2192 5.0 2289 9.02057 5.4 2055 5.3 2143 9.2
19 8| 2428 6.1 2393 4.7 2480 812266 6.6 2258 6.3 2363 104
20 92853 13.9 2617 6.1 2778 11|62706 17.7 2479 10.2 2671 16|6
21 10 — ? 2851 ? 3108 ? — ? 2627 ? 2871 ?
22 4| 1086 0.0 1096 0.9 1128 3|7 828 0.0 828 0.0 830 0.2
23 5| 1334 0.2 1330 0.0 1392 43 931 0.0 934 0.3 944 1.4
24 6| 1680 0.6 1677 0.4 1886 11)51259 1.3 1265 1.8 1423 12]7
25 7| 2055 0.7 2051 0.5 2326 12)31633 2.4 1639 2.8 1817 12,3
26 8| 2219 1.1 2219 1.1 2639 16/91757 2.7 1766 3.21971 13,3
27 9| 2479 2.0 2531 4.0 3127 2231983 3.9 2000 4.7 2340 186
28 10 — ? 2665 ? 3223 ? — ? 2150 ? 2464 ?

Table 1.

Experimental results on small problems
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arborescent serial
NEMUE* NEMUE? NEMUE* NEMUE?

periods time cost %opt cost %opt cost %opt cost %opt
20 3| 24521 34.2 20530 12.4 6798 5.6 6680 3.9
20 10| 22125 21.1 20432 11.8 6530 1.5 6680 3.9
20 30| 21550 18.0 20409 11.f 6502 1.0 6680 3.9
20 100| 21274 16.4 20394 11.6 6466 0.5 6680 3.9
20 300| 20911 145 20365 11.b 6461 0.4 6680 3.9
40 3| 79882 118.6 41090 12517471 35.7 13366 3.9
40 10| 65979 80.6 40973 12.113814 7.3 13343 3.7
40 30| 47395 29.7 40922 12.013131 2.0 13343 3.7
40 100| 44871 22.8 40882 11.913032 1.3 13343 3.7
40 300| 43150 18.1 40842 11.812959 0.7 13343 3.7
60 3| 122742 123.9 61578 12.328582 48.1 20182 4.5
60 10| 117888 115.1 61365 12027658 43.3 20065 3.9
60 30| 84147 53.5 61357 11.922399 16.0 20065 3.9
60 100| 67718 23.6 61277 11.819864 2.9 20065 3.9
60 300| 65029 18.6 61277 11.819614 20052 3.9
80 3| 163555 123.8 82935 13.538172 48.3 26864 4.4
80 10| 151493 107.3 82234 12537216 44.6 26840 4.3
80 30| 139543 90.9 82114 12.433334 29.5 26834 4.3
80 100| 122334 67.4 81830 12.026535 3.1 26779 4.0
80 300| 117580 60.9 81713 11.826311 2.2 26750 3.9
100 3| 182033 99.3 106664 16.848546 50.9 34022 5Y
100 10| 177525 94.3 104586 14.547691 48.2 33673 4.7y
100 30| 173158 89.6 103943 13.846468 44.4 33507 4.1
100 100| 169331 85.4 102876 12637037 15.1 33486 4.1
100 300| 162582  78.0 102645 12433376 3.7 33459 4.0

Table 2. Experimental results on large problems



