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Stochastic inventory control in multi-echelon systems poses hard problems in optimization under uncertainty.
Stochastic programming can solve small instances optimally, and approximately solve larger instances via scenario
reduction techniques, but it cannot handle arbitrary nonlinear constraints or other non-standard features. Simulation
optimization is an alternative approach that has recently been applied to such problems, using policies that require
only a few decision variables to be determined. However, to find optimal or near-optimal solutions we must consider
exponentially large scenario trees with a corresponding number of decision variables. We propose instead a neu-
roevolutionary approach: using an artificial neural network to compactly represent the scenario tree, and training the
network by a simulation-based evolutionary algorithm. We show experimentally that this method can quickly find
high-quality plans using networks of a very simple form.

Keywords Inventory control, neural networks, evolutionary algorithms,
neuroevolution, multi-echelon systems

1 Introduction

In the area of optimization under uncertainty one of the mostmature fields isin-
ventory control. A typical inventory control problem is as follows. Given a planning
horizon ofN periods and a demand for each periodt ∈ {1, . . . ,N}, which is a
random variable with a given probability density function.Demands occur instanta-
neously at the beginning of each time period and arenon-stationary(can vary from
period to period), and demands in different periods are independent. A fixed delivery
costa is incurred for each order, a linear holding costh is incurred for each prod-
uct unit carried in stock from one period to the next, and a linear stockout costs
is incurred for each period in which the net inventory is negative (it is not possible
to sell back excess items to the vendor at the end of a period).The aim is to find a
replenishment plan that minimizes the expected total cost over the planning horizon.
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A cost-optimal solution can be expressed via ascenario treewhich specifies an
action to be taken in every possiblescenario(instantiation of the random variables).
However, under certain conditions much more compact policies are known to be op-
timal, or to have desirable properties such as planning stability. For example in(s, S)
policies whenever a stock level falls belows it is replenished up toS, while in (R,S)
policies the stock level is checked at times specified byR, and if it falls belowS then
it is replenished up toS. Whereas a scenario tree has exponential size in terms of the
number of periods, these special policies have only a linearnumber of parameters to
choose. This makes them popular even in situations in which they are not known to
be optimal. For a discussion of inventory control policies see (Silveret al.1998).

In multi-echelon systemsthere are multiple stocking points each with an inven-
tory, linked together in a supply chain. Inventory control in multi-echelon systems
is particularly difficult because no simple form of policy isknown to be optimal, so
in principle we must build a scenario tree. Faced with such problems we may re-
sort to methods based onsimulation. Simulation alone can only evaluate a plan, but
when combined with an optimization algorithm it can be used to find near-optimal
solutions (or plans). This approach is calledsimulation optimization(SO) and has
a growing literature in many fields including production scheduling, network de-
sign, financial planning, hospital administration, manufacturing design, waste man-
agement and distribution. It is a practical approach to optimization that can handle
problems containing features that make them difficult to model and solve by other
methods: for example non-linear constraints and objectivefunctions, and demands
that are correlated or have unusual probability distributions. A survey of SO is given
in (Fu 2002), and a tutorial and survey of the application of SO to inventory control
is given in (Köchel 2007). Relatively little work has been done on applying SO to
multi-echelon systems. A pragmatic approach is to use policies such as(s, S) and
(R,S), and to apply an evolutionary algorithm (EA) by representing reorder points
and replenishment levels as genes. But in general these policies may be highly sub-
optimal, and a cost-optimal plan for a multi-stage problem must specify an order
quantity in every possible scenario. So the plan must be represented via a scenario
tree, yet the number of scenarios might be very large, or infinite in the case of contin-
uous probability distributions, making the use of SO problematic. Scenario reduction
techniques may be applied to approximate the scenario tree,but it might not always
be possible to find a small representative set of scenarios.

Another form of approximation for multi-stage optimization is the use oflin-
ear decision rules, which assume a simple form of policy based on affine func-
tions of the stochastic decisions. This can lead to tractable problems that can
be solved in polynomial time, though with approximate results. See for example
(Chenet al.2008) which also explores modified forms of these rules. An alterna-
tive form of approximation is to use anartificial neural network(ANN) to rep-
resent the policy. An ANN is simply a parameterized functionwhose inputs and
outputs are vectors of values, but the interest of ANNs lies in their status as uni-
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versal function approximators, their many machine learning applications, and their
parallels to biological neural networks. In the case of multi-echelon inventory con-
trol the inputs to the ANN could be the current stock levels and the current time,
and the outputs could be the recommended actions (whether ornot to replenish
each stocking point and by how much). We may use a general-purpose search
procedure such as an EA to tune the parameters of a network so that it mini-
mizes expected costs. Thisneuroevolutionaryapproach has been applied to con-
trol problems (Gomezet al.2008, Hewahi 2005, Stanley and Miikkulainen 2002)
and to playing strategies for games such as Backgammon (Pollack and Blair 1998)
and Go (Lubberts and Miikkulainen 2001), but not extensively to inventory con-
trol, though several papers use EAs for inventory control (Arnold and Köchel 1996,
Köchel and Nieländer 2005, Olsen 2003, Prestwichet al.2008b). A related ap-
proach to neuroevolution isgenetic programming, in which an EA is used to evolve
an algorithm instead of an ANN. Genetic programming has also been appliedto
inventory control (Kleinau and Thonemann 2004).

Another interesting approach to multi-stage optimizationis the field variously
referred to asneuro-dynamic programming, temporal difference learningand ap-
proximate dynamic programming. This blend of dynamic programming and neu-
ral networks (and other forms of approximation) has been applied to many
problems including inventory control: see for example (Chaharsooghiet al.2008,
Giannoccaro and Pontrandolfo 2002, Jiang and Shenga 2009, Van Royet al.1997).
A drawback is that special techniques are needed to cope withthe well-known “curse
of dimensionality”: the vast number of states that result from a simple discretization
of the continuum of states in these problems. This problem iseven worse in multi-
echelon systems, where we must discretize several stock levels and order quantities.
In contrast, neuroevolution can directly handle a continuum of states.

The operations management community has recently addressed similar prob-
lems in inventory control. (Leviet al.2007) address the correlated demand
case for a single-item single-location inventory problem and provide compu-
tationally efficient policies with constant worst-case performance guarantees.
(Graves and Willems 2008) consider the problem of where to place strategic safety
stocks in a supply chain, in order to provide a high level of service to the final cus-
tomer with minimum cost, and extend their model for stationary demand to the case
of nonstationary demand. For an extensive coverage of stochastic multi-echelon sys-
tems the reader is referred to (de Kok and Graves 2003), whichis concerned with the
decision-making processes arising in multi-echelon production/inventory systems,
and investigates how operations research can support decisions in the design, plan-
ning and operation of multi-echelon production/inventorysystems.

In this paper we present the first application of neuroevolution to stochas-
tic inventory control in multi-echelon systems. The paper is an extension of
(Prestwichet al.2009): we have added a new version of the method that scales better
to problems with many time periods, added further experiments to test scalability, de-
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scribed our method more fully, and provided additional references. Section 2 presents
our method, Section 3 evaluates the method experimentally,and Section 4 concludes
the paper.

2 Neuroevolutionary inventory control

Recall that we wish to find a policy for stochastic inventory control in a multi-echelon
system. This policy takes the form of an exponentially largescenario tree, which we
will approximate via an ANN whose parameter values must be chosen. We call our
method NEMUE (Neuro-Evolution for MUlti-Echelon systems).

2.1 Inventory control by neural network

Our ANN input is a vector containing the time period and current inventory levels,
and its output is a vector of order quantities (one per stocking point, some or all of
which might be zero). We use the ANN to choose order quantities at each stocking
point and time period. However, before we can use the ANN we must choose values
for its parameters, which are referred to asweights.

The process of tuning the weights is calledtraining. ANNs come with a ready-
made training algorithm: the well-knownbackpropagationalgorithm. Given a set of
training examples, backpropagation adjusts the ANN weights to minimize the error
between the known desired output and the actual output of theANN. This approach
has been applied to inventory control (Gaafar and Choueiki 2000). However, to ob-
tain training data we would first need to solve a set of instances, but the aim of this
paper is to investigate a method for doing exactly that. In fact backpropagation is
only useful for the class of machine learning problems knownassupervised learning
which is a form of regression, whereas we have a problem inreinforcement learn-
ing. In reinforcement learning problems we must choose parameters (in this case the
ANN weights) in order to maximize areward(in this case to minimize the expected
cost).

To choose the weights we can use an EA whose genes are the weights and whose
fitness function is the negation of the cost (fitness is conventionally maximized but
we aim to minimize cost). In this neuroevolutionary processwe evolve a population
of chromosomes, each of whose genes specify an ANN. The smaller the cost incurred
by using the ANN defined by a chromosome, the fitter the chromosome is considered
to be. The hope is that the population will become fitter during evolution, until one
or more chromosomes solves the problem by finding an optimal plan.

When using an ANN to solve a problem, an important aspect is the particular
form of the ANN. An ANN is typically organised as layers ofunits, each represent-
ing a simpletransfer functionsuch as a sigmoid, limiter or a polynomial function.
The ANN is then the composition of these simple functions, with the ANN weights
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controlling how they are composed. In our experiments we tried different network
topologies and transfer functions, including an array of ANNs, one for each time
period. Surprisingly, we obtained best results using an extremely simple network: a
single layer of units each with the identity transfer functionf(x) = x. This counter-
intuitive result is explained by the fact that the ANN forms only part of the policy
(see below). We will continue to refer to the function as an ANN, but it is not the
form of ANN used by most researchers. We now describe the function in detail.

We use two alternative representations of the time periodt: a direct encodingin
which t is a single ANN input represented by an integert = 1 . . . P , and aunary
encodingin which we associate a binary variable with each period, andperiodt is
represented by a binary vector(01, . . . , 0t−1, 1, 0t+1, . . . , 0P ). The unary encoding
uses more ANN inputs than the direct encoding, but is a technique often used to
represent symbolic ANN inputs and sometimes gives better results when a numerical
input can take only a few values. The ANN with unary time encoding represents a
set of affine functions

Otj = atj +
K

∑

i=1

Stibij (t = 1 . . . P, j = 1 . . . K)

whereOtj is the order quantity for stocking pointj at timet, Sti is the stock level
for stocking pointi at time t, K is the number of stocking points, and theatj and
bij are parameters to be tuned. (An affine transformation is a linear transformation
followed by a translation.) This ANN has onlyK(P + K) parameters, so if we can
successfully represent a scenario tree with it then we have achieved an exponential
compression of the tree. The ANN with direct time encoding represents a different
set of affine functions

Otj = aj +
K

∑

i=1

Stibij +
C

∑

k=1

Tk(t)ckj (t = 1 . . . P, j = 1 . . . K)

where theTk(t) are the Chebyshev polynomials of the first kindT1(t) = t, T2(t) =
2t2 − 1, T3(t) = 4x3 − 3x, T4(t) = 8x4 − 8x2 + 1 . . . Chebyshev polynomials
are a well-known family of functions used for function approximation, and therefore
an interesting candidate for approximating policy functions. Theatj , bij and ckj

are parameters to be tuned. There are now onlyK(K + C + 1) parameters so the
size of the ANN is independent of the number of time periodsP . This might make
NEMUE more scalable on problems with more time periods, but its policy will be
capable of less complex behaviour so the plan quality might suffer. The hope is that
a fairly small value ofC will suffice to represent sufficiently complex policies, and
we arbitrarily chooseC = 4.
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2.2 Handling constraints

The ANN forms only part of the policy. We also need a way of handling the con-
straints of the problem, which forbid (i) negative orders (corresponding to selling
unused stock back to the supplier), and (ii) negative stock levels; both types of con-
straint might be violated by theOtj values recommended by the ANN. We will train
the ANN by an EA and there are several ways of handling constraints in EAs. We
use adecoderwhich transforms the (possibly infeasible) ANN solution into one
that violates no constraints. In EA terminology, a decoder is any method for finding
a feasible solution from a chromosome representing a non-solution. Decoders are
problem-specific and ours works as follows. Suppose at period t we have stock lev-
elsSti and the ANN suggests ordering quantitiesOtj . We modify each quantityOtj

by

Otj ← max(Otj , 0)

to avoid violating constraints of type (i). Then for any stocking pointi that supplies
a set of stocking pointsXi we modify its order levelOtj by

Otj ← max



Otj ,





∑

k∈Xi

Otk



− Sti





This ensures that each supplier orders sufficient stock to fulfil its deliveries, and
avoids violating constraints of type (ii). The policy is nowthe composition of the
ANN and the decoder, which transforms the affine function of the ANN into a con-
tinuous piecewise affine function.

Note that we must modify the order levels of the stocking points earlier in the
supply chain first. This is always possible if the supply chain is in the form of a
directed acyclic graph. If there are complications such as constraints on order sizes
or storage capacities then the decoder must be modified, but we leave this issue for
future work.

We used a decoder to handle the problem constraints, but there are other ways of
handling constraints in EAs. The simplest is to use apenalty functionwhich adds a
large artificial cost for each violated constraint. In our problem this forces the ANN to
learn to order sufficient stock in order to avoid stockout. Wetried a penalty function
but it gave inferior results to the decoder.

2.3 The evolutionary algorithm

To train the ANN we use an EA. There are many such algorithms inthe litera-
ture and the choice is somewhat arbitrary. We decided to use a(µ + 1)-Evolution
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Strategy (ES) (Bäcket al.1991) because of its simplicity, and because an efficient
method for handling noise in the fitness function is known forsimilar algorithms
(Prestwichet al.2008a). However, we use a slightly more complicatedcellular ES:
see (Alba and Dorronsoro 2008) for example. Cellular algorithms mimic the evo-
lution of cellular organisms that communicate only with their neighbors, and can
reduce the likelihood ofpremature convergencein which an EA’s chromosomes be-
come trapped near a local optimum. In a cellular ES each chromosome is notionally
placed in an artificial space and nearby chromosomes form itsneighborhood. A com-
mon way of defining neighborhoods is to number the chromosomes0 . . . µ− 1, and
for the neighbors of chromosomei choose chromosomes(i±j) modµ for i = 1 . . . n
and some neighborhood sizen (we usen = 1). In our ES the population size isµ, at
each iteration a new chromosomec′ is created bymutatinga randomly selected chro-
mosomec, and ifc′ is fitter than the least-fit chromosomec∗ in the neighborhood of
c then it replacesc∗, otherwisec′ is discarded. Mutation is the random modification
of gene values, analogous to noise in Simulated Annealing.

A common form of mutation adds normally distributed noise toeach gene, but
we use a method that gave better results in experiments. For each chromosome we
generate two uniformly distributed random numbers,p in the range(0, 1) andq in the
range(0, 0.5). Then for each allele (gene value) in the chromosome, with probability
p we change it, otherwise with probability1−p we leave it unchanged; this is a form
of masking. If we do change it then with probabilityq we set it to 0, otherwise with
probability 1 − q we add to it a random number with Cauchy distribution. This is
calledCauchy mutationand it has been shown to speed up EAs (Yao and Lin 1999).
It can be computed ass tan(u) whereu is a uniformly distributed random variable in
the range(−π, π) ands is a scale factor. For each chromosome we compute a random
scale factor, itself with Cauchy distribution and fixed scale factor 100. Finally, if no
allele was modified (which is possible for smallp) then we modify one randomly
selected allele as described. This rather complex mutationoperator is designed to
generate a variety of random moves, with different numbers of modified alleles and
different scale factors. All chromosomes initially contain alleles generated randomly
using the same Cauchy distribution.

2.4 Handling uncertainty

When demand is probabilistic the fitness function of the EA isnoisy. In such cases we
must average costs over a number of simulations. In some previous SO approaches to
inventory control this problem was tackled by averaging costs over a small number of
simulations, because the simulations were computationally expensive: for example
(Köchel and Nieländer 2005) use 3 samples. The standard deviation of the sample
mean of a random variable with standard deviationσ is σ/

√
n wheren is the num-

ber of samples, so a large number of samples may be needed for very noisy fitness
functions. Here we use smaller problems than those in (Köchel and Nieländer 2005)
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so we can afford to use a much larger number of simulations andobtain reliable cost
estimates. To do this for every chromosome would be expensive but there are more
efficient methods.

Several alternative techniques for handling fitness noise in EAs are surveyed in
(Beyer 2000, Jin and Branke 2005). A popular approach is to use aNoisy Genetic Al-
gorithm(NGA) which computes the fitness of each chromosome by averaging over a
number of samples (Fitzpatrick and Grefenstette 1988, Gopalakrishnanet al.2001,
Miller 1997, Miller and Goldberg 1996). This wastes considerable time evaluating
unpromising chromosomes, but it can be improved by linearlyincreasing the num-
ber of samples with search time, starting from a low value (Smalleyet al.2000,
Wu et al.2006). However, though NGAs have been used to solve real problems,
they may not be the most efficient approach. An alternative technique is toresample
chromosome fitness: that is, chromosome fitness estimates are periodically refined
by taking additional samples (Arnold and Beyer 2002, Buiet al.2005, Hughes 2001,
Prestwichet al.2008a, Stagge 1998, Stroud 2001, Then and Chong 1994).

We use the greedy averaged sampling resampling scheme of
(Prestwichet al.2008a). This requires two parameters to be tuned by the user:
U and S. On generating a new chromosomec it takesS samples to estimate its
fitness before placing it into the population. It then selects another chromosomec′

(which may bec) for resampling: anotherS samples are taken forc′ and used to
refine its fitness estimate.c′ is the chromosome with highest fitness among those
with fewer thanU samples, so the function ofU is to prevent any chromosome from
being sampled more times than necessary. If all chromosomesin the population
have been sampledU times then no resampling is performed. The algorithm is
summarized in Figure 1.

The aim of this resampling method is to obtain chromosomes with good fitness
averaged over many samples, while expending a smaller number of samples on less-
promising chromosomes. Using smallS also has an effect beyond reducing the av-
erage number of samples per chromosome: it encourages exploration by preserving
less-fit chromosomes for longer. We found this to be a very beneficial effect.

Some points are glossed over in Figure 1 for the sake of readability. Firstly, if S
is not a divisor ofU then fewer thanS samples are needed in the final resampling
of any chromosome to bring its total toU . Secondly, if no chromosome hasU sam-
ples on termination then we must choose another chromosome to return. To avoid
this, S should be assigned a sufficiently large value so that in experiments there is
always a chromosome withU samples on termination. This value must be chosen by
experimentation.
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3 Experiments

Ultimately we are interested in solving large, realistic inventory problems with multi-
ple stocking points, stochastic lead times, correlated demands and other features that
make classical approaches impractical. Unfortunately there are no known methods
for solving such problems to optimality, so there is no way ofevaluating our method
on problems of arbitrary form. Instead in Section 3.1 we consider more modest prob-
lems to test the ability of NEMUE to find good plans, and in Section 3.2 we test the
method on larger problems with special forms and known solutions.

3.1 Problems solvable by stochastic programming

Our benchmark problems have two multi-echelon topologies:arborescentandserial.
In the arborescent case we have three stocking points A, B andC, with C supplying A
and B, while in the serial case C supplies B which supplies A. In both cases we have
linear holding costs, linear penalty costs, fixed ordering costs, and stationary proba-
bilistic demands. The closing inventory levels for periodt areIA

t = IA
t−1 +QA

t −dA
t ,

IB
t = IB

t−1 + QB
t − dB

t andIC
t = IC

t−1 + QC
t − QA

t − QB
t whereQt is the order

placed in periodt anddt is the demand in periodt. If It < 0 then the incurred cost is
−It.π, otherwise it isIt.h, whereπ is the penalty cost andh the holding cost. Sup-
pliers are not allowed to run out of stock. Lead times are assumed to be deterministic
and, without loss of generality, equal to zero. We prepared 28 instances of both the
arborescent and serial types, with various costs and numbers of time periods, giving
a total of 56 instances with a range of characteristics. For space reasons we do not
specify the demands in detail, but we used 10 demand patternsfor arborescent in-
stances and 4 patterns for serial instances. In each period we specify a deterministic
demand which is then multiplied by either2

3
with probability 0.25,1 with probability

0.5, or 4

3
with probability 0.25. Thus the number of possible scenarios is3P , giving

59,049 scenarios for the largest problems (P = 10).
We solved these problems in two ways: using Stochastic Programming (SP)

(Birge and Louveaux 1997) and NEMUE. SP is a field of Operations Research de-
signed to solve optimization problems under uncertainty via scenario reduction tech-
niques: a representative subset of all possible scenarios is selected and used to gen-
erate a deterministic equivalent optimization problem, which is then typically solved
using integer linear programming. We use the SP results to evaluate the quality of
plans found by NEMUE. The optimal replenishment plans are obtained using the
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following Stochastic Integer Programming model:

min E[C] =
∑N

t=1

∑

p∈P

(

apδpt + hpI
+
pt + πpI

−

pt

)

s.t. t = 1, . . . , N and p ∈ P
Ipt = Ip,t−1 + Qpt −QPp,t − dpt

Ipt = I+
p,t − I−p,t

Qpt ≤Mδpt

δpt ∈ {0, 1} Qpt ≥ 0

where

C : total holding and ordering/set-up cost of the system overN periods;
a : fixed ordering/set-up cost;
h : proportional inventory holding cost per period;
P : the set of all stocking points;
Pp : the set of stocking points supplied directly by the stocking pointp;
dpt : random demand at stocking pointp, in periodt;
δpt : a binary variable that takes the value of 1 if a replenishment occurs

: at stocking pointp in periodt and 0 otherwise;
Ipt : the inventory level at the end of periodt at stocking pointp;

Qpt : the order quantity at the beginning of periodt at stocking pointp;

andI+ andI− denote positive and negative closing inventory levels. Except for the
lowest echelon stocking points,I− is zero.M is some large positive number. In
this stochastic model ahere-and-nowpolicy is adapted: all decision variables are set
before observing the realisation of the random variables. The certainty equivalent
model is obtained using the compiler described in (Tarimet al.2006) and solved
with CPLEX 11.2.

The computational results are given in Table 1. All SP and NEMUE runs took one
hour on a 2.8 GHz Pentium (R) 4 with 512 RAM, each NEMUE figure being the
best of 12 five-minute runs. NEMUE with the unary encoding is denoted NEMUEu

and with the direct encoding NEMUEd. The NEMUE parameters used wereS = 1,
µ = 50 andU = 10000. The columns marked “%opt” denote the optimality gap: a
reported costc and gapg means that SP proved that the optimal solution cannot have
cost lower thanc′ = c(100 − g)/100 (this does not imply the existence of a solution
with costc′). In several cases NEMUE found superior plans to those foundby SP,
showing that on larger instances SP fails to find optimal plans.

In a few cases NEMUE found plans that appeared to be slightly better than opti-
mal. This is because we estimate the expected cost by sampling, and it may be an
over- or under-estimate. An under-estimated cost for an optimal plan will of course
appear to be better than optimal: for example serial instance 1 has optimum cost 995,
but NEMUEu found a plan with estimated cost 993 and NEMUEd 981. With fewer
samples the difference is greater, for example withU = 1000 NEMUEu found cost
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986 and NEMUEd 976. This effect cannot be completely eradicated but it can be
reduced by increasingU : with U = 30000 both NEMUEu and NEMUEd found esti-
mated cost 994. In Table 1 we take a better-than-optimal costestimate to indicate an
optimal plan.

SP was unable to find provably optimal plans for all but the smallest instances. We
believe that for the medium-sized instances SP finds optimalplans but does not prove
optimality before timeout. For the largest instances SP ranout of memory, though we
use a state-of-the-art CPLEX solver on a powerful machine. On the largest instances
for which SP did not run out of memory, it was unable to prove optimality even
within several days. Thus our benchmarks straddle the borderline of solvability by
classical methods.

We found that for both serial and arborescent problems, under both the direct and
unary encodings, the use of multiple short runs was very helpful. Especially for prob-
lems with more periods, the best solutions were found only ina minority of runs.
Long runs appeared to be less useful and most improvements were found in the first
few minutes. This may indicate premature convergence of theEA but not necessar-
ily: the use of “random restarts” is common in EAs and other metaheuristics such as
local search algorithms.

Despite the simplicity of its policies and the large number of scenarios (at least on
the larger instances) the NEMUE results are remarkably good. The NEMUEd results
are worse than those of NEMUEu in almost all cases, and sometimes much worse.
However, on 13 of the 28 arborescent instances and 19 of the 28serial instances,
NEMUEu found plans that were at least as good as those found by SP. On the three
serial instances for which SP found provably optimal plans,NEMUEu found equally
good plans. On most of the largest instances NEMUEu found better plans than SP.
These results indicate that: (i) a relatively simple, continuous, piecewise affine func-
tion can closely approximate a large policy tree for multi-echelon systems; (ii) such
a function can be effectively represented by an affine function followed by a decoder
function; (iii) the affine function can be learned in a reasonable time by evolutionary
search; (iv) that our approach is more scalable than SP; (v) the unary time encoding
can express better policies than the direct encoding (at least those policies that can
easily be found by EA).

3.2 Larger problems

We now consider what happens when the number of periods increases further.
Clearly NEMUE will find feasible policies (because of its decoder all its policies
are feasible) while SP will run out of memory, but how well does NEMUEu scale
up, and does it still beat NEMUEd? We constructed two larger classes of problem
to investigate these questions, one serial and one arborescent. Both have 3 stocking
points as above, 4 periods, and optimal plans that repeat every 2 periods. The latter
fact means that we can construct arbitrarily large problemswith P = 4N periods by
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repeating the demand patterns, and in each case the optimum cost will beN times
that of the original 4-period problem. NEMUE does not exploit this knowledge and
we can examine how it scales up asN increases. The serial problem has an optimal
plan with cost 1287 while the arborescent problem has an optimal plan with cost
3654.

We tested NEMUEu and NEMUEd on these two problems withN ∈
{5, 10, 15, 20, 25} (P ∈ {20, 40, 60, 80, 100}) and recorded the cost after 3, 10, 30,
100 and 300 seconds. The results are shown in Table 2 and an interesting pattern
emerges: NEMUEd scales much better than NEMUEu when runtime is limited. The
greater the number of time periods the more pronounced the effect, and more so on
the arborescent problems. On the serial problems NEMUEd is always worse than
NEMUEu after 300 seconds but the difference decreases asP increases, and after
shorter runtimes NEMUEd still beats NEMUEu. The most likely explanation for the
superior scalability of NEMUEd is that it has a constant number of parameters to
learn, whereas NEMUEu has more parameters asP increases; this makes learning
more difficult so the EA takes longer. Given sufficient time NEMUEu should surpass
NEMUEd, for example after 1 hour NEMUEu found a plan for the arborescent prob-
lem with 20 periods with cost 19860 which is 8.7% optimal, while NEMUEd never
progresses beyond 11.5%.

In conclusion, which version of NEMUE is the best depends on the application.
NEMUEu finds better policies and is recommended if the number of periods is mod-
erate, or if we have a great deal of time in which to find a plan. However, if we require
a good plan in a limited time, or if the number of periods is large, then NEMUEd is
better.

4 Conclusion

We have proposed the first neuroevolutionary method for approximating optimal
plans in multi-echelon stochastic inventory control problems. Large or infinite sce-
nario trees are approximated by a neural network, which is trained by an evolutionary
algorithm with resampling, while problem constraints are handled by a decoder. Be-
cause the method is simulation-based and uses general-purpose techniques such as
evolutionary algorithms and neural networks, it does not rely on special properties
of the problem and can be applied to inventory problems with non-standard features.
We showed experimentally that the method can find near-optimal solutions. In fu-
ture work we will extend the method to handle problem features such as capacity
constraints, and automatically evolve neural networks viamethods such as that of
(Stanley and Miikkulainen 2002).
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train(µ, S,U)
create ANN population of size µ
evaluate population using S samples
while not(timeout)

select a parent
breed an offspring O by mutation
evaluate O using S samples
if O fitter than locally least-fit chromosome L
replace L by O

select globally fittest chromosome F with #samples< U
if F exists
re-evaluate F using S more samples

return best chromosome found with #samples≥ U

Figure 1. Cellular evolution strategy with resampling

CAPTIONS:

Figure 1. Cellular evolution strategy with resampling

Table 1. Experimental results on small problems

Table 2. Experimental results on large problems
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arborescent serial
SP NEMUEu NEMUEd SP NEMUEu NEMUEd

# periods cost %opt cost %opt cost %opt # %opt cost %opt cost %opt
1 4 2507 0.0 2573 2.6 2600 3.6 995 0.0 993 0.0 981 0.0
2 5 3124 1.4 3180 3.1 3251 5.31269 0.7 1298 2.9 1286 2.0
3 6 3657 2.7 3775 5.7 3846 7.51493 1.8 1491 1.7 1604 8.6
4 7 4214 5.6 4250 6.4 4356 8.71794 7.4 1797 7.6 1888 12.0
5 8 4654 8.2 4722 9.5 4934 13.42087 12.0 1987 7.6 2167 15.2
6 9 5472 16.9 5162 11.9 5443 16.52741 25.7 2295 11.3 2460 17.2
7 10 — ? 5590 ? 6046 ? — ? 2498 ? 2735 ?
8 4 2100 0.0 2169 3.2 2182 3.81311 0.2 1306 0.0 1327 1.4
9 5 2626 0.6 2722 4.1 2738 4.71598 2.2 1594 2.0 1664 6.1

10 6 3311 1.8 3409 4.6 3586 9.31833 4.3 1832 4.2 1935 9.3
11 7 4065 2.5 4153 4.6 4714 15.92024 6.7 2024 6.7 2140 11.8
12 8 4454 3.4 4542 5.3 5863 26.62160 9.3 2142 8.5 2285 14.3
13 9 5158 10.3 5115 9.5 6144 24.72678 25.1 2264 11.4 2414 16.9
14 10 — ? 5432 ? 6756 ? — ? 2407 ? 2596 ?
15 4 1342 0.2 1340 0.1 1350 0.81104 0.0 1104 0.0 1105 0.1
16 5 1657 1.8 1671 2.6 1673 2.71417 2.1 1423 2.5 1446 4.1
17 6 1930 2.2 1938 2.6 1994 5.31759 4.1 1763 4.3 1790 5.8
18 7 2180 4.5 2192 5.0 2289 9.02057 5.4 2055 5.3 2143 9.2
19 8 2428 6.1 2393 4.7 2480 8.12266 6.6 2258 6.3 2363 10.4
20 9 2853 13.9 2617 6.1 2778 11.62706 17.7 2479 10.2 2671 16.6
21 10 — ? 2851 ? 3108 ? — ? 2627 ? 2871 ?
22 4 1086 0.0 1096 0.9 1128 3.7 828 0.0 828 0.0 830 0.2
23 5 1334 0.2 1330 0.0 1392 4.3 931 0.0 934 0.3 944 1.4
24 6 1680 0.6 1677 0.4 1886 11.51259 1.3 1265 1.8 1423 12.7
25 7 2055 0.7 2051 0.5 2326 12.31633 2.4 1639 2.8 1817 12.3
26 8 2219 1.1 2219 1.1 2639 16.91757 2.7 1766 3.2 1971 13.3
27 9 2479 2.0 2531 4.0 3127 22.31983 3.9 2000 4.7 2340 18.6
28 10 — ? 2665 ? 3223 ? — ? 2150 ? 2464 ?

Table 1. Experimental results on small problems
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arborescent serial
NEMUEu NEMUEd NEMUEu NEMUEd

periods time cost %opt cost %opt cost %opt cost %opt
20 3 24521 34.2 20530 12.4 6798 5.6 6680 3.8
20 10 22125 21.1 20432 11.8 6530 1.5 6680 3.8
20 30 21550 18.0 20409 11.7 6502 1.0 6680 3.8
20 100 21274 16.4 20394 11.6 6466 0.5 6680 3.8
20 300 20911 14.5 20365 11.5 6461 0.4 6680 3.8
40 3 79882 118.6 41090 12.517471 35.7 13366 3.9
40 10 65979 80.6 40973 12.113814 7.3 13343 3.7
40 30 47395 29.7 40922 12.013131 2.0 13343 3.7
40 100 44871 22.8 40882 11.913032 1.3 13343 3.7
40 300 43150 18.1 40842 11.812959 0.7 13343 3.7
60 3 122742 123.9 61578 12.328582 48.1 20182 4.5
60 10 117888 115.1 61365 12.027658 43.3 20065 3.9
60 30 84147 53.5 61357 11.922399 16.0 20065 3.9
60 100 67718 23.6 61277 11.819864 2.9 20065 3.9
60 300 65029 18.6 61277 11.819614 20052 3.9
80 3 163555 123.8 82935 13.538172 48.3 26864 4.4
80 10 151493 107.3 82234 12.537216 44.6 26840 4.3
80 30 139543 90.9 82114 12.433334 29.5 26834 4.3
80 100 122334 67.4 81830 12.026535 3.1 26779 4.0
80 300 117580 60.9 81713 11.826311 2.2 26750 3.9

100 3 182033 99.3 106664 16.848546 50.9 34022 5.7
100 10 177525 94.3 104586 14.547691 48.2 33673 4.7
100 30 173158 89.6 103943 13.846468 44.4 33507 4.1
100 100 169331 85.4 102876 12.637037 15.1 33486 4.1
100 300 162582 78.0 102645 12.433376 3.7 33459 4.0

Table 2. Experimental results on large problems


