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To compare different forecasting methods on demand series, we require an error measure. Many error measures have been
proposed, but when demand is intermittent some become inapplicable because of infinities, some give counter-intuitive
results, and there is no agreement on which is best. We argue that almost all known measures rank forecasters incorrectly
on intermittent demand series. We propose several new error measures with almost no infinities, and with correct forecaster
ranking on several intermittent demand patterns. We call these ‘mean-based’ error measures because they evaluate forecasts
against the (possibly time-dependent) mean of the underlying stochastic process instead of point demands.
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1. Introduction

Inventory management is of great economic importance to industry, but forecasting demand for some inventories is difficult
because the demand is intermittent: in many time periods it is zero. Intermittent demand (or count data) occurs in several
industries, for example, in aerospace and military inventories from which spare parts such as wings or jet engines are
infrequently required. A survey of forecasting methods for spare parts is given in Boylan and Syntetos (2010). Various
methods have been proposed for forecasting, some simple and others statistically sophisticated, but relatively little work has
been done on forecasting for intermittent demand. Most work in this area is influenced by that of Croston (1972), who first
separated the forecasting of demand size and inter-demand interval.

To choose a good forecasting method, we can test the alternatives empirically on demand series to see which gives the
smallest error. For this, we require an error measure (or accuracy measure). Forecasting methods have been extensively
compared on real and simulated data in the well-known M-, M2- and M3-competitions (Makridakis et al. 1982; Makridakis
et al. 1993; Makridakis and Hibon 2000). There is no general agreement on which of the many existing error measures is best,
so the competitions used several measures. However, the competitions did not deal specifically with intermittent demands,
so the experience gained from these competitions cannot be used as a guide.

For intermittent demand series, some error measures are inapplicable because division by zero leads to infinities, but there
are still several possibilities. This is an important issue because if researchers are free to choose from a large set of measures,
then their results are likely to be incomparable. Moreover, there is a temptation to choose measures that give desired results
(Collopy 1992) making experiments less objective. An editor of the International Journal of Forecasting wrote that the choice
of error measure is not a matter of personal preference and urged researchers to follow contemporary recommendations
(Fildes 1992b).

In this paper, we examine the suitability of known error measures for intermittent demand, and propose new improved
measures. Section 2 provides background, demonstrates anomalous behaviour in existing error measures and proposes new
measures. Section 3 evaluates the new measures on simulated data. Section 4 concludes the paper.

2. Old and new error measures

In this section, we provide some necessary background and describe our contribution. Section 2.1 describes the relevant
forecasting methods, Section 2.2 surveys known error measures, Section 2.3 argues that these measures can rank forecasters
incorrectly and Section 2.4 proposes new measures.
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2.1 Forecasting methods

First, we describe the forecasting methods that will be used in the paper. Single exponential smoothing (SES) computes a
smoothed series ỹt via the formula

ỹt = αyt + (1 − α)ỹt−1

where α ∈ (0, 1) is a smoothing parameter. The smaller the value of α, the less weight is attached to the most recent
observations.An up-to-date survey of exponential smoothing algorithms is given in Gardner (2006). They perform remarkably
well, often beating more complex approaches (Fildes et al. 2008). However, SES is known to perform poorly on intermittent
demand, at least under some error measures.

The standard method for handling intermittency is Croston’s method (Croston 1972), which applies SES to the non-zero
demand sizes y and inter-demand intervals τ independently, using smoothing factors α and β, respectively. Given smoothed
demand ỹt and smoothed interval τ̃t at time t , the forecast is ft = ỹt/τ̃t . Both ỹt and τ̃t , and hence ft , are updated at each
time t for which yt �= 0. Alternative versions were proposed by Levén and Segerstedt (2004), Syntetos (2001), Syntetos and
Boylan (2005) and we shall use the variant of Syntetos and Boylan (2005) which is known to have low bias and variance on
stochastic demand. This variant is commonly referred to as SBA, but we shall refer to it and other variants as CR.

We also mention two trivial forecasting methods. Firstly, the random walk method (RW), also known as the naive method :
take the previous period’s demand as a forecast. RW is often used as a baseline for evaluating other methods. Secondly, the
forecaster that always forecasts 0, which following Teunter and Duncan (2009) we call ZF. It was proposed by Croston,
mentioned by Venkitachalam et al. (2003) and studied by Chatfield and Hayyab (2007) and Teunter and Duncan (2009).

2.2 Existing error measures

Next, we survey existing error measures, largely based on de Gooijer and Hyndman (2005) and Hyndman and Koehler
(2006). Other measures exist, for example, Periods in Stock, Number of Shortages (Wallström and Segerstedt 2010) and
Average Ranking (Makridakis et al. 1982), but we restrict our attention to those in the two surveys.

No one error measure is generally accepted as best on intermittent demand, and opinion is highly divided — see for
example the debate in Ahlburg et al. (1992). Wallström and Segerstedt (2010) use principal components analysis to show
that no single measure is sufficient, Ghobbar and Friend (2003) recommend using different measures for different types of
demand, and in forecasting competitions several measures are used.

2.2.1 Scale-dependent measures

The most common are:

• Mean [Signed] Error (ME): mean(et )
• Mean Square Error (MSE): mean(e2

t )
• Root-Mean Square Error (RMSE):

√
MSE

• Mean Absolute Error (MAE): mean(|et |)
• Median Absolute Error (MdAE): median(|et |)

where et is the error yt − ŷt . These are useful for comparing methods on one series, but not for comparing over several series
that are on different scales (Hyndman and Koehler 2006). Doubt has been cast on the suitability of MAE for intermittent
demand (Wallström and Segerstedt 2010).

2.2.2 Percentage errors

These are also popular:

• Mean Absolute Percentage Error (MAPE): mean(|pt |)
• Median Absolute Percentage Error (MdAPE): median(|pt |)
• Root-Mean Square Percentage Error (RMSPE):

√
mean(p2

t )

• Root-Median Square Percentage Error (RMdSPE):
√

median(p2
t )

• Symmetric Mean Absolute Percentage Error (sMAPE): mean(200|et |/(yt + ŷt ))

• Symmetric Median Absolute Percentage Error (sMdAPE): median(200|et |/(yt + ŷt ))

where pt = 100et/yt . The last two measures are motivated by the fact that MAPE and MdAPE penalise positive errors more
than negative ones.
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However, percentage errors are undefined if any yt = 0 (and if ŷt = 0 in the last two cases) and have very skewed
distributions when yt ≈ 0. It is also pointed out in Hyndman and Koehler (2006) that they assume a meaningful zero, which
is not the case for some data such as temperatures. Despite these drawbacks MAPE is recommended by most textbooks and
was the main error measure used in the M-competition, while MdAPE is recommended by Fildes (1992a), and sMAPE and
sMdAPE were used in the M3-competition.

It is pointed out by Kolassa and Schütz (2007) that many commercial software packages report a MAPE even when a
series contains zeros, although the MAPE is technically undefined in this case. This is done by simply excluding periods
with zero demands, which does not reflect the true errors of a forecast. This MAPE variant does not seem to have its own
name so we shall denote it by iMAPE.

2.2.3 Relative error-based measures

We may also rescale by using errors from other measures:

• Mean Relative Absolute Error (MRAE): mean(|rt |)
• Median Relative Absolute Error (MdRAE): median(|rt |)
• Geometric Mean Relative Absolute Error (GMRAE): gmean(|rt |)

where rt = et/e∗
t and e∗

t is the error from a baseline method which is often RW.
GMRAE is also known as Relative Geometric Root-Mean Square and has desirable statistical properties (Fildes 1992a).

It is used by Syntetos and Boylan (2005), and Armstrong and Collopy (1992) recommends the use of relative error-based
measures. It has been proposed for intermittent demand in particular (Syntetos and Boylan 2005). However, these measures
have the drawback of infinite variance because e∗

t can be arbitrarily small (Chatfield and Hayyab 2007; Hyndman and Koehler
2006). In the particular case of intermittent demand with RW as baseline, e∗

t is often zero so these measures are undefined.
Extreme values can be trimmed (Armstrong and Collopy 1992) but this introduces some arbitrariness (Hyndman and Koehler
2006).

2.2.4 Relative measures

Instead of computing an absolute quantity to measure the accuracy of a method, we may compare it with another method.
This can be done for many types of error measure, for example

• Relative Mean Absolute Error (RelMAE): MAE/MAEb

• Relative Mean Squared Error (RelMSE): MSE/MSEb

• Relative Root Mean Squared Error (RelRMSE): RMSE/RMSEb etc.

where MAEb, MSEb and RMSEb are the MAE, MSE and RMSE of a baseline measure. The most popular baseline is RW, in
which case RelRMSE is Thiel’s U2 statistic (Thiel 1966) and log RelMSE is Thompson’s LMR measure (Thompson 1990).
RelMAE was recommended for intermittent demand by Syntetos and Boylan (2005) and called CumMAE by Armstrong
and Collopy (1992). It is rare for these measures to become infinite, because the denominator is only zero if the baseline
forecaster gives perfect results.

Another relative measure is Percent Better (PB) where a method is compared to another, usually RW, by how often its
absolute error is smaller. This is recommended by Kolassa and Schütz (2007). A related measure is Percent Best (PBt) which
compares several methods and computes the percentage of times each is most accurate. A drawback with PB and PBt is that
they give no indication of the size of errors, so one large error is considered to be less serious than two tiny errors.

2.2.5 Scaled errors

We mention two of these. Firstly, the MAD/Mean Ratio (Kolassa and Schütz 2007), also called the Weighted MAPE, which
we shall abbreviate to MMR. MAD (Mean Absolute Deviation) is another name for MAE so MMR = MAE/ME. Secondly,
the MASE (Hyndman and Koehler 2006) (Mean Absolute Scaled Error) defined by MASE = mean(|qt |) where qt is a scaled
error defined by

qt = et
1

n−1

∑n
i=2 |yi − yi−1|

and t = 1 . . . n is the set of sample periods used for forecasting. MASE effectively evaluates a forecasting method against
RW. The only case in which it is undefined is when all in-sample demands are identical. Other scaled error measures
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defined analogously to MASE include the Root-Mean Squared Scaled Error (RMSSE) and the Median Absolute Scaled Error
(MdASE). MASE has been argued to be superior to several other methods used in forecasting competitions. An advantage of
MASE over MMR is that it is more reliable on demand with seasonality, trends or other forms of non-stationarity. However,
Kolassa and Schütz (2007) note that the MASE of two series with identical forecasts and identical demands during the
forecast horizon will differ if the two series differed in their historical demands. This is counter-intuitive so MASE is not
always easy to interpret.

2.3 Ranking forecasters

It is natural to ask: which forecaster is best for intermittent demand? There is no universally agreed ranking but CR is often
applied in practice to intermittent demand (Fildes et al. 2008), and versions of CR are used in leading statistical forecasting
software packages such as SAP and Forecast Pro (Teunter, Syntetos, and Babai 2011), so we might expect it to be ranked
first. However, there is some debate on this issue.

Chatfield and Hayyab (2007) investigate whether SES, CR, ZF or a moving average forecaster is best for intermittent
demand. They find that ZF does surprisingly well, beating SES and CR on lumpy demand under a modified MAPE but
losing under MSE and U2. However, Teunter and Duncan (2009) note that ZF is of no practical use for inventory control.
Syntetos and Boylan (2005) found that SES beat CR on intermittent demand, using more than one error measure, though CR
was better if issue point only were considered. According to Gardner (2006) it is hard to conclude from the various studies
that CR is best, because the results depend on the data and error measures used. Bacchetti and Saccani (2012) also note that
there is no conclusive evidence pointing to a best method. But Teunter and Duncan (2009) conclude that the apparently poor
performance of CR in some studies is caused by the use of inappropriate error measures, while Ghobbar and Friend (2003),
Teunter and Duncan (2009), Willemain et al. (1994) found that CR beats SES on intermittent series.

Our position is that it is both reasonable and consistent with current wisdom to rank CR above SES, and SES above ZF,
on intermittent demand series. CR has maintained its popularity over several decades, and if practitioners prefer a method
based on experience, then any error measure that disagrees with this preference is of little use to them. We shall therefore
take it as axiomatic that any error measure that fails this test, which we denote by CR � SES � ZF, should not be applied to
intermittent demand. Of course some researchers will disagree with this position, which is entirely reasonable, but we hope
that our work will be of use to those who agree with our ranking axiom.

2.4 Mean-based error measures

In Section 3, we shall test existing error measures against this axiom. But first we propose several new measures: in fact
one for each existing measure, obtained by evaluating forecasts against the mean of the underlying stochastic process of
the demand, which we denote ym

t , instead of against the point demand yt . So instead of the usual error et = yt − ŷt we
use em

t = ym
t − ŷt , instead of pt = 100et/yt we use pm

t = 100em
t /ym

t , and similarly for baseline measures. The error em
t

measures how well a forecaster ignores noise and estimates the underlying demand rate. We shall call these mean-based
measures, and denote them by adding the prefix ‘m’ to the measure they are based on (mMAE, mMSE, etc).

We expect mean-based measures to give more appropriate results on intermittent demand than their standard versions.
CR and SES arguably aim to provide an estimate of average demand rate, rather than accurate per-period forecasts. For
example, if demands of mean size d occur with probability p, then CR and SES will both forecast demands of approximately
pd, which is the average demand rate. Therefore, it seems reasonable to evaluate them against the actual demand rate rather
than against point demands. CR should beat SES under this approach, as its forecasts remain close to the demand rate during
periods of no demand, while the SES forecasts have greater variance. Finally, ZF should perform poorly under this approach
as its forecasts are always below the demand rate. These predictions are tested below.

For artificial data, it is easy to find ym
t . For stationary demand, we can use ym

t = mean(yt ), where the mean is either
derived analytically (assuming that we use a distribution with a well-defined mean) or simply computed over the entire series.
For non-stationary demand the mean of the stochastic process is a function of time, but we can still use our knowledge of the
data to obtain the dynamic underlying demand rate. For example, the obsolescence experiments of Teunter, Syntetos, and
Babai (2011) use artificial data whose non-zero demand probability drops either linearly or abruptly to 0, whereas demand
sizes follow a fixed distribution: in either case we can multiply the current probability by the fixed distribution mean to
obtain ym

t .
On real-world series, the stochastic process is of course unknown, though one can assume a particular form (for example,

a Poisson process) and then estimate its parameters. A simple approach is to estimate the current mean demand via standard
techniques used to estimate seasonal components. It is common to estimate a seasonal component by taking a moving
average over a window, stretching forward and backward in time. We can use the same moving window technique to obtain
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a smoothed version of the demand series, and use this as ym
t . If the demand series is too short to use a moving window, we

can estimate the changing mean by regression. Or if we assume demand to be stationary, we can take the series mean as ym
t .

As with seasonal component estimation, there are several reasonable approaches.
Mean-based error measures have wider applicability than their original counterparts. Percentage errors such as MAPE

are undefined whenever yt = 0, whereas mMAPE is only undefined when ym
t = 0 which is much rarer: for example, on

stationary demand ym
t is the series mean, which is only zero when yt = 0 for all t . Relative error-based measures such as

GMRAE with RW as baseline are undefined on intermittent demand, because both the demand and RW’s forecast are often
zero so the RW error e∗

t (which is the denominator) is also zero. However, a measure such as mGMRAE is only undefined
when the denominator e∗m

t = y∗m
t − ŷ∗

t is zero: the RW forecast ŷ∗
t will often be zero, but again y∗m

t is rarely zero.
We now have a large number of new error measures, none of which is likely to give infinite answers on intermittent

demand. This allows us to measure forecasting deviations using absolute or squared values, scaled or unscaled or based on
percentages, and on one or multiple demand series. In the next section, we shall evaluate them with respect to our forecaster
ranking axiom.

3. Experiments

The error measures we compare are selected from the various classes described in Section 2.2. To represent the scale-dependent
measures, we use MAE, MdAE and MSE and their mean-based equivalents mMAE, mMdAE and mMSE; from the percentage
errors, we use iMAPE and mMAPE. Note that the mMAPE of ZF is always 100em

t /ym
t = 100(ym

t − 0)/ym
t = 100 and the

iMAPE of ZF is always 100et/yt = 100(yt − 0)/yt = 100 (MAPE itself is undefined on intermittent demand). To represent
the relative error-based measures, we use only mGMRAE with RW as baseline (GMRAE with RW as baseline is undefined
for intermittent demand). To represent the relative measures, we use PB and mPB with RW as baseline.

We start with data based on that used in experiments of Teunter, Syntetos, and Babai (2011). Demands occur with some
probability in each period; hence, inter-demand intervals are distributed geometrically, and we use a logarithmic distribution
for demand sizes. Geometrically, distributed intervals are a discrete version of Poisson intervals, and the combination of
Poisson intervals and logarithmic demand sizes yields a negative binomial distribution, for which there is theoretical and
empirical evidence: see, for example, the recent discussion in Syntetos et al. (2011). Teunter et al. generate demand data that
is nonzero with probability p0, where p0 is either 0.2 or 0.5, and whose size is logarithmically distributed. The logarithmic
distribution is characterised by a parameter � ∈ (0, 1) and is discrete with Pr[X = k] = −�k/k log(1 − �) for k ≥ 1. They
use two values: � = 0.001 to simulate low demand and � = 0.9 to simulate lumpy demand.

Tables 1–4 show best results for SES, CR and ZF using α and β values chosen from {0.1, 0.2, 0.3}. We initialise the
forecasters by choosing arbitrary initial values ŷ0 = τ̂0 = 1 then running them for 104 periods using demand probability p0.
Results are then computed over 105 time periods. To estimate the stochastic process mean, we simply compute the mean of
all 105 demands (including zeros). The results show that MAE, MdAE and iMAPE are unreliable error measures for some
types of intermittent demand because they incorrectly rank the three forecasters. PB is more reliable but the differences
are sometimes very small, and in one case PB ranked CR and SES equally. Among existing measures, only MSE behaves
correctly. In contrast, all mean-based measures behave correctly, though mPB still scores CR and SES quite similarly. We
also tried geometrically distributed demand sizes as in Teunter, Syntetos, and Babai (2011), and regular intermittent demand
as in Croston (1972), with similar results.

However, in further experiments MSE was also unreliable. Willemain et al. (1994) point out that demand in industrial
data is often autocorrelated: demand may occur in streaks, with longer sequences of zero or nonzero values than one would
expect. This is a positive autocorrelation on demand intervals, but they also observed negative autocorrelation: frequent
alternation between zero and nonzero demand. Following Willemain et al., we model autocorrelation by a first-order 2-state
Markov process. Let all demands be 0 or 1, and denote the transition probability from 0 to 1 by p01, and from 1 to 0 by p10.
On negatively autocorrelated demand MSE ranks forecasters correctly, but results for positively autocorrelated demand with
p01 = p10 = 0.3 are shown in Table 5. Here MAE, MdAE, MSE and iMAPE are all unreliable while mMAE, mMdAE,
mMSE, mMAPE, mGMRAE and mPB give correct rankings, as does PB. We found similar results for other values of p01
and p10.

Collectively, these results imply that almost all tested error measures are unreliable. They also imply that other untested
error measures are unreliable, because they are monotonic functions of MAE or MSE and hence rank forecasters in the same
way. These include RMSE, relative measures such as RelMAE and RelMSE and as their special cases U2 and LMR, and
scaled errors such as MMR and MASE.

We conclude that all known error measures (except ME which measures bias, not deviation) are unreliable on some types
of intermittent demand, even when they do not incur infinities, so there is currently no reliable way of measuring deviation.
These results reinforce and complement those of Teunter and Duncan (2009), who show that MAE and RMSE rank ZF above
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Table 1. Results for artificial demand with p0 = 0.2 and � = 0.001.

Error SES CR ZF
measure α Error α β Error error Forecaster ranking

MAE 0.3 0.32134 0.1 0.3 0.31846 0.20141 ZF � CR � SES
MdAE 0.3 0.23740 0.3 0.3 0.20867 0.00000 ZF � CR � SES
MSE 0.1 0.16931 0.1 0.1 0.16271 0.20151 CR � SES � ZF
iMAPE 0.3 79.77339 0.1 0.1 80.07155 100.00000 SES � CR � ZF
PB 0.1 32.52000 0.1 0.1 32.52000 16.26000 CR = SES � ZF

mMAE 0.1 0.07434 0.1 0.1 0.03225 0.20122 CR � SES � ZF
mMdAE 0.3 0.13379 0.3 0.3 0.04651 0.20160 CR � SES � ZF
mMSE 0.1 0.00856 0.1 0.1 0.00167 0.04054 CR � SES � ZF
mMAPE 0.1 36.91216 0.1 0.1 16.01403 100.00000 CR � SES � ZF
mPB 0.3 97.83000 0.1 0.3 98.75000 20.15000 CR � SES � ZF
mGMRAE 0.1 0.30005 0.1 0.1 0.13512 0.84936 CR � SES � ZF

Table 2. Results for artificial demand with p0 = 0.5 and � = 0.001.

Error SES CR ZF
measure α Error α β Error error Forecaster ranking

MAE 0.3 0.49945 0.1 0.3 0.49962 0.49963 SES � CR � ZF
MdAE 0.3 0.50463 0.3 0.3 0.50064 0.00000 ZF � CR � SES
MSE 0.1 0.26335 0.1 0.1 0.25643 0.50003 CR � SES � ZF
iMAPE 0.3 49.97213 0.1 0.1 24.98300 100.00000 CR � SES � ZF
PB 0.3 50.63000 0.1 0.1 50.65000 25.31000 CR � SES � ZF

mMAE 0.1 0.09310 0.1 0.1 0.06324 0.49993 CR � SES � ZF
mMdAE 0.3 0.15114 0.3 0.3 0.09643 0.49870 CR � SES � ZF
mMSE 0.1 0.01339 0.1 0.1 0.00614 0.24985 CR � SES � ZF
mMAPE 0.1 18.63340 0.1 0.1 12.65683 100.00000 CR � SES � ZF
mPB 0.3 99.95000 0.1 0.1 100.00000 49.84000 CR � SES � ZF
mGMRAE 0.1 0.17928 0.1 0.1 0.12201 0.99721 CR � SES � ZF

Table 3. Results for artificial demand with p0 = 0.2 and � = 0.9.

Error SES CR ZF
measure α Error α β Error error Forecaster ranking

MAE 0.1 1.25741 0.1 0.3 1.23205 0.77191 ZF � CR � SES
MdAE 0.3 0.53944 0.3 0.3 0.67425 0.00000 ZF � SES � CR
MSE 0.1 7.10279 0.1 0.1 6.83258 7.35755 CR � SES � ZF
iMAPE 0.1 68.79125 0.1 0.1 59.83256 100.00000 CR � SES � ZF
PB 0.3 31.80000 0.1 0.3 33.09000 17.31000 CR � SES � ZF

mMAE 0.1 0.44085 0.1 0.1 0.21087 0.77266 CR � SES � ZF
mMdAE 0.3 0.56279 0.3 0.3 0.28997 0.76560 CR � SES � ZF
mMSE 0.1 0.36904 0.1 0.1 0.07450 0.59660 CR � SES � ZF
mMAPE 0.1 57.11138 0.1 0.1 27.31830 100.00000 CR � SES � ZF
mPB 0.2 87.12000 0.3 0.3 89.02000 12.42000 CR � SES � ZF
mGMRAE 0.1 0.58574 0.1 0.1 0.29300 1.09061 CR � SES � ZF

SES (and above a moving average), and SES above CR, on a large data-set of intermittent demand from an air force. Our
results apply to more error measures and are more easily reproducible, being based on simple artificial data. But their result
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Table 4. Results for artificial demand with p0 = 0.5 and � = 0.9.

Error SES CR ZF
measure α Error α β Error error Forecaster ranking

MAE 0.1 2.38007 0.1 0.3 2.28662 1.93788 ZF � CR � SES
MdAE 0.3 1.45094 0.3 0.3 1.38990 0.00000 ZF � CR � SES
MSE 0.1 16.01983 0.1 0.1 15.59856 18.97148 CR � SES � ZF
iMAPE 0.1 72.02938 0.1 0.3 65.44701 100.00000 CR � SES � ZF
PB 0.1 50.78000 0.1 0.1 50.89000 31.69000 CR � SES � ZF

mMAE 0.1 0.68463 0.1 0.1 0.48617 1.93752 CR � SES � ZF
mMdAE 0.3 0.95963 0.3 0.3 0.72759 1.90290 CR � SES � ZF
mMSE 0.1 0.79809 0.1 0.1 0.38147 3.75220 CR � SES � ZF
mMAPE 0.1 35.32882 0.1 0.1 25.08728 100.00000 CR � SES � ZF
mPB 0.3 78.51000 0.3 0.3 79.11000 15.88000 CR � SES � ZF
mGMRAE 0.1 0.94599 0.1 0.1 0.72287 2.83995 CR � SES � ZF

Table 5. Results for autocorrelated demand with p01 = p10 = 0.3.

Error SES CR ZF
measure α Error α β Error error Forecaster ranking

MAE 0.3 0.41673 0.1 0.3 0.49992 0.49880 SES � ZF � CR
MdAE 0.3 0.37776 0.3 0.3 0.49221 0.00000 ZF � SES � CR
MSE 0.2 0.24507 0.1 0.1 0.26352 0.49880 SES � CR � ZF
iMAPE 0.3 41.77340 0.1 0.1 49.86910 100.000 SES � CR � ZF
PB 0.3 43.55000 0.1 0.3 44.29000 21.82000 CR � SES � ZF

mMAE 0.1 0.13732 0.1 0.1 0.09385 0.49902 CR � SES � ZF
mMdAE 0.3 0.23571 0.3 0.3 0.14783 0.49940 CR � SES � ZF
mMSE 0.1 0.02808 0.1 0.1 0.01344 0.24865 CR � SES � ZF
mMAPE 0.1 27.52970 0.1 0.1 18.81399 100.000 CR � SES � ZF
mPB 0.3 96.82000 0.3 0.3 98.65000 30.02000 CR � SES � ZF
mGMRAE 0.1 0.28674 0.1 0.1 0.20195 0.99883 CR � SES � ZF

shows that the inappropriateness of at least some current error measures extends to real data. In contrast, our new measures
gave correct results in all cases.

Finally, we test our method on real data obtained from an Irish inventory control company. The data is from a spare parts
inventory and contains 24 monthly demands for each of 8727 products, with high intermittency: the mean probability of a
nonzero demand is 0.238. We would prefer to use long series, but it is common to have access only to relatively short series
and companies must often make forecasts based on short demand histories (Syntetos and Boylan 2005); for methods to deal
with short histories see Dolgui and Pashkevich (2008a, 2008b).

The forecasters we compare are CR, SES and ZF with the same smoothing factors as Syntetos and Boylan (2005): 0.05,
0.1, 0.15 and 0.2. They also used several thousand series each with 24 demands and we treat our series in a similar way:
initialise SES and CR in the first year, then evaluate them in the second year. The estimates of the SES demand size, the CR
demand size and the CR inter-demand interval are initialised to their averages over the first year. If no demand occurs in the
first year, the inter-demand interval estimate is initialised to 12 and the demand size estimate to 1.

In our initial experiments, we found that the mean-based measures did not behave as well as expected, often ranking
SES � CR (though ZF was ranked correctly). This turned out to be caused by large differences between the mean demands
over the first and second years. On short series, SES appears to cope with non-stationary demand better than CR, which takes
longer to adjust its forecasts. We therefore applied a data-cleaning phase in which we discard any series whose first year
mean demand is more than three times that of its second year, or vice-versa, leaving 2202 series.

We choose the relative measures RelMAE, U2 and PB, and compare their performance against their mean-based variants
mRelMAE, mU2 and mPB. For the latter, we test two different methods for estimating the underlying stochastic process:
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Table 6. Results on real spare parts inventory data.

Forecaster RelMAE U2 PB mRelMAE mU2 mPB mRelMAE mU2 mPB
fixed fixed fixed trend trend trend

SES 0.05 1.011 0.728 31.49 0.119 0.100 98.89 0.291 0.206 87.14
SES 0.10 1.010 0.735 31.54 0.166 0.139 98.66 0.291 0.214 87.59
SES 0.15 1.010 0.744 31.58 0.228 0.191 97.04 0.313 0.240 87.27
SES 0.20 1.010 0.753 31.58 0.288 0.243 94.74 0.345 0.275 87.21

CR 0.05 1.001 0.721 31.55 0.129 0.098 98.77 0.307 0.217 86.58
CR 0.10 0.990 0.719 31.61 0.120 0.093 98.83 0.288 0.204 87.42
CR 0.15 0.980 0.718 31.70 0.118 0.094 98.54 0.274 0.196 88.01
CR 0.20 0.971 0.718 31.80 0.122 0.099 98.13 0.264 0.191 88.34

ZF 0.623 0.788 16.07 0.722 0.535 14.16 0.695 0.510 14.61

• fixed : under the assumption of stationarity, we use the mean of all 24 demands as the estimated means ym
t of the

underlying stochastic process for a series;
• trend : under the assumption of non-stationarity, we estimate the trend τt by linear least-squares over the 24 periods

then take ym
t = max(τt , 0).

The results are shown in Table 6. Taking the best result for each forecaster, we find that U2, PB and all the mean-based
measures except mPB/fixed rank the forecasters correctly: mPB/fixed ranks them as SES � CR � ZF, while RelMAE ranks
them as ZF � CR � SES. We take the imperfect performance of mPB/fixed to indicate the incorrectness of the stationarity
assumption, showing the importance of finding a good method for estimating the stochastic process. These results confirm
our simulation results: that existing error measures may incorrectly rank forecasters; that MSE- and PB-based measures
behave better than those based on MAE; and that mean-based measures are well behaved if we use an appropriate estimate
of the demand means.

Based on our experiments, and on inapplicabilities pointed out by Hyndman and Koehler (2006), we make two rec-
ommendations regarding measures of deviation for intermittent demand. Firstly, we do not recommend any existing error
measures. Secondly, we recommend several new error measures: mMSE, mRMSE, mMAE, mMdAE, mMAPE, mRelMSE
(including special cases mU2 and mLMR plus other relative measures such as mRelMAE), mRelRMSE, mMMR, mMASE
and mGMRAE. Which of these is best depends on user preference, and considerations such as whether errors are to be
compared on one or across several series. However, care must be taken when estimating real demand means, and underlying
trends should be taken into account.

4. Conclusion

We have shown that almost all known error measures rank forecasting methods incorrectly on some intermittent demand
series. Even combining several measures does not cure the problem, because if they all rank forecasters incorrectly, then so
will their combination (though this is not an argument against using multiple measures). Given this result, and the well-known
fact that several error measures are inapplicable to intermittent demand because of infinities, there is currently no reliable
way of measuring forecast deviation errors on such demands.

To address this problem, we described a simple way of modifying error measures so that they are more widely applicable
and behave more correctly. This yields many new mean-based error measures that can be used to compare forecasters on
intermittent demand. They are unlikely to be plagued by infinities, and in tests they consistently ranked forecasters correctly.

It might be argued that defining new error measures only adds to the confusion, but we believe that the improved behaviour
and wider applicability of our measures make them worth considering when faced with intermittent demand. To simplify
matters, we should perhaps recommend a small number of new measures. Based on popularity, the recommendations of
experts and the desire to use measures based on both absolute and squared errors, we choose mMAPE, mGMRAE and mU2.

In future work, we shall evaluate other error measures that can be modified by our technique, and experiment with
non-stationary demand. The statistical properties of the new error measures should also be investigated. Finally, the new
error measures can also be applied to non-intermittent demand, and we shall evaluate their usefulness using series from the
forecasting competitions.
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